### Learning Science is Fun

Dr. YEUNG Chi Ho Bill

The Department of Science and Environmental Studies
The Education University of Hong Kong

### Why learning science is NOT fun?

Boring... → Interest-driven

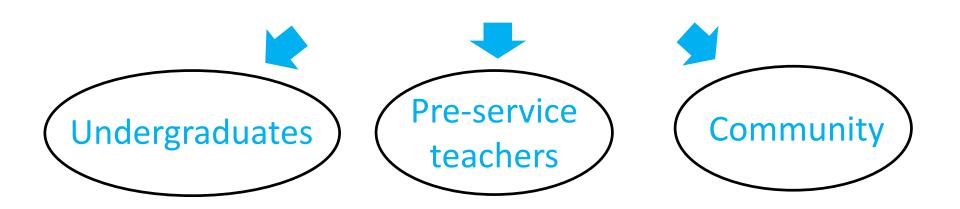
Irrelevant to me...

→ Science in daily life

Impractical...

- → STEM Education at EdU
- → Learning by teaching

Abstract...


- → Constructivism
- → Visualization

Difficult...

→ Science-for-all

### Ways to make it fun?

- 1. Interest-driven learning of science
- 2. Make science simple, achieving science-for-all
- Allow students to construct science from daily-life (constructivism)
- 4. To integrate **STEM education** in our lessons
- 5. To learn by teaching



### Learning from Action Movies (1)

Jacky Chan, Who am I?

### Learning from Action Movies (2)

James Bond movie

### Issue-based courses

For science-based courses:

For issue-based courses:

#### Students' positive feedbacks:

- Many movie clips can inspire me to think about the scientific principles in my daily life
- Many videos can inspire my interest
- The videos are interesting, etc.

# Constructivism – Constructing Science from Daily Life

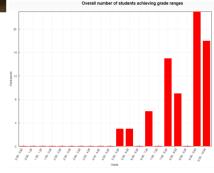
**MTR** experiment Can we measure the speed of MTR inside the train?

**Optical fiber** 

experiment



Magnetic toy
Why it levitates?


## Constructivism – In-class quiz with experiments





The state of the s

Open-notes and open discussion, students discuss the questions



#### Ouestion 6

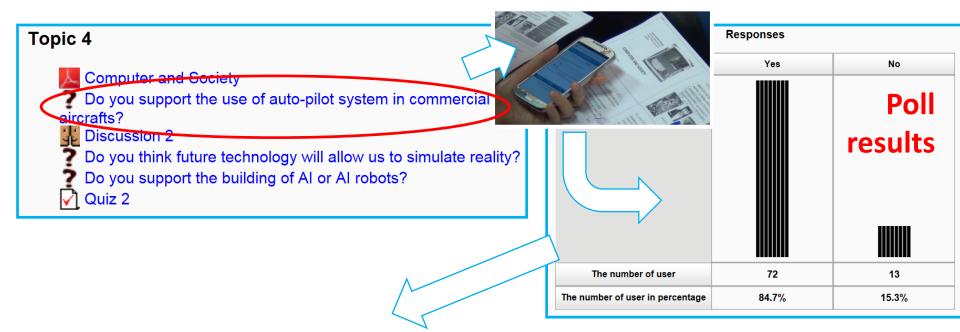
Not yet answered

Marked out of 1.00

Flag question

Edit question

#### [Experimental question]


Given (1) a pile of A4 paper, (2) a wooden block with a rough surface, (3) a scale balance, (4) a protractor, estimate the maximum static friction between the pile of A4 paper and the rough surface of the wooden block.

[Assume gravitational acceleration is  $10\text{m/s}^2$ , and express your answer in Newton (N). Only numerical value of the answer has to be input into the answer box, unit can be omitted.]

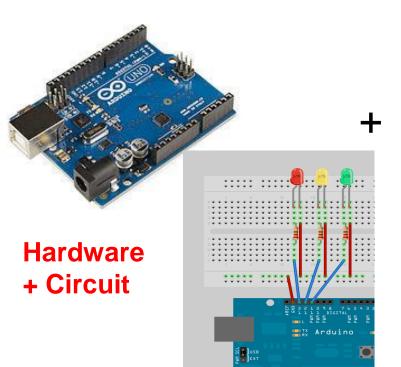
Answer:

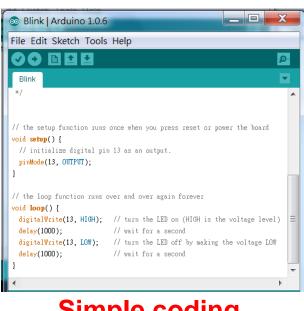
### **Experimental**questions in Quiz

### Moodle Poll & Discussion forum



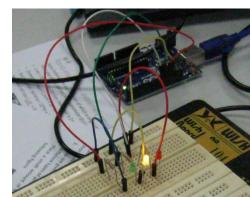



### STEM for EdU students




- STEM (Science, Technology, Engineering, Mathematics)
   education integrate multi-disciplinary knowledge and
   apply it
- A recent focus in primary and secondary schools, raising students' interests in STEM subjects
- STEM education can be a useful pedagogy for our EdU students too, especially for non-science students
- It raises their interests, and makes science practical
- This also prepares pre-service teachers for their future teaching

### STEM lesson (1) - Building traffic light system


- Background: many students do not have science background, or any prior knowledge on coding and software, or do not understand the principle of automation
- The activity: circuit + micro-controller board + simple programming  $\rightarrow$  putting knowledge into applications





Simple coding





### STEM lesson (2) – building Lego balance

#### **Pre-service teachers**









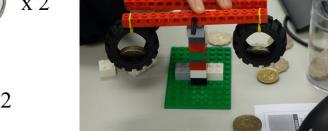













x 2









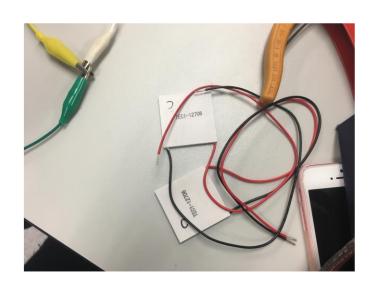
### STEM@EdU - STEM Inventor Scheme



### 1. Writing an invention proposal...

• Motivation, invention design, budget, etc....., similar to what scientists did for getting a research grant

| Propo               | osal for Inven | tion or STEM e       | educa   | ition ac | tivitv                 | Į           |
|---------------------|----------------|----------------------|---------|----------|------------------------|-------------|
|                     |                | can be more than 1 l |         |          | ,                      | Ş           |
| ) Group leaders a   | Leader         | can be more than I i | eauerj. |          |                        |             |
| Name                |                |                      |         |          |                        |             |
| Student ID:         |                |                      |         |          |                        |             |
| Program of study:   |                |                      |         |          |                        |             |
| Year of study:      |                |                      |         |          |                        |             |
|                     |                |                      |         |          |                        |             |
| imple description:  |                |                      |         |          |                        |             |
| ) Tentative list of |                | and the correspondin |         | •        | <del>'O" for bud</del> | <b>z</b> et |


Total budget required =

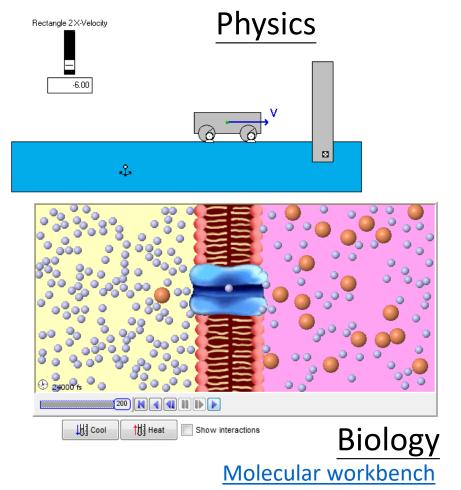
### 1. Writing an invention proposal

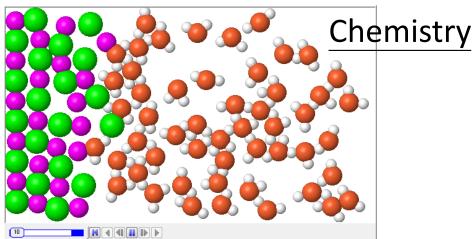
- Many of them do not have a science background, they applied simple science to develop innovative ideas
- Some ideas may be too ambitious, infeasible, but they will sort it out in the invention process (an important essence of the STEM process)

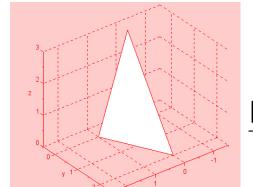
### 2. Testing, problem solving, improving...

Full support, no pressure, just fun ©







### 3. Dissemination of their inventions




### Learning through simulated experiments

 Develop higher-order skills, e.g. critical thinking, analyses, problem-solving, creativity, etc



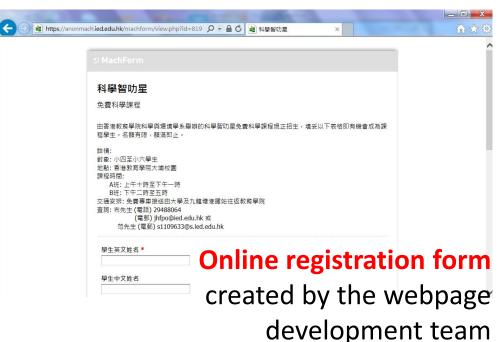




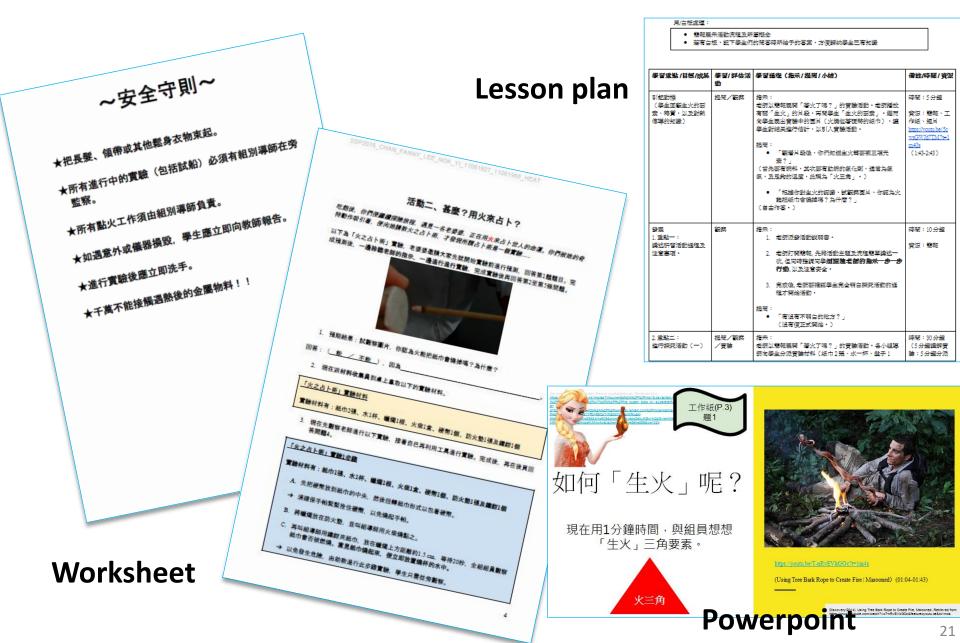
Mathematics

### Learning by teaching

## Little Scientist and Smart Scientist Program (小小科學家 與 科學智叻星)

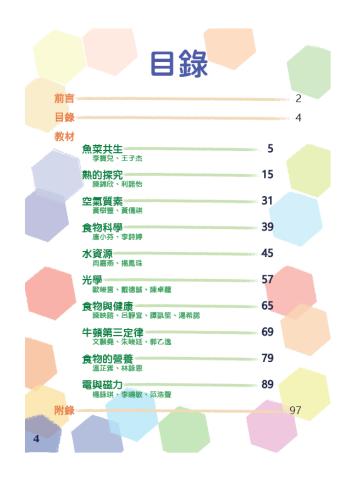

- Objectives: To let student teachers
- develop curriculum and teaching materials from simple science, some of them use a STEM approach
- 2. cooperate, coordinate, manage and execute the programme
- 3. bridge theory and practice
- 4. observe and learn from peers -- KT among students of different majors and years
- Participants:
- Over 60 undergraduate students from year 2 year 4 and different programmes and faculty
- Over 200 primary school students participated over the years

Acknowledgement: Smart Scientist Program co-supervised by Dr Irene Cheng, supported by: Teaching Development Grant


### 1. Promotion & admission (by students)



|                       | Class A            | Class B        |  |
|-----------------------|--------------------|----------------|--|
|                       | (10am – 1pm)       | (2pm – 5pm)    |  |
| 7 <sup>th</sup> May   | Force and          | Food and       |  |
|                       | Newton's third law | Health         |  |
| 14 <sup>th</sup> May  | Food Science 1     | Food Science 2 |  |
| 21 <sup>st</sup> May  | Water treatment    | Heat           |  |
| 28 <sup>th</sup> May  | Electromagnetism   | Aquaponics     |  |
| 4 <sup>th</sup> June  | Optics             | No class       |  |
| 11 <sup>th</sup> June | No class           | Air quality    |  |




### 2. Teaching material development



### 4. Dissemination as a teaching module book





 The student participants gathered all their teaching materials and print it as a booklet

### Elderly Science Day (長者科學體驗日)





不久前發生的尼泊爾地震,成為城中熱話。事件除引發大眾對地震的關注外,亦令大家 察覺這些自然現象原來跟生活息息相關。不要以為科學只有青少年才有興趣探索,銀髮 老友記也一樣有求知探真的精神、早前香港教育學院舉辦「長者科學體驗日」、以各種 有趣實驗讓老友記親自揭開科學的神秘而鈔,名額火速爆滿。前天文台助理台長梁榮武 亦認為、認識科學「有心唔怕遲」、更為各位推介幾本人門科普書、讓大家輕鬆成為 文:梁淑英 圖:胡景禧、資料圖片

藏科學的課程 体林總總。 们转要一族欲認識科學作 往缺乏門路。香港教育學院 科學與環境學業及可持續發 展教育中心早前攀掛一場專爲長

者而設的科學假驗日。員費人兼級院科 學與環境學系講師標志豪 (團)表示反 瓜提高長者們的聚保直接,課程安排他 应非索執形、30個名語迅速爆落。後 例學習有關可再生像原的科學知識、何 加者之一陳先生表示、報名參與是四瓜 括太陽但及風力發電的原理。導師安排

外,我們亦有大量小組實驗活 動·適每位長者可從活動中自 己發拓科學知識・反而由認有 所理論的部分會較少一

看中「餘驗」二字:「這次提移張捌騰 使們到數位校園內不同的地方測試太陽 女士也投入



作者: 林起英 出版社: 快樂書房 自律人特一て答辩化出版人采集本款

他亦推介以下科普人門書:

在天文台任職了30年的前天文台助理台長梁榮武退休

後、仍出席各大小公衆科書講座、又在兩問大學擔任業任

教師・繼續推動科警。同爲退休人士・他認爲退休正是學

習新事物的黄金時機;「退休不只是吃喝玩樂。認識新事

物如科學可令生活更充實。」不少人認為科學是遙不可

36、但學學就與舊科學學生活息自相關:「何如日來云氣

變化、食物安全當中涉及不少科學領議。 | 他建議有機維 認識科學的退休人士。可參加公衆講座或申請成爲香港科 學館的義務導責員,這便可接受有系統的科學知識培訓。

**然理象的疑問,例如天空看起來為什** 度會是藍色?當中亦滲入作者對自然 及人生的觀察,以及一些哲學性的討 瑜如宇宙是物理現象速是生命現象等。 旅讀者可以更多角度了解科學這門學



Opportunities for our students to communicate with elderly and apply their pedagogy

**Elderly enjoy the science** experiments very much

### Summary

- Learning science can be fun by
- 1. Interest-driven pedagogy; science-for-all
- Encouraging students to construct science in daily life
- Adopting a STEM approach during lessons and in extra-curricular activities
- 4. Learning by teaching