Subject: Mathematic

## Level: S. 2

Topic: Application of estimation and approximation

## Learning objectives:

Content:

1. Students should be able to apply theorems of estimation (absolute error, percentage error, lower limit and precision) to evaluate daily life problems of estimation and precision..

Language:
2. Students should be able to write a paragraph with language support to evaluate daily life problems of estimation and precision.

## S2 Mathematics <br> Application of estimation and approximation <br> Worksheet for Student A

Name $\qquad$ No.: $\qquad$ Class: $\qquad$ Date: $\qquad$

Instruction:

1. Read the problem described below.
2. Answer the questions that follow by yourself in 10 minutes.
3. Then, form a group of four with nearby students.
4. Discuss in your group your ideas and evaluate the accuracy of the advertisement in the next 15 minutes.

Hint: to evaluate something means to comment / judge on something (say that something is good or bad, etc.) by considering all known information.

Daily life open-ended problem:
In an advertisement, the dimensions of a room were described as approximately $20 \mathrm{~m} \times 5 \mathrm{~m}$. John wanted to rent the room. He measured its dimensions with an accurate instrument. He found that the area was $70 \mathrm{~m}^{2}$ only. What can you say about the advertisement?

1. According to the advertisement, what is the approximate area of the room?

The approximate area is
2. Assume that John's measured area is the actual area of the room, find and comment on the absolute error of the area of the room provided by the advertisement.
(Hint: absolute error = approximate value - actual value)

The absolute error is $\qquad$ , which is too $\qquad$ .
3. Does the advertisement show precision of measurement (e.g. correct to the nearest integer, 1 significant figure, etc.)? Is the precision important for calculating the maximum absolute error?

The advertisement
The precision
4. Complete the following table.

| Precision of measurement | Approximate length $\mathrm{L}=20$ <br> Possible length $L_{\min } \leq L<L_{\max }$ | Approximate width $W=5$ <br> Possible width $W_{\min } \leq W<W_{\operatorname{ma}}$ | Lower limit of area of room $A_{\min }=L_{\min } W_{\min }$ | Maximum absolute error of area of room $100-A_{\min }$ |
| :---: | :---: | :---: | :---: | :---: |
| To nearest integer |  |  |  |  |
| To 1 sig. fig. |  |  |  |  |

5. If the precision of measurement is taken as "correct to nearest integer", state the lower limit of the area of the room and compare it with the actual area of the room. Comment on the assumption of this precision.

If the precision of measurement is taken as "correct to nearest integer",

| the lower limit of the area of the room is $\quad$, which is than |  |
| :--- | :--- |
| the actual area of $\mathrm{m}^{2}$. |  |
| Therefore, the assumption of this precision is | . |

6. Calculate the percentage error of the area of the room if the precision of measurement is taken as "correct to 1 significant figure". Is it too large? Comment on the assumption of this precision. Is there any other possible assumption of precision with reference to the dimensions given in the advertisement?
(Hint: percentage error $=\frac{\text { max imum absolute error }}{\text { measured value }} \times 100 \%$,
measured value $=100 \mathrm{~m}^{2}$ )

If the precision of measurement is taken as
the percentage error is , which is
Therefore,
There
7. Evaluate the advertisement. Explain your answer in a paragraph by using words such as first, second, third, fourth to join the answers in Questions 2, 3, 5 and 6.

The advertisement is * ) and** ( because
of the following reasons.
First, the absolute error of the area of room is , which is too
Second, the advertisement does not show
which is very for calculating
Third, if the precision

Fourth,

* choose from the following description: well written, poorly written, ** choose from the following description: misleading, accurate


## Answers of the Worksheet

1. According to the advertisement, what is the approximate area of the room?

The approximate area is $\mathbf{1 0 0} \mathrm{m}^{2}$.
2. Assume John's measured area to be the actual area of the room, find and comment on the absolute error of area of the room provided by the advertisement. (Hint: absolute error = approximate value - actual value)

The absolute error is $\mathbf{3 0} \mathbf{m}^{\mathbf{2}}$, which is too large.
3. Does the advertisement show the precision of measurement (e.g. correct to the nearest integer, 1 significant figure, etc.)? Is the precision important for calculating the maximum absolute error?

The advertisement does not show precision of measurement.
The precision is important for calculating the maximum absolute error.
4. Complete the following table.

| Precision of <br> measurement | Approximate <br> length <br> $L=20$ <br> Possible length <br> $L_{\min } \leq L<L_{\max }$ | Approximate <br> width <br> $W=5$ | Lower limit of <br> area of the <br> room | Maximum <br> absolute error <br> of area of the <br> $W_{\min } \leq W<W_{\mathrm{ma}}$ |
| :---: | :---: | :---: | :---: | :---: |

5. If the precision of measurement is taken as "correct to nearest integer", state the lower limit of area of the room and compare it with the actual area of the room. Comment on the assumption of this precision.

If the precision of measurement is taken as "correct to nearest integer",
the lower limit of the area of the room is $\mathbf{8 7 . 7 5} \mathbf{~ m}^{2}$, which is greater than
the actual area of $70 \mathrm{~m}^{2}$.
Therefore, the assumption of this precision is wrong.


Note: the answers are printed in bold faces.

