Subject: Chemistry
Topic: Rate of chemical reactions

Level: S. 4

Background information::

It is very common for students to develop misconceptions from unaided learning from chemical animations. This activity introduces students to a strategy for learning from animation on their own. They are expected to learn to interpret graphics and to write about the interpretation.

Learning Objectives

1. Content:

Students should be able to explain the relationship between the rate of chemical reactions and time.
2. Language:

Students should be able to use connectives such as "result in", "lead to", "because", and so on to explain the relationship between the rate of chemical reactions and time..

S. 4 Chemistry
 Rate of Reactions
 Worksheet 2

Name: \qquad No.: \qquad Class: \qquad Date: \qquad

Activity 2

家
 Individual work

1. Browse the website http://members.tripod.com/chung.sic/using window/explorer.
2. Click the box "F. 4 "rate of reaction".
3. Click the button "an improved simulation".
4. Click the button "Add $\mathbf{H}^{+"}$. Click it several times to add more hydrogen ions.
5. Have a glance at the animation, and briefly complete the "K" and "W" of Part A, and also Part B(i) below.
6. With the help of your watch, do Part B (ii) and (iii) and "L" of Part A.

A. K-W-L chart

Vocabulary tips for K-W-L chart:

Collision (n.): An event in which two or more bodies come together. Collide (v.)
Collision frequency (n .)
Microscopic level (n.): The particle level, a level that can only be seen through a microscope e.g. how the particle collides is invisible to the human eyes and can only be seen through the microscope, so the collision of particles functions at the microscopic level.

Forming a $\mathrm{H}-\mathrm{H}$ single bond.

B. Strategies for learning from animation:

(i) What does the graphic mean?

Reality is always too complicated to be represented by graphics e.g. when we talk about facts of microscopic properties. To begin with, you must make sure you know the meaning of all pictorial representations of the animation.

Complete the table below.

Pictorial representation	Meaning
	Zinc strip

(H)
Hydrogen ion
(diatomic) hydrogen molecule/ H_{2} molecule
The blue
Solvent (water) background

A particle is not shown in this animation as it is not involved in the chemical change.

The spectator ion:
Chloride ion. Cl^{-}

(ii) How do we describe what has happened?

Observation:

With the help of a watch, fill in all the blanks below.

1. From $t=0 \mathrm{~s}$ to $\mathrm{t}=15 \mathrm{~s}$, there is \qquad $\mathrm{H}-\mathrm{H}$ molecule(s) formed.
2. From $t=16 \mathrm{~s}$ to $\mathrm{t}=30 \mathrm{~s}$, there is \qquad $\mathrm{H}-\mathrm{H}$ molecule(s) formed.
3. From $t=31 \mathrm{~s}$ to $\mathrm{t}=45 \mathrm{~s}$, there is \qquad .
4. From $t=46 \mathrm{~s}$ to $\mathrm{t}=75 \mathrm{~s}$, there is \qquad .

Conclusion:

We can conclude that \qquad $-$
(iii) What is/are the reason(s) behind?

Writing tip: To give a series of causes and effects, you may use the frame below:

(Don't forget to finish "L" of Part A!)

