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About the Beijing Normal University (BNU), 
Beijing, China

Beijing Normal University (BNU) grew out of the Education Department 
of Imperial University of Peking established in 1902, which initiated 
teacher training in China’s higher education. After the development for 
over a century, BNU has become a comprehensive and research-
intensive university with its main characteristics of basic disciplines in 
sciences and humanities, teacher education and educational science.

BNU consists of Beijing Campus and Zhuhai Campus. The University has 
3 faculties, 27 schools, 2 departments, 11 research institutes and 4 
academies. In addition, there are more than 5.4 million books and 8.2 
million e-books in its libraries. BNU is home to more than 35,000 full-
time students, and has more than 8000 faculty members, including 
2562 full-time teachers, 94% of whom have earned a doctoral degree.

At present, the university has established cooperative ties with about 
300 universities and international organizations from more than 40 
countries and regions. Each year, above 900 international professors 
and scholars are invited to lecture and research at the University. And 
BNU has around 2000 long-term international students, the scale of 
which ranks among top in China’s universities.

The motto of Beijing Normal University is “Learn, so as to instruct 
others. Act, to serve as example to all.” 

For more information, please visit: https://english.bnu.edu.cn/

https://english.bnu.edu.cn/


The Asia-Pacific Society for Computers in Education (APSCE) was 
formed on 1 January 2004. It is an independent academic society 
whose broad objective is to promote the conduct and communication 
of scientific research related to all aspects of the use of computers in 
education, especially within the Asia-Pacific.

The specific objectives of APSCE are: 
l To promote the conduct and dissemination of research employing 

the use of computing technologies in education within the Asia-
Pacific region and internationally. 

l To encourage and support the academic activities of researchers in 
member countries and to nurture a vibrant research community of 
younger as well as more experienced researchers. 

l To enhance international awareness of research conducted by 
researchers in member countries. 

l To obtain greater representation of active researchers from the 
Asia-Pacific region in committees of related leading academic and 
professional organizations and the editorial boards of reputable 
journals. 

l To organize and hold the International Conference on Computers in 
Education (ICCE) conference series in member countries. 

l To engage in other appropriate academic and professional 
activities including but not limited to the setting up of Special 
Interest Groups (SIGs) and the publication of a Society newsletter 
and a Society journal. 

For more information, please visit: https://apsce.net/

Asia-Pacific Society for Computers in Education

https://apsce.net/


The APSCE International Conference on Computational Thinking (CT) 
and STEM Education (CTE-STEM) is a global academic conference that 
focuses on the field of computational thinking and STEM education. It 
serves as a platform for researchers, educators, policy makers, and 
industry professionals to exchange and share the latest research 
findings, experiences, and perspectives. The conference covers various 
aspects of computational thinking and STEM education, including 
teaching methods, curriculum design, educational technology, 
assessment and evaluation, and more. Participants have the 
opportunity to engage in in-depth academic exchanges and 
collaborations with experts and scholars from different countries and 
regions through presentations, research reports, workshops, seminars, 
and other formats.

With globalization, technology, and informatization, CT and STEM 
education have new perspectives and trends in the context of 
multilateral international relations and complex social environments. 
The 8th APSCE International Conference on Computational Thinking 
and STEM Education 2024 (CTE-STEM 2024) is organized by the Asia-
Pacific Society for Computers in Education (APSCE). CTE-STEM 2024 is 
hosted by the Beijing Normal University, China (BNU). CTE-STEM 2024 
will focus on these themes, sharing experiences, discussing differences, 
reaching consensus, and promoting the development of CT education. 
The conference will include keynote speeches, panel discussions, a 
teachers' forum, and paper presentations.

On behalf of APSCE, BNU and the Conference Organizing Committee, 
we would like to thank all the invited panelists, the keynote speakers, as 
well as paper presenters for their contribution to the success of CTE-
STEM 2024. 

We sincerely hope all  of you wil l  enjoy and be inspired from 
participating in and attending CTE-STEM 2024. 
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Theme: 
Computational Thinking and Computing-related STEM Education

Sub-themes:

- Computational Thinking and Unplugged Activities in K-12
- Computational Thinking and Coding Education in K-12
- Computational Thinking and Subject Learning and Teaching in K-12
- Computational Thinking and Teacher Development
- Computational Thinking and IoT
- Computational Thinking Development in Higher Education
- Computational Thinking and STEM/STEAM Education
- Computational Thinking and Non-formal Learning
- Computational Thinking and Psychological Studies
- Computational Thinking and Special Education Needs
- Computational Thinking in Educational Policy
- General Submission to Computational Thinking Education
- Computational Thinking and Evaluation
- Computational Thinking and Data Science
- Computational Thinking and Artificial Intelligence Education
- Computational Thinking and its Key Elements
- Computational Thinking as Method
- STEM and Interdisciplinary Integration
- Open-Source Software and Hardware for CT and STEM Education

Conference format

CTE-STEM 2024 plans to be run by offline. Accepted English papers will 
be published in Scopus-indexed conference proceedings. Accepted 
Chinese papers will be indexed by CNKI.

Conference Theme and Conference format 
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ABSTRACT
This study explores the relationship between computational
thinking and fixed/growth mindset, with the aim of
informing educational strategies that enhance
computational thinking. A survey of 578 university
students was conducted to examine the relationship
between mindset and factors of computational thinking.
The results revealed significant positive correlations
between mindset and computational thinking factors:
creativity, algorithmic thinking, cooperativity, critical
thinking, and problem-solving. Notably, the relationship
between critical thinking and mindset emerged as the
strongest. The relationship between mindset and
cooperative thinking exhibited a weaker correlation than
other computational thinking factors. Furthermore,
significant differences in scores were observed between the
growth mindset group and the fixed mindset group for each
computational thinking factor. These findings suggest that
students with higher creativity, critical thinking, and
problem-solving scores are more likely to belong to the
growth mindset group. In addition, cooperation may affect
the probability of belonging to the higher mindset group,
whereas algorithmic thinking shows no significant effect
on mindset. Considering these findings, we propose a
curriculum grounded in the practical aspects of
computational thinking and mindset.

KEYWORDS
Computational thinking, fixed mindset, growth mindset,
cognitive process, students’ belief

1. INTRODUCTION
1.1. Research Background
In today’s context, problems to be solved have become
increasingly complex and sophisticated, requiring solutions
beyond conventional knowledge and experience. Students
are now expected to learn independently and tackle
unknown problems without giving up. When solving
problems using AI and other technologies, students must
solve them efficiently within predetermined time frames.
Computational thinking is important as it equips students
with the skills to apply AI and programming solutions
efficiently.

Since Wing (2006) introduced the key constructs of
computational thinking outlined by Papert (1993),

extensive research has been conducted in this area,
resulting in numerous practical examples. Computational
thinking plays a significant role in developing human
resources to address social problems.

Several definitions of computational thinking (e.g.,
International Society for Technology in Education (ISTE)
and the Computer Science Teachers Association (CSTA),
2011; Yadav et al., 2014) and several studies identifying
sub-concepts of computational thinking (e.g., Selby &
Woollard, 2013; Wing, 2011; Angeli et al., 2016) exist. In
other words, focusing on sub-concepts and activities in
developing computational thinking is important.

Winthrop (2016) categorizes computational thinking into
four main groups: data practices, modeling and simulation
practices, computational problem-solving practices, and
systems thinking practices. Kalelioglu (2016) conducted a
qualitative content analysis, revealing that the main topics
addressed in the papers focus on activities promoting
computational thinking in the curriculum, whether
computerized or unplugged. Game-based learning and
constructivism form the basis of these papers and their
main theories. The analysis further identifies the most
frequently used words in the definition and scope of
computational thinking, forming the framework for
computational thinking.

To enhance the development of computational thinking, it
is imperative not only to accumulate examples but also to
develop curricula tailored to learners’ actual conditions,
taking into account their psychological state and the
relationship with various skills they possess.

This study focuses on “mindset” as a psychological state,
drawing on Dweck’s (2008; 2014) distinction between
fixed and growth mindsets. Individuals with a fixed
mindset believe their abilities are static and tend to avoid
challenges. On the other hand, those with a growth mindset
believe in improving their abilities through effort and
learning. The study posits that a fixed or growth mindset
influences learning attitudes and outcomes.

Mindset plays a significant role in learning; Limeri (2020)
examined the impact of student’s academic motivation and
engagement on mindset development. The study found
varying degrees of mindset orientation throughout an
introductory computer science course, with certain groups
leaning more toward a fixed mindset. This suggests that
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students’ motivational characteristics may influence
mindset development. Jiang et al. (2023) conducted a study
that focused on the positive effects of a growth mindset on
students’ intentions toward self-regulated learning during
the COVID-19 pandemic. The results show that students’
growth mindset is associated with the support they receive
from teachers and other involved individuals, even in an
online setting. This study underscores the importance of a
growth mindset in an educational context.

Since mindset significantly impacts learning effectiveness
and attitudes toward learning, it is likely to play a crucial
role in classes and practices aimed at fostering
computational thinking.

1.2. Identification of Problems
It has been emphasized that the relationship between
computational thinking and mindset is important for
enhancing future computational thinking development. For
instance, Stella et al. (2021) studied the relationship
between computational thinking and mindset. The study
investigated data science and computational thinking by
examining the mindsets of high school students enrolled in
a STEM-focused curriculum and STEM researchers
working on modeling complex systems. The results
indicated that STEM professionals exhibited consistency
with important aspects of computational thinking, such as
logical reasoning and positive attitudes toward data and
simulation. In contrast, high school students demonstrated
knowledge of logical reasoning but needed a more
developed understanding of the relationship between
models, simulation, and computation. This difference
underscores the importance of computational thinking,
interpreted by the authors as indicative of a gap in the
development of the computational mindset. They argue that
this partially undeveloped computational mindset requires
additional psychological impetus to solve problems and
understand the world.

Asmara (2020) researched computational thinking as a
problem-solving skill, surveying international students
from Taiwan's engineering and social science schools. The
study found differences between engineering and social
science students in their problem-solving approaches,
especially in using structured algorithms. This fundamental
insight sheds light on how differences in academic
backgrounds affect students’ computational thinking and
problem-solving skills. Lodi (2017) emphasized the
importance of interventions that stimulate a CS growth
mindset for students and teachers, recognizing this as a
fundamental and valuable area of computer science
education research.

Although the above studies have reported on computational
thinking and mindset, they have yet to focus on the
difference between a growth mindset and a fixed mindset.
They have been examined in a limited context. To enhance
computational thinking in the future, it is essential to focus
on the relationship between computational thinking, growth
mindset, and fixed mindset and to conduct research based
on the relationship between them. For this purpose, it is
necessary not only to accumulate concrete examples but
also to grasp the actual conditions of learners’

computational thinking and mindset and to examine the
relationship between them. However, to the best of the
authors’ knowledge, no previous studies have addressed
this specific aspect.

In this study, we formulate the following research
questions to understand the relationship between
computational thinking and mindset and to obtain basic
knowledge for the future enhancement of computational
thinking development.

RQ: What is the relationship between computational
thinking, fixed mindset, and growth mindset?

2. METHOD
2.1. Survey Participants and Survey Method
Rakuten Intage, a research company, conducted the survey.
The participants comprised 578 university students (295
males and 283 females), with a mean age of 21.30 years
(SD 2.03) and a survey duration of about 20 minutes. The
participants remained anonymous, with no inclusion of
names, school names, or other personally identifiable
information. Upon completing the survey, participants
received the designated points from this company.

2.2. Survey Items
For demographic information, we included items to
ascertain age and gender. The Japanese version of the
mindset scale, developed by Dweck et al. (2008) (Muto,
2020), was used to measure both fixed and growth
mindsets (refer to Table 1). Although the scale's validity
has yet to be examined, we used it for this study. Items 1 to
3 measure fixed mindset (invert items), and items 4 to 6
measure growth mindset. All items were answered on a 6-
point Likert scale ranging from “6: Strongly agree” to “1:
Strongly disagree.” The sum or average of all items can
measure the participants’ mindset. The total or average
value of all items can be used to measure the mindset of the
participants. In this context, it is assumed that participants
with values above the mean have a growth mindset, while
those with values below the mean have a fixed mindset
(Hong et al., 1999).

Table 1. Items of Fixed/Growth Mindset.
1 You have a certain amount of intelligence, and you really

can’t do much to change it. *
2 Your intelligence is something about you that you can’t

change very much. *
3 You can learn new things, but you can’t really change your

basic intelligence. *
4 No matter who you are, you can change your intelligence a

lot.
5 You can always greatly change how intelligent you are.
6 No matter how much intelligence you have, you can always

change it quite a bit.
*Invert Items

We used the Japanese version of the computational
thinking scale developed by Chikazawa et al. (2022),
adapted from the original scale by Korkmaz et al. (2017),
to assess computational thinking. The reliability and
validity of this scale have been previously examined. The
original computational thinking scale consisted of 29 items,
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but when applied to humanities students, it was reduced to
21 items. However, for this survey, it is impossible to
specify whether the participants are science majors or
humanities majors. Therefore, we opted for the Japanese
version of the 29-item computational thinking scale,
comprising five factors: “creativity (CR),” “algorithmic
thinking (AT),” “cooperativity (CO),” “critical thinking
(CT),” and “problem-solving (PS).” All items were
answered on a 5-point Likert scale ranging from “5:
Strongly agree” to “1: Strongly disagree.”

2.3. Analysis Procedure
A confirmatory factor analysis served as a preliminary
analysis to examine the validity of the items used in this
study. Following this, descriptive statistics were obtained.
Since no normality was observed between the mindset
scale and the computational thinking scale, the correlation
coefficient between the mindset scale and each factor of
computational thinking was calculated. The upper and
lower groups were defined based on the mean value of the
mindset scale, where the upper group refers to the “growth
mindset group,” and the lower group refers to the “fixed
mindset group.” The differences in each factor of
computational thinking between the upper and lower
groups were evaluated using the Wilcoxon rank-sum test.
Subsequently, a two-way logistic regression analysis was
conducted, taking the upper and lower mindset groups as
dependent variables and each factor of computational
thinking as an independent variable. This analysis aimed to
understand how the factor of computational thinking
affects the probability of belonging to a mindset group. The
analysis was performed using R version 4.3.2 with a
statistical significance level set at 5%.

2.4. Ethical Considerations
In this study, we did not include items that could identify
individuals, such as names and school names, and
respondents experienced minimal psychological burden
while answering the survey items. Consent for participation
was obtained at the time of response. This study received
approval from the Tokushima University Ethics Review
Committee (No. 2023-3). The authors declare no conflicts
of interest.

3. RESULTS
3.1. Preliminary Analysis
As a preliminary analysis, we examined the validity of the
items and scales used in this survey. Confirmatory factor
analysis was used to examine the validity of the GFI, CFI,
SRMR, RMSEA, and Cronbach’s alpha coefficient. In
addition, the Shapiro-Wilk test was used to confirm the
normality of each factor. The results are shown in Table 2.

Table 2. Results of Preliminary Analysis.
α CFI GFI RMSEA SRMR W

CR 0.77 0.88 0.95 0.09 0.05 0.98**
AT 0.87 0.95 0.96 0.10 0.05 0.98**
CO 0.84 0.98 0.98 0.13 0.02 0.98**
CT 0.81 0.98 0.99 0.07 0.02 0.98**
PS 0.66 0.95 0.98 0.07 0.03 0.99**
Mindset 0.68 0.41 0.73 0.34 0.21 0.98**
**p < .01 (N = 578)

Table 2 shows that the results of reliability coefficients and
Cronbach’s alpha coefficient for each computational
thinking factor supported the scale’s reliability and validity.
However, all the values tended to be low for mindset. This
suggests that the mindset scale may differ from standard
interpretations in the target population of this study and
that, in general, the scale needs to be reviewed and
contextualized. It also implies that when using mindset
scales, appropriate adjustments and supplementary
explanations are necessary, considering the target
population’s characteristics and cultural background.
However, the validity and reliability of the Japanese
version of the mindset scale itself have yet to be confirmed.
Although these are issues that need to be addressed in
future research, the purpose of this study was to understand
the relationship between the mindset scale and the
computational thinking scale and to obtain basic
knowledge for enhancing education to foster future
computational thinking.

This study aimed to understand the relationship between
the mindset and computational thinking scales. It is
meaningful to proceed with the analysis using the mindset
scale to achieve this goal. Therefore, we decided to conduct
the research using the mindset scale in this study. Since it
was not confirmed that each factor and mindset scale of
computational thinking had normality, we used
nonparametric analysis in the subsequent studies.

3.2. Descriptive Statistics
Descriptive statistics are shown in Table 3.

Table 3. Results of Descriptive Statistics.
Mean SD

CR 3.56 0.76
AT 3.41 0.62
CO 3.02 0.87
CT 3.35 0.91
PS 3.19 0.80
Mindset 2.96 0.67

(N = 578)

3.3. Relationships between the Mindset Scale and Each
Factor of Computational Thinking
Spearman’s rank correlation coefficients were computed to
examine the relationship between the mindset scale and
each factor of computational thinking. The results are
shown in Table 4.

Table 4. Results of Correlation Analysis.
CR AT CO CT PS

CR 1.00 -- -- -- --
AT 0.42** 1.00 -- -- --
CO 0.45** 0.28** 1.00 -- --
CT 0.60** 0.54** 0.39** 1.00 --
PS -0.06 -0.05 -0.14** -0.03 1.00
Mindset 0.31** 0.23** 0.18** 0.32** 0.29**
**p < .01 (N = 578)

Table 4 shows a moderate to high correlation among
creativity, algorithmic thinking, cooperativity, and critical
thinking, reflecting correlations among the factors of
computational thinking. Critical thinking showed a strong
correlation with algorithmic thinking and cooperativity. On
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the other hand, problem-solving was weakly correlated
with other factors of computational thinking, suggesting
that it may have its unique elements.

Next, as for the relationship between mindset and the
factors of computational thinking, significant positive
correlations were found between mindset and creativity,
algorithmic thinking, cooperativity, critical thinking, and
problem-solving. The relationship between mindset and
cooperativity was weaker than that between mindset and
other factors of computational thinking, but it was still
significant.

3.4. Differences in Computational Thinking Due to
Differences in Mindset
To examine the differences in each factor of computational
thinking based on mindset differences, we analyzed the
differences between the upper group (growth mindset
group) and the lower group (fixed mindset group) using the
Wilcoxon rank-sum test. The results are shown in Table 5.

Table 5. Results of. Differences in Computational Thinking
Based on Mindset.

Upper Group Lower Group WMean SD Mean SD
CR 3.59 0.58 3.25 0.60 54418 **
AT 3.18 0.89 2.87 0.83 50215 **
CO 3.53 0.87 3.19 0.91 50170 **
CT 3.43 0.73 2.97 0.80 54554 **
PS 3.10 0.70 2.84 0.63 50195 **
**p < .01 (N = 578)

Table 5 suggests that students with a high or growth
mindset score higher on all the computational thinking
factors: creativity, algorithmic thinking, cooperativity,
critical thinking, and problem-solving. In other words, a
high level of mindset functions as a factor that positively
influences each factor of computational thinking.

3.5. Impact of Computational Thinking on Fixed/Growth
Mindset
A two-way logistic regression analysis was conducted to
examine the computational thinking factors' influence on
the growth and fixed mindset groups. The upper and lower
mindset groups were used as dependent variables, and each
computational thinking factor was used as an independent
variable. The results are shown in Table 6.

Table 6. Results of Two-way Logistic Regression Analysis.
Factor Estimate Std. Error z value Pr (>|z|)
Intercept -6.95 0.88 -7.92 0.00 **
CR 0.57 0.21 2.76 0.01 **
AT 0.02 0.13 0.15 0.88
CO 0.23 0.12 1.90 0.06
CT 0.52 0.17 3.01 0.00 **
PS 0.81 0.16 5.24 0.00 **
**p < .01 (N = 578)

In Table 6, the coefficients of creativity, critical thinking,
and problem-solving are positive and significant, indicating
that higher scores in these factors increase the probability
of belonging to the growth mindset group. The coefficient
of cooperativity is also positive and tends to be significant,
a factor that may increase the probability of belonging to a

group with a higher mindset. On the other hand, the
coefficient of algorithmic thinking is not statistically
significant and has no significant effect on growth and
fixed mindset.

4. DISCUSSION
These results suggest that students with higher mindsets
tend to exhibit higher scores and abilities in each aspect of
computational thinking. Critical thinking shows a
particularly strong association with mindset. Although the
results are complex and difficult to decipher, all factors
affect mindset when focusing on a single factor of
computational thinking. However, the growth mindset
group’s influence on the mindset differed depending on the
factor. The growth mindset group demonstrated higher
creativity, critical thinking, and problem-solving scores.

In contrast, the effects of algorithmic thinking and
cooperativity on the mindset group were not significant. In
other words, educational programs and teaching methods
focusing on the relationship between mindset and
computational thinking may need to differ between the
high and low mindset groups. In addition to focusing on the
relationship between a single factor of computational
thinking and mindset, it is necessary to emphasize the
relationship between computational thinking and mindset
and develop curricula based on this reality.

The fact that algorithmic thinking's influence on mindset
was not significant when considering the whole of
computational thinking suggests that this ability may be
influenced by factors other than mindset. The weak
correlation between mindset and cooperativity also
indicates that cooperative activities have characteristics
different from other elements of computational thinking,
which should be considered in the design of educational
curricula.

5. IMPLICATIONS FOR CLASSROOM
ACTIVITIES
Adopting flexible and effective teaching methods based on
students’ mindsets and computational thinking abilities is
important in designing educational programs. Specifically,
the significant positive correlations between the
computational thinking factors and mindset underscore the
need for an individualized approach in educational
programs.

The strong association of critical thinking skills with
mindset has an important implication for educational
settings. The results indicate that fostering students’ ability
to evaluate their thinking processes and consider issues
from different perspectives may promote a growth mindset.
Therefore, it may be beneficial to provide students with
opportunities for self-evaluation and self-reflection in the
classroom, along with incorporating activities that
stimulate critical thinking.

On the other hand, the relatively weak correlation between
cooperativity and mindset indicates that educational
interventions focused on cooperative activities may not
directly impact mindset development, or a reverse
relationship may exist. Educators need to recognize this
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and pay attention to both the development of problem-
solving skills and mindset. However, since the correlation
between cooperativity, creativity, and critical thinking was
observed, it is possible that the setting of combined
activities, such as cooperative problem-solving activities
rather than cooperativity alone, may be effective in
improving one’s mindset as well. Nonetheless, further
investigation is need due to the potential negative
relationship between cooperativity and problem-solving.

Furthermore, significant differences in computational
thinking scores between the growth and fixed mindsets
highlight the importance of adjusting the educational
program based on the student’s mindset level. In other
words, based on the reality of mindset and computational
thinking, the following approaches are assumed to be
effective in meeting the needs of each group.

Special support and approaches that help students develop
their mindset and computational thinking skills, such as
creativity and critical thinking, may be effective for
students with a low mindset. Supporting students in
developing their self-confidence, motivating them to take
on new challenges, and promoting a growth mindset should
be prioritized. Educators should teach students the concept
of a growth mindset, emphasize the importance of
accepting failure as part of the learning process, and
encourage them not to shy away from challenges. Focusing
on the relationship between activities that promote a
growth mindset and computational thinking, providing
simple computational thinking-related tasks, and offering
appropriate support are essential.

On the other hand, lessons and curricula for students with
higher mindsets may be more suitable for those who aim to
improve their critical thinking and creative problem-
solving skills. For example, activities stimulating students’
creativity and problem-solving skills may be practical by
providing complex and challenging computational
thinking-related tasks. Introducing new concepts and
advanced techniques may arouse students’ interest and
curiosity. Furthermore, it is expected that students will be
able to choose their projects and research topics and
develop deeper understanding and application skills
through self-directed learning and inquiry activities.

It may be helpful to promote critical thinking and reflection,
provide opportunities for students to evaluate and reflect on
their work and thought processes, and further develop
critical thinking skills through discussion and presentation.

Common elements of the above curriculum that
accommodate both the highs and lows of mindset include
providing enhanced feedback and support for each learner
based on actual computational thinking and mindset,
offering appropriate feedback and instruction for all
students, and providing individualized progression. This
approach effectively provides appropriate feedback and
support to all students and supports students according to
their learning progress.

As described above, the educational field requires the
design of diverse and comprehensive educational programs
that focus on mindset and computational thinking. This is

expected to realize education tailored to each student’s
needs and maximize all students’ potential.

It is important to note that some analyses of the relationship
between mindset and the factors of computational thinking
treat them as causal relationships. Still, they are compound
correlations, and the relationship between mindset and
computational thinking needs to be clarified. The
relationship between mindset and computational thinking
needs to be clarified. Therefore, it would be effective to
consider these points in curriculum development and create
a flexible form that focuses on both mindset and
computational thinking. Remember that this discussion is
intended to present a case study, not a causal relationship,
and that correlation does not imply causation. Additionally,
other potential factors may exist.

6. SUMMARY AND FUTURE WORK
6.1. Summary of This Study
This study aimed to examine the relationship between
computational thinking and fixed/growth mindset and
obtain basic knowledge for enhancing education that
enhances mindset and computational thinking.
In this study, we clarified the relationship between mindset
and computational thinking and showed the complex
relationship between high/low mindset and each factor of
computational thinking. The results offer valuable insights
for the educational field.
In contrast to prior studies concentrating on the relationship
between mindset and computational thinking, this study
was conducted to understand the actual conditions of
students’ growth/fixed mindset, and computational thinking,
aiming to delineate a specific direction for the curriculum.
The direction of the curriculum was concretely indicated
through a survey study, providing insights into genuine
circumstances of students’ fixed/growth mindset, and
computational thinking. This research is unprecedented; the
results are novel, innovative, and original. The survey
encompassed a substantial number of participants, ensuring
its reliability is assured and contributing to the
advancement of education for nurturing computational
thinking in the future.

6.2. Limitations of This Study
Although the results of this study are important findings for
enhancing the development of computational thinking,
several limitations need consideration, as they may impact
the interpretation of the results of this study and the
direction of future research.
Firstly, although our study found significant correlations
between mindset and each component of computational
thinking, it is important to note that correlations do not
imply causality. In other words, these relationships may be
influenced by other potential variables not considered in
the study, necessitating exploration of these potential
factors. Secondly, within the realm computational thinking,
the impact of algorithmic thinking on the mindset group
was found to be insignificant. Thirdly, this study focused
on specific computational thinking elements and mindsets,
and it is challenging to generalize to all aspects of these
complex structures. Future research should explore the
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relationship between other dimensions of computational
thinking and different types of mindsets.
Subsequent research endeavors should involve the
development of educational practice programs grounded in
the findings of this study, with a subsequent examination of
their effectiveness in practice. Thus, further comprehensive
research is warranted to advance our understanding in this
field.
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ABSTRACT
Stimulating creativity can make an important contribution
to computational thinking (CT) of elementary school
students who attend childcare after school. Since learning
goes beyond time spent in school, it makes sense to offer
students in childcare-centres meaningful CT-activities that
exceed more common applications of technology for CT-
development, like programmable robots or serious games.
Such approaches provide, besides a focus on visual
modality, promising opportunities emphasising auditory
modality. Reasoning from such different contextual
perspective, it’s interesting to explore whether self-creation
of electronic music using music-producing software has an
effect on CT-development, and what added value can be
attributed to creativity. Therefore, an experimental mixed-
methods-study was conducted among elementary school
students aged 10 to 13 within a childcare setting using FL-
Studio© music producing software. Quantitative data were
obtained by pretest-posttest-assessment administering the
validated Computational Thinking test (CTt). Qualitative
data were obtained conducting interviews and observations
during and after each session asking questions to what
magnitude students grasped CT sub-characteristics, to what
extent creativity and creative thinking played a role, and
what perceptions students themselves had in this regard.
Our results indicate that applying music-making software
has a significant effect on CT-development where the focus
is on the invocation and utilisation of auditory modality.
Remarkable effects could be identified on CT-
(sub)characteristics ‘loops,’ ‘conditionals,’ ‘nesting,’ and
required CT-tasks. Our study also found that technology-
enhanced music producing stimulates creativity, which
appears an important parameter regarding CT-development.
It is recommended to conduct further research on the
intersection between CT and creativity using combinations
of different modalities.

KEYWORDS
Technology-enhanced learning, computational thinking,
creativity, music producing, output modalities

1. INTRODUCTION
A variety of plugged-in and unplugged approaches offer
effective opportunities regarding the development of
computational thinking (CT). Frequently this involves
more traditional applications of technology such as
programmable artefacts like robots, or the use of physical
board games. The intervention and subsequent
determination of the effect of programming thereby occurs

primarily by means of visual perception through
observation, interpreting icons, reading text, writing syntax
or by physical, kinaesthetic experience. Furthermore,
fostering creativity appears to be an important parameter in
the development of CT. Previous studies show that creative
thinking and creative action can lead to extraordinary
discoveries in solution processes for challenging problems,
and that the learning environment used can be conditional
for this. It is therefore valuable to investigate whether less
common approaches such as appealing to auditory
modality can also have a distinctive impact on the (further)
development of CT, and what important influence can be
attributed to creativity in this regard.

Previous studies indicated a link between music making
and CT, to which combining self-producing music and
programming into one activity enables an identifiable
development on CT (Chong, 2018; Petrie, 2019). There is
also evidence for interrelationships between CT and
creativity (Israel-Fishelson & Hershkovitz, 2022) and point
to positive effects of creativity through the application of
educational robotics on CT development (Chevalier et al.,
2020; Noh & Lee, 2019). In addition, research also
distinguishes between two types of creativity, namely:
creative thinking and computational creativity, where
creative thinking should be seen as the innovative process
of solving challenging problems, and where computational
creativity is characterised by applications of computer
technology to mimic, study, stimulate and enhance human
creativity (Israel-Fishelson et al., 2021).
Our experimental mixed-methods design study focuses on
whether self-creation of electronic music using technology
enhanced music-producing software has an effect on CT-
development, and what added value can be attributed to
creativity. Participants were 8 primary school students who
attend childcare after their regular schooling and in which
CT proficiency was assessed using the validated
Computational Thinking Test (CTt) (Román-González et
al., 2017) targeted to students from 10 to 16 years old.

2. METHODOLOGY
This study was conducted among 8 primary school students
aged 10 - 13 years in after school childcare in the
Netherlands, focusing on the last cycle of primary
education (grades 5 and 6). In five sessions of one hour
each, participating students worked together in dyads to
produce an electronic dance music track (Edm) using the
professional music producer software FL-Studio© (Figure 1
and Figure 2). These five sessions were held at the
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childcare location where students attend after their regular
school day. In each of the five sessions an instruction part -
processing part - own design part – in-between & end
evaluation part - and appreciation part were applied.

Figure 1. Students Composing Music.

Figure 2. Impression FL-Studio© Music Producing
Software.

All students first received a basic instruction on how the
music producing software works, how music is arranged, in
which structure an Edm-track is designed (intro - break -
build-up, drop - outro), how samples and instruments from
the music library can be dragged into the worksheet, how
to add effects to it, etc. After all the basics were explored
and mastered, students were given the task of creating their
own Edm-track where they could independently make their
own choices in terms of rhythm, instruments, percussion,
sound samples, vocals, effects and volume settings to be
selected. Based on their own creative disposition, students
could then make their own choices and decide how they
wanted to shape the Edm-track to be produced. Students
could increasingly take their own initiative and direction,
each time using their own creativity within the musical
parts to be designed, with the final goal of a completely
elaborated Edm-track.
Before and after the study, students where administered the
validated CT questionnaire (CTt) that assessed their
proficiency on CT. This questionnaire, based on
visualisations, pictograms and representations using arrows
and Scratch-based programming images, consists of 28
items in which knowledge regarding the computational
concepts addressed "loops, conditionals and functions", the
presence of "nesting", and the required CT-tasks

"debugging, completion and sequencing" can be
determined (Figure 3 and Figure 4).

Figure 3. Example Question CTt-Questionnaire.

Figure 4. Example Question CTt-Questionnaire.

Regarding the relationship between CT and creativity, we
apply the same principles as formulated by Brennan &
Resnick (2012) in their 3D-framework. In it, a relationship
between CT and creativity is assumed. In our study, in
which technology-enhanced music tracks are composed,
we focus on developing CT-skills and include the findings
of a creative attitude. We ground on studies by Doleck et al.
(2017) and Rotem et al. (2020) which demonstrate that
creativity is strongly related to CT. We focus on the
perception of creativity through flexibility, analytical
problem solving, entrepreneurship, perseverance,
imagination and cooperation (Fukui et al., 2022). Therefore,
in addition to quantitative data collected, qualitative data
were also established regarding the importance of creativity
and a development on CT. For this purpose, a survey was
prepared consisting of 14 questions according to a 3-point
Likert scale (‘not true - sometimes – true’) including 3
open-ended questions, that was benchmarked prior to the
study with a focus group of educational subject matter
experts. By administering this survey after each session,
each individual student was questioned to what extent
he/she had a grasp of CT sub-characteristics, to what extent
creativity and creative thinking played a role, and what
perception the students themselves had in this regard. This
involved using questions such as: "Do you remember the
arrangement you used in your work?"; "Were you able to
understand and organize the information you were given?";
"Were you able to find and also resolve/debug errors?";
"In what ways were you creative? Where does that show?".
Based on the survey data obtained, an analysis was
conducted that reflected a more detailed development of
the students in addition to an analysis of the CTt-
questionnaire.
Furthermore, and in addition to the questionnaire and
survey administered, free observations were carried out
during each session in which approach behaviour, the level

8



of cooperation between students and other worthwhile
perceptions were recorded.

3. RESULTS
First, it can be stated that based on the chosen approach, all
students were well able to design and produce an Edm
dance track independently from their own creative
perspective. Through the structured setup, each student
managed to apply all the necessary parts of the music
producer software. Selecting chords, designing a melody,
choosing own samples and instruments, assigning them to
the mixer, arranging them in the playlist and then building
the track in layers worked well. Adding markers to build
and structure the track also made it feasible and
manageable. All students managed to design and arrange a
full Edm-track in five sessions. As a result, the musical
results are all different, extraordinary and appealing.
Second, regarding a determinable development on CT, an
analysis of the data obtained from the validated CTt-
questionnaire by studying the means (Table 1) shows that
students score better on all measured characteristics in the
post-test in a comparison with the pre-test.

Table 1. Analysis CTt-Questionnaire.

Variables
Pre-test Post-test

M SD M SD

Total (28) .54 .149 .70 .147

Loops:
repeat times .49 .159 .66 .116
Loops:
repeat until .48 .182 .60 .198
Loops:
combined .48 .151 .63 .149
Conditionals:
if/simple .35 .243 .54 .173
Conditionals:
if-else .47 .411 .66 .352
Conditionals:
while .34 .129 .56 .116
Conditionals:
combined .39 .183 .59 .183
Functions .53 .452 .78 .248

Nesting .41 .190 .62 .177

CT-skill:
completion .53 .165 .67 .214
CT-skill:
debugging .53 .212 .73 .237
CT-skill:
sequencing .56 .181 .71 .132
Note: Variable = measurable value; total = number of
questions Correct CTt questionnaire; computational
concept addressed = loops, conditionals, functions, nesting;
completion = completed by CT; debugging = reformulating
of problems; sequencing = sequence; M = mean-value; SD
= standard deviation.

To determine at which of the different CT
(sub)characteristics a significant effect was measurably
caused by the intervention and what measurable effect
could be attributed to it, a paired-sample t-test was
performed (Table 2). This conducted analysis shows that
significant differences were found for the full CTt-
questionnaire (‘Total’), as for the CT (sub)characteristics: a)
‘loops - repeat times, simple, combined’; b) ‘conditionals -
if/simple, while, combined’; c) ‘nesting’; and d) for the CT
concepts addressed - ‘debugging & sequencing’. From the
data presented, by calculating Hedges g, it can also be
inferred that the intervention applied achieves a small (g =
0.2) to low-medium effect (g = 0.5) on the various sub-
characteristics of CT.

Table 2. Development of Computational Thinking.
Paired Sample t-test (n = 8)

Variable t p g
Total (28) -5.32 .001* .094
Loops:
repeat times -4.58 .003* .120
Loops:
repeat until -3.00 .020* .133
Loops:
combined -5.30 .001* .090
Conditionals:
if/simple -2.55 .038* .234
Conditionals:
if-else -2.05 .080 .291
Conditionals:
while -3.86 .006* .180
Conditionals:
combined -4.89 .002* .129
Functions -2.16 .068 .369
Nesting -4.43 .003* .147
CT-skill:
completion -2.12 .072 .209
CT-skill:
debugging -2.65 .033* .241
CT-skill:
sequencing -3.66 .008* .132

Note: Variable = measurable value; total = number of
questions correct CT questionnaire; computational concept
addressed = loops, conditionals, functions, nesting;
completion = completed by CT; debugging = reformulating
of problems; sequencing = sequence; M = mean-value; t =
t-value paired samples; p = p-value paired samples; g =
effect size based on Hedges g for different sample sizes; *
= significant effect measured (≤ .05).

Third, a further analysis of the administered survey asking
questions regarding CT sub-characteristics ('problem (re)-
formulation, data collection, data analysis, data
visualisation, problem decomposition, abstraction,
algorithms and procedures, automation, simulation and
modelling, and parallelisation') reveals in general that, as
the number of sessions progressed, the scores for
recognition ('true') increased and even doubled in total
when comparing the findings from the first with the last
session. We notice that the characteristics 'problem
decomposition' (breaking down a task into smaller orderly
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tasks) and the component 'algorithms and procedures'
(using a series of ordered steps to solve a problem) were
rated "sometimes" the most by students. Interestingly, the
CT sub-characteristic ‘analysing data’ (logically arranging,
analysing and understanding data) received high scores.
Also, the CT sub-characteristic ‘visualise data’ (being able
to use and process information) predominantly showed the
highest score among students in all meetings. Furthermore,
the scores for ‘not true’ decreased by 33 %. We could
perceive that during the experiment, students started to
self-recognise the skills related to CT more. The level of
decrease in the ‘not true’ component reflects this shift.
Fourth, in order to determine a development on creativity
and creative thinking, students answered three open-ended
questions for each session. These questions were about (1)
The way students felt they had been creative, (2) The
perceived extent of collaboration, and (3) Whether students
could apply what they had learned to other subjects at
school. The first thing to note is that the responses to the
questions became more specific and clear as the number of
sessions progressed. For example, in the beginning the
responses were, "We tried a lot, you got to do it yourself
and I got creative”. At the last sessions, the responses were
such as: "I got to choose a lot myself and try a lot, we got
to design our own beat, and we have a very different
melody”.
Fifth, similar comments are recorded in several observation
reports. One observation report mentions that students are
having an attentive conversation about what choices to
make, and also that they save the composed Edm-track
when they both like it. It is also observed that students
comment on their track. In another observation, it was
recorded that students can quickly pick up what they
learned on their own, with the observation mentioning that
students remember well what they did last time. Being able
to apply what they learned to other subjects at school
proved a difficult connection for students. There were
responses such as: "I can apply it to music, I can't apply it
at school, but I can apply it at home”. Yet there were two
responses that made a connection. They formulated this as:
"I can apply it in discovering your own mistakes and
sometimes I can apply it in reviewing at school”. All
observation reports noted a high level of cooperation
among students. Even when cooperation resulted in a
difference of opinion, work continued constructively.
Observations from the observation reports included
students discussing together, actively questioning each
other, choosing together which music sample to use. They
remind each other to adopt silence when explanations were
given or questions were answered. One observation in
particular stated: In time, the Edm-tracks take a bit more
shape, now the students get a bit more aware of the other
pairs and the track they have made, want to hear it from
each other. Of particular note is another comment from
students that was reflected in an observation report:
"Maybe next time we can really figure it out ourselves",
"Yes, but we still have to learn it completely first".
Apart from all data obtained from the survey and the
observations, the Edm-tracks created were also examined
more closely to obtain an indication of the level of
creativity and uniqueness. What is striking to report is that

all Edm-tracks differ in choices selected, contain a totally
different sample-usage, arrangement and combinations
made, as well as showing extensive use of parallel
arranging of music samples. Despite the fact that all tracks
follow the same build-up and design-structure, all tracks
have an originality and unique sound introduced by
students themselves. The ability to select and combine
available samples and instruments themselves certainly
contributes to this, as does the facilitator's provision of
space for the students’ own choices and creative process.

4. DISCUSSION AND CONCLUSIONS
Overall, this research shows that students are still eager to
learn after a busy school day and demonstrates the
opportunities provided by less obvious technology-
enhanced environments for CT-learning. More specifically,
a significant development in CT could be unambiguously
identified through the use of music-producing software,
where an application as such implies a clear affinity with
programming and required underlying skills. The focus on
the combination of both visual and auditory modality
indicates interesting development opportunities in this
regard. The chosen approach regarding working with FL-
Studio© allows for active stimulation of CT, creativity
development and creative thinking in addition to producing
and making music. This appears to be conditional for
approaching challenging problems open-mindedly and
solving them creatively. The set-up and organisational form
used shows that students can learn a lot from and with each
other. This is reflected in the high rating the students
themselves gave about their level of cooperation and also
becomes insightful from the observation reports. Our
findings pave the way for further research into the effect
and impact music producing applications can generate and
potentially contribute to students’ developmental potential.

4.1. Limitations and Further Directions
Despite the limited number of respondents in this study, a
significant development on almost all CT sub-
characteristics, computational concepts addressed and
required computational tasks has been demonstrated. In
follow-up research, larger numbers of respondents will be
used for which it is expected that more impactful results
can be demonstrated. It is also worthwhile to investigate
whether other types of music producing software
programmes generate the same yields. It is also interesting
to explore whether other types of modalities (feel, taste,
smell, etc.) or combinations made could add value to CT-
development in a similar study.
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ABSTRACT
The People’s Republic of China's Ministry of Education
introduced the first K-12 Standard for high school
computer science (CS) courses in 2017. CS course is also
known as Information Technology course in high school
period in China. However, the majority of Chinese high
schools lack a systematic curriculum, operationalized
courses, and experienced teachers, resulting in challenges
in implementing the courses as per the Standard. To
address this, our paper presents a hierarchical framework
for CS courses at Beijing National Day School (BNDS),
including compulsory, elective compulsory, and optional
courses. We share a synopsis, examples, and student
performance to offer insights for other high schools,
particularly in developing countries, aiming to develop
their own CS courses.

KEYWORDS
Computer science curriculum, Hierarchical curriculum
framework, Information technology, Beijing National Day
School

1. INTRODUCTION
Information technology and its influence in 5G, Artificial
Intelligence, Internet of Things and Cloud Computing has
been booming in decades. More and more countries have
realized that the information technology plays an
increasingly important role in the international competition.
Besides reforming the college curriculum to train more
professionals, the ministries of education in these countries
have also published before-college national curriculum
standards in computer science (CS) to guarantee a general
education of computer programming and computational
thinking around their societies (Every, 2015). In 2011, the
Computer Science Teachers Association (CSTA) in U.S.
published its first K-12 CS curriculum standard to provide
the guidance and contents for the programming courses in
primary schools and high schools (K-12, 2011). In 2016,
CSTA revised the curriculum standard, in which the
concept of computational thinking is emphasized and many
advanced contents such as Data Analysis and Artificial
Intelligence are added (K-12, 2016). In many other
developed countries, such as U.K. and Australia, the
ministries of education published the standards in last
decade and required that each high school and primary
school must offer compulsory CS courses for their students
(National, 2013) and (National 2015) In Asia, Japan issued
its new edition of curriculum standard in 2018, in which
each high school is required to establish the optional
programming courses for each student before 2021
(Learning, 2018).

In recent years, the State Council and the Ministry of
Education of the People’s Republic of China have also
realized the significance of the before-university CS
courses (Information Technology). In 2017, the Ministry of
Education published the first edition of national curriculum
standard (Standard) of CS courses in high school (National,
2017). Under a series of guidance documents published
between 2018 and 2020 by the State Council such as
Education Modernization 2035 (Education, 2019), the
Ministry of Education revised the Standard and published a
new edition in 2020 (National, 2020). Compared with the
CS curriculum standards in many other countries, the
Standard in China emphasizes more on the “competence”
than “contents”.

In the Standard, four core competence which the high
school students develop through CS courses are proposed:
information consciousness, computational thinking,
electronic learning and innovation, responsibility in
information society Information consciousness is the
sensitivity to information and judgment of information
value. Computational thinking refers to the thought process
involved in expressing solutions as computational steps or
algorithms. Electronic learning and innovation is to the
ability to solve problems creatively, complete learning
tasks and form innovative works by evaluating and
selecting digital resources and tools. Responsibility in
information society is the responsibility of individuals in
cultural cultivation, moral standards and self-discipline in
the information society.

Based on four core competence, the Standard also
illustrates a hierarchical framework of courses which can
be operationalized and guide each high school to organize
and practice its own CS courses. The framework includes
three layers of courses: compulsory courses, elective
compulsory courses, and optional courses. Each student in
the high school must join the compulsory courses to learn
the fundamental concepts of computing, data science,
information system, and information society. In the elective
compulsory courses, students can select two or three
specific directions among 6 modules for further study: data
structure, web science, data analysis, fundamental of
artificial intelligence, 3D design, and open-source hardware
project. For the students who are very interested in CS and
tend to choose CS as the major in the university, they can
select the optional courses such as the computing
algorithms and mobile application design.

Although the Standard has provided a forward-thinking
guidance in core competence and CS courses, the reality is
far away from the ideal. Most high schools in China have
difficulties in carrying out the entire CS course framework
as the Standard expects. In Zhejiang province, even though
the CS is an elective subject of National College Entrance
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Examination in China, i.e., Gaokao, which has an equal
status with biology and chemistry, most high schools can
only provide compulsory courses for their students and
train their students how to handle the exams rather than to
teach the knowledge and improve the programming
abilities (Gaokao, 2014). In other provinces, the situations
are much worse, a number of high schools even compress
or cancel their CS courses. The reasons are very
complicated. For example, compared with the giant internet
companies, the salary for staff in high school is relatively
low. Thus, most high schools can hardly recruit capable
teachers to offer CS courses. In addition, there are few
systematic and suitable teaching experiences and materials
in CS as the reference for high school teachers and students
(D. Sun, 2019).

Fortunately, in some large cities in China, such as Beijing,
Shanghai, and Shenzhen, a few high schools in the
forefront of education reform have attached much
significance to the CS sources. Some of them have
practiced a complete framework of courses. In this paper,
we briefly introduce the hierarchical and systematic CS
courses and the teaching experience in BNDS, which is one
of the top schools in China. About 12 percent of the 600
students in BNDS will enter the top 2 universities in China
after high school each year. There are more than 10 CS
teachers, most of whom has master or higher degrees. They
are the very foundation to carry out this framework of
courses.

Specifically, we first introduce the entire framework of
courses. Then, we will provide how we develop and
practice the compulsory courses, the elective compulsory
courses, the optional courses, and the Innovative talents
program, respectively. In each kind of courses, we provide
a synopsis, some typical examples, and the performance of
students. We hope that the framework can provide a certain
degree of reference for other high schools to develop their
CS courses.

2. Hierarchical CS Courses
In BNDS, the framework of CS courses has been refined in
2017 since the Standard was published by the Ministry of
Education. The original technology courses are classified
into two categories: the general technology courses and the
CS courses. In the general technology courses, students
learn various skills of engineering, e.g., mechanical
technique, circuit design, architecture, and even costume
design. In comparison, the CS courses concentrate on the
knowledge and skills in computer science, e.g.,
programming, algorithms, data analysis, and computer
system.

Figure 1. Hierarchical CS Course Framework

The framework of CS courses in BNDS is shown as a
pyramid in Figure 1. From the bottom to the second top

layer, the framework of CS courses includes compulsory
courses, elective compulsory courses, optional courses as
the Standard requires. The compulsory courses on the
bottom layer are similar to the course of introduction to
computing in college, the goal of which is to make students
understand the basic principles of computer and program
through the learning of a specific programming language
like Python. Python is a programming language that is easy
to get started. Python is a relatively high-level language,
which is not as complex as C++ and Java in syntax. It is
very close to the expression of natural language. Therefore,
Python is suitable for beginners especially for high school
students. Programmers can usually complete some simple
work on Python after a short period of learning.

The compulsory courses are open for all junior high school
students. On the second layer, when all students have the
fundamental abilities using programming language and
handling simple algorithms, the students can select two
elective courses to do some applications in their senior high
school career based on their own interests, such as robotics
and big data. On the third layer, the optional courses are
carried out for the students specific interested in CS, in
which the student can learn deeper and more professional
knowledge in CS, e.g., algorithms in Olympiad in
Informatics (OI), machine learning methods, and
mathematical modeling.

In addition, a number of talent students can accomplish the
regular high school courses or even the undergraduate
courses in college without difficulties. The regular courses
can hardly satisfy these students' desires. Thus, besides the
courses in the Standard, on the top of the Pyramid, we
provide the Innovative Talents Program for the talent
students with the assistance of universities and companies.
The students in the Innovative Talents Program can do
their own research under the guidance of many CS
professionals in universities’ labs.

In the rest of this paper, we will provide more details of the
courses on each layer. On each layer, the synopsis, some
typical examples of teaching process, and the performance
of students are given, respectively. Furthermore, we will
introduce how we improve the framework during practice
and provide a typical course project in the end of this paper.

3. Compulsory Courses
The compulsory courses aim to make students understand
the basic principles of computer and program through
learning a specific programming language like Python. The
compulsory courses are open for all 250 students in the K-
12 program between Grade 8 and Grade 9(Grade 9 is the
first year of the senior high school in this program). The
courses are based on school-made text books according to
the Standard, which last for 4 semesters. In each semester,
2 × 45 minutes are taken per week. All the tasks are
finished during the class so that there is no homework for
students.

The compulsory courses can be divided into two stages.
Each stage lasts for 2 semesters. In the first stage, the
students learn the basic syntax and logic of Python, a
number of basic algorithms and data structures in the first
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semester, including input/output, branch and loop, list,
string, dictionary, enumeration method etc. in python.
Some comprehensive algorithms such as recursion
backtracking method are also offered to the students who
are interested in CS. Besides the regular interpretation by
the teachers in class, the teaching and learning process is
supported by a customed Online Judge (OJ) platform. On
the OJ platform, hundreds of questions such as A + B
Problem (input a and b then print a + b) are designed by the
CS teachers for the students to practice the basic logic and
syntax of Python. Algorithms, and data structures can also
be practiced using OJ. Students can upload their program to
the OJ website, which will judge validity of the program
and give students feedback in seconds. All the problems are
designed carefully by the teachers according to the
students' fundamentals in mathematics and science, and
cognitive level.

Figure 2. The OJ platform and the performance of students

Some typical questions on the OJ platform and the
performance of students are given in Figure 2. According
to the teaching practice experience, we find that OJ scoring
and feedback mechanism can effectively stimulate students'
interests in programming. At the same time, the OJ can
help teachers to analyze the performance of students and
improve the teaching and learning process. We find that
more than 60 percent of students can apply the algorithms
and data structures to solve new problems on OJ platform
at the end of the semester. About 30 percent of students can
make approximate imitations to solve the similar problems
taught in class. Only a few students need to solve the same
questions repeatedly to learn some basic concepts and the
skills of programming. Finishing the first stage, students
can learn how to program in Python and how the computer
works and their responsibility in the information society.

Figure 3. The project of word statistics in the Romance of
the Three Kingdoms

The stage 2 of the compulsory courses lasts for 2 semesters.
In stage 2, the CS teachers design a series of projects to
help students improve the capabilities of CS engineering.
The problem in each project is usually generated from a
problem in the daily life. Specifically, the CS teachers

simplify the problems, highlight the concepts of CS and
integrate the algorithm and data structure training in each
project. An example is given in Figure 3. The students
learn The Romance of the Three Kingdoms (RTK) in their
Chinese courses in Grade 8. Thus, the CS teachers establish
a project on the RTK, i.e., to find the most frequent names
in RTK. To do the projects, the students need to learn the
basic concepts of word segmentation and word frequency
statistics in computational linguistics, and eventually use
the file operations and dictionary structure to accomplish
the program. More than 60 percent students can accomplish
the task under the guidance of CS teacher, in which 30
percent excellent students can further revise the algorithm
and apply this method to analyze other books. The projects
in stage two can help students review the knowledge in
stage one. Building their own programs to solve the real-
life problems can also help them reach the deeper level
understanding of knowledge.
Through compulsory courses, the students cultivate the
fundamental abilities of programming and computational
thinking, which help them to have a better understanding of
the digital world and live a better life in the future. The
students can apply the algorithms and data structures to
solve simple problems with computers. Further, through a
number of projects generated from the daily life, the
students have already developed the fundamental CS
engineering capabilities.

4. Elective Compulsory Courses
In order to meet the personalized needs of different
students, we also design and carry out a variety of school-
based elective compulsory courses, which correspond to
one or more modules of the elective compulsory courses in
the Standard. All students in BNDS must select at least two
elective compulsory courses in Grade 10 or Grade 11. Each
course lasts for 1 semester and costs 2 × 45 minutes per
week. There is no homework for students.

Table 1. The scheme of elective compulsory courses
Course Name Introduction
AI technology Develop a number of AI programs
App Inventor Develop APP for mobile devices

Database Build a website by Python using
database. Focus on backend

Web Design Build a website by Python and web
design. Focus on frontend

Big Data and
Intelligent
System

Train voice data with advanced
machine learning model and test on

Robot
Programming
and Gaming

Develop a game and game AI by
Python

AI & Robot Build and program robot to
accomplish given task

NLP Use Python to process language data
Image

processing Process image by PS and Python

As shown in Table 1, the scheme of elective compulsory
courses includes multiple CS directions: artificial
intelligence (AI) technology, APP inventor, web design,
database, big data and intelligent system, programming and
gaming, AI$\&$robot, and image processing. In each

14



course, the students accomplish a series of comprehensive
projects in a specific realm of CS. For example, in the
Programming and Gaming course, the students design the
Gomuku AI and compete with each other. In the APP
inventor course, the students design APPs to automatically
recognize the followers and cars. In the AI & robot course,
students train the robot to accomplish all kinds of tasks. In
the AI technology course, the students learn AI algorithms
and use Python modules to develop multiple applications.
An example is shown in Figure 4, in the AI technology
course, three students design an intelligent campus guide
on WeChat for the visitors to BNDS, which is exhibited in
the first International Conference on Artificial Intelligence
and Education in 2019 (A report, 2019).

Figure 4. Student's project: an intelligent campus guide

Through elective compulsory courses, each student can
develop abilities to write relatively complicated CS
programs and deal with the comprehensive realistic
problems in different CS directions. We believe that these
abilities can help students accomplish various projects of
their majors in college.

5. Optional Courses
The optional courses are open for the excellent students
who are very interested in CS and want to learn deeper
knowledge and skills in the CS-related fields. Thus,
students in all grades can select the optional courses based
on their interests and abilities. Meanwhile, the duration of
each course and the class hours per week depend on the
specific needs of each course. Some students may spend
more than ten hours digging into a specific project, which
is motivated by their interests. The scheme of the optional
courses is shown in Table 2, which includes the
mathematical modeling, geographic information system,
MIT Sea Glide, automatic driving, first tech challenge,
internet-of-things (IoT) system, advanced technologies in
AI, and the OI course.

Table 2. The scheme of optional courses
Course Name Introduction
Mathematical
Modeling

Model real-life problem and solve
it by program

Geographic
Information
System

Use program to monitor and model
geographic information

MIT Sea Glide Build and program an under-water
robot

Automatic driving Build and program a self-driving
car

First Tech
Challenge

Build and program a remote-
control robot to complete all kinds

of challenge

IoT System Build all kinds of smart home tools
using board and chips

Advanced
Technologies of

AI

Learn advance AI tech and use it
to solve real life problem

Olympiad in
Informatics

Learn algorithms and data
structure for Olympiad in

Informatics
The difficulty of each course is high and the contents are
almost approximate to the corresponding courses in the
universities. For example, in Mathematical Modeling
course, many famous partial differential equations (PDE)
models are introduced such as Arm Race Model. The
students will model the realistic problems using the typical
PDE models and solve them with computers. In the
Advanced Technologies of AI course, the students can
learn the core ideas of many machine learning algorithms
such as supporting vector machine and neural network. The
students in OI courses can learn complicated algorithms
and data structures, and take part in the OI Competitions
(Kolstad, 2007). In Figure 5, we provide the increasing
number of first prize winners of BNDS in the National
Olympiad in Informatics in Province (NOIP) and the
Certified Software Professional-Senior (CSP-S)
competitions, which are the typical provincial level
programming contests in China. More than 20 students per
year won the first prize since 2018. It is worth pointing out
that one student won the gold medal in the National OI
contest of China (NOI) in 2019 and two students won the
same prize in 2021, one of which is the 8th place among all
the competitors in China. Our students win at least one
gold medal in each NOI since then.

Figure 5. The increasing number of NOI/CSP-S first prize
winners in BNDS

Even though each optional course is difficult to learn and
most contents in the optional courses are not directly
related to the National College Entrance Examination, the
students in BNDS hold very high enthusiasm for
participation. The standard class size is 12 in each course
per semester. However, the applicants are usually far more
than 12 for some optional courses. Thus, we believe that
through proper education and guidance, more students
themselves will pay more attention to learning knowledge
and improving real abilities rather than test training.

6. Innovative Talents Program
A number of talented students in BNDS can easily
accomplish the regular high school courses and even the
foundation undergraduate courses. Meanwhile, they also
have great interest and talent in one or more specific
research field. Those students are expecting to enter the
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professional laboratories carrying out the scientific research
under the guidance of professors in college.

In order to satisfy these students' expectation, BNDS
associated with the China association for Science and
Technology have established the Innovative Talents
Programs to support these talented students. The Programs
have been supported by Tsinghua University, Peking
University, University of Chinese Academy of Sciences,
Beihang University and more than 25 top universities. In
each year, BNDS can recommend more than 40 talented
students enter these universities to engage in the scientific
research in the math, physics, chemistry, biology, computer
science or engineering science. During the one-year
training process, these students master the basic methods of
literature search, scientific investigation and data
processing.

Figure 6. A project developed by the student in the
Innovative Talents Program

For example, a talented student in Grade 10 proposed a
novel skin color model for the mobile image under the
guidance of the computer science professor in Beihang
University. As showed in Figure 6, compared to the skin-
color model for solving the complex illumination and
background, the model has the characteristics of pertinence
and high computational efficiency based on the
normalization method in the process of the combination
with haircut and face. Based on this achievement, this
student achieved the First Award of China Adolescents
Science and Technology Innovation Contest, and Mayor's
Award for Beijing Youth in Science and Technology.

In recent years, an increasing number of talented students
haven been trained with the scientific research and practical
skills through the Innovative Talents Program. These
students show promise to become scientists in the
fundamental and advanced subjects in the field of math,
physics, chemistry, biology, computer science or
engineering science.

7. Courses Iteration
It has been more than 6 years since the Standard was
published and 5 years since we began to establish our new
CS course framework. The teachers in BNDS keep revising
the framework and the courses in it. With the courses
reform, we paid more attentions improving the students’
consciousness of solving practical problems with
computers, i.e., information consciousness, to purely
teaching the programming skills. The teachers brought
more synthetic and cultural projects into the compulsory
courses in recent years in comparison with the course
beginning in 2018. For example, to teach the concept of
Key-Value relation in Python, the teacher designed a “peer
comment projects”. In the project, the students need to

build a comment program using Dictionary in Python that
record the comments of their friends. This project can also
guide students to learn how to do the proper comments on
the Internet.

In addition, the teachers are trying to bring more and more
real-life projects into courses and make the class more
student-centric these years. The students can build their
own recite app in their literature class. In math class they
use python to modelling coronavirus propagation during
the Covid-19 pandemic for instance.

As for the elective compulsory courses and optional
courses. A number of courses which is less interested by
students was replaced by new one. A robot building course
transformed into an AI recognition course for example.

Figure 7. The 3-year AI Framework

Finally, since more and more students have already
accepted Python programming training in their primary
school careers. A number of students in Grade 8 and Grade
9 feel that the CS course content is too simple for them. A
3-year AI curriculum framework, as shown in Figure 7,
which might be fully explained in other papers (Zijie,
2023). A part of the material has been accomplished as
open source for reference.

8. Case Study
In this part, we will introduce a typical project we practiced.
We call it the Average Face of BNDS. It is in the last
semester of the compulsory courses when the students are
at Grade 9. Students are required to solve a real-life
problem, to calculate the average face of BNDS which can
be used to help school’s information platform check
whether an ID photo is proper or not. The project contains
the basic idea of encoding, image processing and
classification algorithm, which will not only deepen
students’ understanding of how computer works but also
lead to some other AI project in future.

Students can use web crawler or other techniques to get a
bunch of images first, which will review the knowledge
about Web, file, and the Internet. They use python to create
the final work base on the images they got. The second part
of this project will help the student get a deeper
understanding of how images are stored in the computer
system. The project supported by all the modules provided
in Python such as CV2 and requests. One of students' code
in the image processing part of the project is shown in
Figure 8. The annotation is added afterwards for readers of
this paper. Since the students have learned web crawler and
CV2 in former projects, the coding can be done by
themselves. They can also get structured guidance
throughout the project on our course web site. Teachers
work as an advisor.
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Figure 8. CV code of the project

Most of students can get a picture of the average face of
BNDS as showed in Figure 9. A number of students want
to create a personalized picture which is different from
others. Some students create the average face of their
favorite cats, others may focus on basketball teams. Some
students use the same procedure to create an art image in
Ninja NARUTO as Figure 10. They download hundreds of
different images using web crawler. Then they merge all
the pictures into one.

Figure 9. Average Face Demonstration

Figure 10. Image Fusion Demonstration

Students can get art pictures of their own in this project,
review their computer science knowledge, achieve a higher
programming ability and get some basic idea of
classification method. 20 percent of the students can
migrate the skills they learned in this project and use them
to solve similar problems. The rest of the students can
finish the project with teachers' help.

9. Conclusions
In this paper, we introduced the hierarchical framework of
CS courses and the teaching experience in BNDS. The
framework includes the compulsory courses, the elective
compulsory courses, and the optional courses according to
the Standard, and the Innovative Talents Program based on
the student cognitive situations in BNDS The students can
develop the fundamental competence in computational
thinking and CS engineering through compulsory and
elective compulsory courses. Through practicing, we
verified that with individualized education and guidance by
schools and teachers, more students themselves can pay
more attention to learning knowledge and improving real
abilities in CS rather than test training. We also verified
that the high school students have abilities to accomplish
the entire curriculum in the Standard. We hope that our
framework and teaching experience can provide a certain
reference for other high schools to develop their own CS
courses, especially for the high schools in the developing
countries.
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ABSTRACT
In an era where computational literacy is paramount, many
global schools are stressing the importance of K-12
programming education. This field is predominantly
composed of two separate modalities – block-based
programming modality and text-based programming
modality. Previous research may not have provided a
complete understanding of the differences between these
two modalities as it did not take into account both the
learning process and learning outcomes. This study aimed
to compare secondary students’ programming behaviors
and computational thinking skills between two modalities
through a quasi-experimental design in a Chinese
secondary school. The findings showed that (1) learners in
TPM encountered more syntactical errors and spent more
time between two clicks of debugging, while learners in
BPM had more code-changing behaviors by adjusting
programming blocks, made more attempts of debugging,
and had more irrelevant behaviors; (2) learners in BPM
achieved a higher level of computational thinking skills; (3)
Code Changer, Minimal Debugger, Maximal Debugger,
Distracted Coder and Average Coder were identified
through students’ programming behavior in two
programming modalities, and differences in their CT skills
and attitudinal data were revealed. Lastly, pedagogical
implications based on the findings are also discussed.

KEYWORDS
Computational thinking, Text-based and block-based
programming modality, Programming behaviors

1. INTRODUCTION
Computational thinking (CT) is a vital 21st-century
competency, integral to K-12 student education (Wing,
2014). Nations like China, the US, and the UK have
integrated computer programming into their K-12 curricula,
primarily employing two core methodologies: block-based
programming modality (BPM) and text-based
programming modality (TPM) (Jocius et al., 2021). BPM
utilizes visual aids, making it more approachable to
beginners, whereas TPM involves traditional coding in
text-based programming languages, equipping learners for
professional programming tasks (Weintrop & Wilensky,
2019).

Although past studies have evaluated differences between
TPM and BPM regarding student learning and the
necessary skillset for each modality, there is a lack of
research examining how the learning process influences
performance within the context of TPM and BPM
(Weintrop & Wilensky, 2017). This gap underscores the
need for an in-depth assessment of the divergence between

TPM and BPM, considering both the learning process and
the outcome. Given the prominence of CT and
programming in K-12 curricula, it's essential to
comprehend each modality's respective characteristic and
how they can efficiently bolster student learning (Grover,
2021).

Our research aimed to bridge this gap by contrasting the
effectiveness of TPM and BPM in a Chinese secondary
school through a quasi-experimental design. We
scrutinized students' programming behaviors and CT skills
across both modalities to evaluate which encourages
programming practice. The insights garnered from our
study can guide educators in creating more effective
instructional methodologies to foster students'
programming skills and CT development.

2. LITERATURE REVIEW
2.1. Block-based and Text-based Programming
Modalities
Turing Award recipient Dijkstra once underscored the
profound impact our tools have in shaping our cognitive
capacities. This principle resonates with the significant role
that programming styles play in altering students' thought
processes, a crucial consideration for educators in computer
programming. Block-based and Text-based programming,
BPM and TPM respectively, are extensively utilized i K-12
education. BPM, designed with a unique "programming-
primitive-as-puzzle-piece metaphor," visually represents
codes to simplify usage and prevent syntax mistakes,
making computer science more approachable for novice
learners (Bau et al., 2017). Multiple BPM platforms like
Scratch, Blockly, and Alice are built to reduce the learning
curve by addressing syntax complexities (Grover, 2021).
Given these advantages, BPM is a preferred choice in
introductory computer science curriculums nationwide.

Compared to BPM, learners perceive TPM as more
authentic and empowering in their programming journey. It
offers advanced learning opportunities and participation in
professional work that can't be fulfilled by BPM alone.
Nevertheless, as students progress, they often grapple with
syntax errors and frustration, leading to higher dropouts in
TPM courses. Hence, various teaching strategies are
deployed to alleviate these difficulties, to support text-
based programming, and to boost students' interest and
motivation towards TPM (Sun et al., 2021).

2.2. Computational Thinking and Programming
CT encompasses analytical thinking common to areas such
as mathematics and engineering and can be fostered
through diverse means such as computer science games,
language learning techniques, and STEM activities (ISTE,
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2015; Wing, 2014). Programming, among other strategies,
is known to effectively improve learners' CT skills. The
concept of CT has been divided into domain-specific and
domain-general definitions. The former relates to
knowledge and skills for solving specialized problems in
computer science or programming; tools like Dr. Scratch or
the Bebras test are used for evaluation. The latter views CT
as competencies for solving everyday life problems across
all learning domains, constituting creative, algorithmic,
critical thinking, problem-solving, and collaboration skills
(Tsai et al., 2021). Higher-level metacognitive skills
regulate CT, and it's seen as algorithmic problem-solving
while promoting team communication and collaboration.
Its main elements include algorithmic thinking, problem-
solving, creativity, critical thinking, and cooperativity. A
CT scale was developed to measure students' proficiency in
these elements (Román-González et al., 2017). Previous
studies regarding programming's effectiveness typically
assessed learners' knowledge mastery, with fewer focusing
on higher-order thinking. Preliminary programming
teaching often starts with console-based languages for
learners to comprehend basic concepts without the added
complexity of a visual interface.

Consequently, the understanding of differences between
BPM and TPM is a research interest, particularly in
benefiting secondary students' programming learning and
fostering interest in computer science. This research will
gather multi-modal data to analyze students' programming
behaviors and CT skills across these modalities.

3. METHODOLOGY
3.1. Research Purpose and Questions
This study aimed to understand how TPM and BPM impact
learners' CT skills. Carried out in a secondary school, it
employed a quasi-experimental design and collected data
encompassing learning logs and CT skills test. Analytical
methods such as statistical and cluster analysis were used
to compare behaviors and proficiencies in TPM and BPM.
The results will inform future pedagogical strategies and
research in computer programming. The specific research
questions are: RQ1: What were the differences in learners’
behaviors in learning via TPM versus BPM? RO2: What
were the differences in learners’ CT skills in learning via
TPM versus BPM?

3.2. Educational Context
The research was conducted in a compulsory course titled
“Information Technology,” which was carried out in a
Chinese secondary school during the autumn of 2020. A
quasi-experimental design was utilized to investigate the
differences in learners’ programming behaviors and CT
skills toward programming in TPM and BPM. There were
32 learners in the TPM class and 32 learners in the BPM
class. Students were around 13, and most of them did not
have programming experience in formal education. Classes
were taught by the same instructor, who maintained a
similar teaching style under two modalities, offered the
same instructional materials to learners, and used the same
teaching guidance for each class, except the materials were
presented via TPM or BPM.

The course encompassed three phases and six instructional
sessions, each taking 45 minutes. Phase I introduced
programming basics and either TPM or BPM. Phase II
involved practice in programming with sequential,
selective, looping, and function structures in the designated
programming modality. Phase III was a series of projects
that tested knowledge from Phase II. Concepts, algorithms,
and coding were taught contextually in the TPM or BPM
class. The platform used was Code4all (see Fig. 1), a Pencil
Code-developed environment that supports both TPM and
BPM. However, unlike Pencil Code, Code4all restricts
users to either a block-based or text-based interface,
without switching between them. Thus, BPM class learners
used a drag-and-drop mechanism, while the TPM class
typed commands one character at a time. The platforms
were identical apart from their modality, including
language, visual execution environment, and environmental
scaffolds. The underlying language was CoffeeScript,
known for its syntactically light nature and active user base
(Weintrop & Wilensky, 2019).

Figure 1. The Code4all programming platform and two
programming interfaces used in this study.

3.3. Date Collection
To capture learners' programming learning performance,
we collected multi-modal data, including platform logs,
students' CT skills, and attitudinal data. Secondly, we
collected data about learners’ CT skills before and after the
intervention, and learners in TPM and BPM took the same
test. The test instrument for CT skills was adapted from the
CT scale (CTS) developed by Korkmaz et al. (2017). This
5-point Likert scale contains five factors (creativity,
algorithm thinking, cooperativity, critical thinking and
problem solving) and 22 test items. Notably, the CTS was
validated and applied among Chinese K-12 learners by Bai
& Gu (2020).

3.4. Date Analysis
We used multiple analytical approaches, such as statistical
and clustering analysis, to examine the impact of learners'
programming learning quality between TPM and BPM.
Firstly, according to extracted variables and previous
studies (Pereira et al., 2020), this study identified five
programming behaviors: Average number of code-changes
(AnC), Number of Irrelevant behaviors (NoIB), Number of
debugs (NoD), Average time between two debugs (AtD),
and Number of errors (NoE). It should be noted that,
despite the learner’s coding in different programming
modalities, the codes recorded by the Code4all platform
were in a text-based format. Descriptive statistics were
used to provide an overall view of distribution of
programming behaviors between TPM and BPM. To
uncover hidden patterns in the complex dataset, we used
clustering algorithms. Noting the heterogeneity in learners'
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behaviors, we utilized their logs to cluster them and
analyze their programming behaviors within each cluster.
We employed the popular k-means algorithm which
involves selecting the optimal number of clusters, variable
selection, data standardization, and initial cluster center
selection. Repeat iterations of assigning points to the
closest center and recalculating the centers ensued until
convergence was reached. The cluster characteristics were
evaluated and interpreted per the research question and
hypotheses, using the mean silhouette coefficient to
determine the ideal number of clusters. RapidMiner and
Python were used for this clustering analysis (Rousseeuw,
1987).

Secondly, we conducted a T-test to examine the difference
in CT skills between the TPM and BPM groups.
Furthermore, we utilized Analysis of Variance (ANOVA)
to explore the difference in learners' CT skills among
different clusters.

4. RESULTS
4.1. Learners’ Programming Behaviors in Two
Modalities
The results in Table 1 showed that some obvious
differences in learners’ programming behaviors between
the two modalities. In particular, learners in TPM
encountered more errors (NoE: M = 8.81, SD = 20.17) than
those in BPM (NoE: M = 4.97, SD = 5.31). Learners’
average time spent between two clicks of debug button in
TPM (AtD: M = 84.74, SD = 83.35) was almost twice as
long as that in BPM (AtD: M = 46.97, SD = 32.19). In
addition, learners’ average amount of code changing in
BPM (AnC: M= 25.80, SD = 15.93) was slightly higher
than that in TPM (AnC: M= 24.81, SD = 39.33). The
number of clicks on debug button made by learners in BPM
(NoD: M = 37.73, SD = 20.25) was higher than that in
TPM (NoD: M = 32.03, SD = 43.06). Learners in BPM
(NoIB: M = 35.20, SD = 24.06) had more irrelevant
behaviors than those in TPM (NoIB: M = 25.53, SD =
17.26).

Table 1.Mean and standard deviation of the programming
behaviors for TPM and BPM

M N AnC NoIB NoD AtD NoE

TPM 32 24.81
(39.33)

25.53
(17.26)

32.03
(43.06)

84.74
(83.35)

8.81
(20.17)

BPM 32 25.80
(15.93)

35.20
(24.06)

37.73
(20.25)

46.97
(32.19)

4.97
(5.31)

To further explore the differences in programming
behaviors between the two modalities, learners’
programming behaviors were modeled by using the
features presented in Table 2. Previous studies found that it
was possible to draw patterns using fine-grained data from
one programming course (Estey & Coady, 2016). We
inspected the k-means clusters, and the convergence of k-
means was achieved in the 10th iteration with k = 5 as the
best value with the highest value of mean silhouette
coefficient (0.57). 23.44% of the learners were assigned to
Cluster 1, 20.31% to Cluster 2, 3.12% to Cluster 3, 6.25%
to Cluster 4 and 46.88% to Cluster 5. Fig. 4 depicts the
programming profile of learners for each cluster in two
modalities.

Comparing the features among five clusters, Cluster 1 was
identified as the Code Changer, they had the second highest
frequency of code changing (AnC: M = 44.53, SD = 10.69)
and the number of clicks on debugs (NoD: M = 60.73, SD
= 11.28), the second lowest number of irrelevant behaviors
(NoIB: M = 23.73, SD = 12.09), and the moderate
frequency of the number of errors (NoE: M = 10.67, SD =
7.89) amongst the five clusters. Based on the clustering
analysis, we found that five students from TPM and ten
students from BPM were assigned to this cluster. Cluster 2
was identified as the Minimal Debugger where students
had the longest time interval between two clicks of debug
(AtD: M = 174.43, SD = 72.95), and the lowest frequency
of code changing (AnC: M = 4.00, SD = 2.45), number of
clicks on debugs (NoD: M = 7.69, SD = 3.73), and the
number of errors (NoE: M = 0.38, SD = 0.62). According
to the cluster analysis results, it was determined that this
particular cluster comprised ten students from TPM and
three students from BPM. Two learners from TPM were
clustered into Cluster 3 which was identified as the
Maximal Debugger. Here, they had the highest frequency
in code changing (AnC: M =162.00, SD = 35.00) and the
numbers of debugs (NoD: M =179.50, SD = 40.50), and
they encountered the highest number of errors (NoE: M
=82.00, SD = 14.00), and had the lowest frequency in
irrelevant behaviors (NoIB: M =14.78, SD = 10.78) among
five clusters. Cluster 4, which was identified as the
Distracted Coder, had the highest frequency of irrelevant
behaviors (NoIB: M = 84.25, SD = 11.09), the second
lowest frequency of the number of debugs (NoD: M =
10.00, SD = 11.47), and the moderate behavior of the
number of errors (NoE: M = 11.75, SD = 3.47). This
cluster consisted of two students from TPM and two
students from BPM. Cluster 5, which was identified as the
Average Coder, had the average frequency of code
changing, number of debugs, number of errors, irrelevant
behaviors, and the time interval between two clicks of
debugs among the five clusters.

4.2. Learners’ CT Skills in Two Modalities
As to RQ 2, regarding learners’ CT skills, there was no
significant difference (creativity: p = 0.286; algorithm
thinking: p = 0.185; cooperativity: p = 0.217; critical
thinking: p = 0.067; problem solving: p = 0.095; overall CT
skill: p = 0.941) before the intervention. The results
revealed that, after the intervention, statistically significant
differences were identified for algorithm thinking (t = 3.23,
p = 0.002), cooperativity (t = -2.11, p = 0.038), problem
solving (t = -2.72, p = 0.008) and overall CT skills (t = -
2.58, p = 0.012). In terms of algorithm thinking,
cooperativity, problem solving and overall CT skills,
learners in the BPM group outperformed those in the TPM
group (Table 2).

Table 2. Statistical summary of learners’ CT skills in the
two modalities

CT Group M SD t p

Creativity
TPM 3.83 0.83 -1.65 0.103

BPM 4.16 0.60

Algorithm TPM 3.57 0.87 -3.23** 0.002
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thinking BPM 4.24 0.66

Cooperativity
TPM 3.85 1.07 -2.11* 0.038

BPM 4.35 0.68

Critical
thinking

TPM 3.78 0.94 -1.05 0.296

BPM 4.00 0.66

Problem
solving

TPM 3.94 0.67 -2.72** 0.008

BPM 4.39 0.63

Overall
TPM 3.79 0.75 -2.58* 0.012

BPM 4.23 0.53

Note. *p < .05; **p < .01.

5. DISCUSSION
5.1. Addressing Research Questions
With the more pervasive development of computer
programming education, there is increasing research on
how learning occurs under the two typical programming
modalities (BPM and TPM). This study collected multi-
modal data to analyze students’ programming behaviors
and CT skills in two programming modalities. Learners’
CT skills under two modalities were compared through pre-
/post-test.

For research question 1, this research revealed that learners
in TPM tended to spend more time between two clicks of
debug button and encountered more syntactical errors.
Students in BPM spent more time on code changing
(operating blocks and adjusting parameters), made more
attempts at debugging, and had more irrelevant behaviors.
The research revealed five clusters based on students’
programming behaviors, including Code Changer (C1),
Minimal Debugger (C2), Maximal Debugger (C3),
Distracted Coder (C4), and Average Coder (C5).

Post-test comparison of students' CT skills in BPM and
TPM showed BPM learners excelling in algorithmic
thinking, cooperation, and overall CT abilities. The block-
based format of BPM provides an intuitive, concrete
coding experience, aiding the comprehension of basic
programming concepts and the development of algorithmic
thinking. BPM's iterative development system allows
learners to see immediate results and provides
collaboration tools enhancing CT essentials, like
communication, cooperation, and social skills (Grover,
2021).

Additionally, in TPM, frequent coding and debugging is
associated with higher problem-solving performance, likely
due to the expressive nature of languages like Python and
their flexibility in designing tailored solutions (Kölling et
al., 2015). Conversely, block-based programming
languages, such as Scratch or Blockly, rely on pre-built
code blocks and may limit the complexity and abstraction
that can be achieved (Weintrop & Wilensky, 2019). Active
coding and debugging is crucial for developing
programming concepts and problem-solving skills, students
can develop a deeper understanding of programming
concepts and become more proficient at identifying and
resolving problems.

6. CONCLUSION AND FUTURE
DIRECTIONS
Recognizing specific differences in programming
modalities is key to advancing computer programming
education and supporting computational literacy. This
quasi-experimental study at a secondary school compared
BPM and TPM, looking at learners' behavior and CT skills,
yielding variation between the methods. Nonetheless, this
research has three limitations. First, the study's context and
potential unrepresentativeness of the sample necessitate
careful interpretation and replication with larger, diverse
samples. Second, relying on survey and behavioral data,
future studies may benefit from performance-based tests or
observations for deeper insight into CT skills. They could
also utilize mixed methods, including qualitative interviews
to uncover learners’ experiences and BMP and TPM's
synergistic potential. Third, aligning with multimodal
learning analytics trends, our data, from log files and
surveys, could be supplemented in future research with
various data sources to delve into learners’ behavior,
cognition, metacognition, and social activities during
programming learning.

In essence, instilling CT in young learners to prepare them
for future schooling and careers is critical. This study,
exploring differences in block-based versus text-based
programming learning, provides valuable insights for
effective K-12 programming education and relevant CT
skill development.
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ABSTRACT
With the rapid development of information technology,
computational thinking has become one of the core
abilities necessary for talents in the 21st century. With
the promulgation of the Information Technology
Curriculum Standards for ordinary High Schools (2017
edition) and the Information Technology Curriculum
Standards for Compulsory Education (2022 edition),
computational thinking has attracted more and more
attention in school education. Based on the analysis of
curriculum standards, this paper studies the current
situation of computational thinking of junior middle school
students in China through the evaluation tool of IT
curriculum standards developed by a research team. It is
found that there are significant differences in the level of
computational thinking in different grades of junior high
school students, with higher level of computational
thinking modeling and lower level of automation and
systematization. On the basis of this, this paper puts
forward some training suggestions in order to provide
reference for the development of computational thinking
education for junior middle school students in our country.

KEYWORDS
Curriculum standards; Computational thinking; Middle
school students; Development status

1. INTRODUCTION
As a new way of thinking, the importance of computational
thinking is increasingly recognized. Computational
thinking was first proposed in 1996 by Professor Seymour
Paper of MIT, What is more recognized is that Professor
Jeannette M.Wing of Carnegie Mellon University in the
United States published a study on Computational thinking
in Communications of the ACM magazine in 2006
Definition of Thinking: Computational thinking is a series
of thinking activities covering the breadth of computer
science, such as problem solving, system design, and
human behavior understanding using the basic concepts of
computer science . (WING JM, 2006)

In our country, with the development of science and
technology and the reform of education, computational
thinking has become the important content of middle
school education. Information Technology Curriculum
Standards for Senior High Schools (2017 edition) clearly
points out that information awareness, computational
thinking, digital learning and innovation, and information
social responsibility are the four core qualities of

information technology curriculum, highlighting the
importance of computational thinking. (Cao Xiaoming &
Anna, 2018) Computational thinking has become an
essential skill for individuals to succeed in a complex
technological culture. (Fu Qian, Xie Bochao & Zheng
Yafeng, 2019) With the promulgation of the"Compulsory
Education Information Technology Curriculum Standards
(2022 edition)", computational thinking is sinking from the
high school stage to the primary and secondary school
stage. It clearly distinguishes the different requirements for
the development of computational thinking of students in
high school and compulsory education, and does not
require them to learn and use programming language in
middle and high school, while "mastering the basic
knowledge of algorithm and programming" is included in
the course content (goal).

On the contrary, in the continuous process of the gradual
development of computational thinking, the
problem-solving exercises completed by students in junior
high school are indispensable accumulation to support the
development of computational thinking to a higher level,
and directly support the learning of program design and
algorithms in senior high school. Therefore, the
investigation of the development status of junior high
school students' computational thinking will help us to
have a clearer understanding of current students'
computational thinking ability, and find problems from it,
so as to make adjustments to the further training of
students' computational thinking and achieve the best
results. Therefore, this paper investigates the current
situation of the development of junior high school students'
computational thinking, aiming to find out the existing
problems in the development of junior high school
students' computational thinking, and provide reference for
the research on the cultivation of junior high school
students' computational thinking ability.

2. RESEARCH BASIS
2.1. The Concept of Computational Thinking
Since ancient times,computational thinking has been a
necessary quality of thinking for the development of social
production. (Xie Yueguang, Yang Xin & Fu Haidong,
2017) But the concept of computational thinking is
understood differently by different people.As shown in
Table 1, it is part of the definition of computational
thinking organized by the author.

Table 1. A Description of the Definition of Computational
Thinking.
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Based on the above views, this study adopts the description
of computational thinking in Ren Youqun and curriculum
standards, and defines computational thinking as a series of
thinking activities that abstract, decompose, model and
design algorithms to solve problems in the process of
problem solving, so as to help people better understand and
analyze complex problems and form solutions.

2.2. The Literature Development Trend of Computational
Thinking Research.
In this paper, the literature of CNKI is used as the source
of literature search, with "computational thinking" as the
keyword, the search was limited to core journals and the
past ten years, and a total of 266 literature records were
retrieved so far. In terms of the overall number, there is
still a lack of research on computational thinking. Figure 1

shows the quantitative development trend of computational
thinking research literature since 2014.

Figure 1. Computational Thinking Literature Publication
Trend Chart.

As can be seen from Figure 1, the annual trend of literature
publication shows an overall upward trend, indicating that
computational thinking research has received more and
more attention and attention at present, and this upward
trend will continue in the future.

3. RESEARCHMETHODS AND TOOLS
3.1. Research Methods
Questionnaire survey method, also known as questionnaire
method, is a survey method in which the investigator uses
a unified designed questionnaire to learn about the
situation or solicit opinions from the selected survey
objects. Questionnaire survey is a kind of research method
to collect information by asking questions in writing. In
this study, a computational thinking assessment tool for
middle school students based on curriculum standards
developed by the research team was adopted. The
questionnaire contains a total of 15 questions, which are
divided into five dimensions of modularization,
formalization, modeling, automation and systematization
according to the curriculum standard. There are 3
questions under each level of index, among which the
questions are designed as easy and difficult according to
the difficulty level of 25%, 50% and 75% of junior high
school students' ability. Four scores were assigned from
high to low to reflect students' level of computational
thinking after statistical analysis.

3.2. Trial Test
The research team tested the evaluation tool in one grade
7 and one grade 8 (a total of 75 students) of a middle
school. The evaluation tool of the test consisted of 15
questions, which were set to be submitted within 35
minutes, and 64 questionnaires were finally collected.
The test results show that most of the students completed
and submitted the test questions within the prescribed
time, indicating that the set of questions is more
scientific.

3.2.1. Reliability Analysis
The reliability of assessment tools is analyzed to verify the
reliability and stability of test results. Klonbach α value is
used to verify the reliability. Its specific value range and
corresponding evaluation results are shown in Table 2
below.

Table 2. Klonbach α Value Range.
Value Range Evaluation Result
above 0.9 The reliability is excellent

between 0.8 and 0.9 Good reliability, no need to
delete any questions

Source Definition
Jeannette
M.Wing,
Carnegie
Mellon
University,USA
(2006)

Computational thinking is a series of
thinking activities covering the breadth
of computer science, such as problem
solving,system design, and human
behavior understanding using the basic
concepts of computer science. (WING
JM, 2006)

International
Association
for Educational
Technology(IS
TE)and
Computer
Science
Teachers
Association(CS
TE) (2011)

Computational thinking is a problem
solving process, involving the
elaboration of problems, the
organization, analysis and presentation
of data, the formulation, identification,
analysis and implementation of
solutions, and the migration of
problem solving processes. (Cao
Xiaoming & Anna, 2018)

Ren Youqun
ect.(2016)

Computational thinking is a unique
problem-solving process that can help
people better understand and analyze
complex problems, so as to form
problem solutions with formal,
modular, automated, systematic and
other computational characteristics.
(Ren Youqun, Sui Fengwei & Li Feng,
2016)

Information
Technology
Curriculum
Standards
for Senior
High Schools
(2017)

Computational thinking refers to a
series of thinking activities generated
by an individual in the process of
forming a solution to a problem by
applying the thought methods in the
field of computer science. (Ministry of
Education of the People's Republic of
China , 2018)

Curriculum
Standards
for Information
Technology in
Compulsory
Education
(2022)

Computational thinking refers to
thinking activities such as abstraction,
decomposition, modeling and
algorithm design involved in the
process of problem solving by
individuals using thought methods in
the field of computer science. (Ministry
of Education of the People's Republic of
China, 2022)
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between 0.7 and 0.8 Acceptable
below 0.7 Unacceptable

As shown in Table 3, the α value of the computational
thinking evaluation tool in this study is 0.815, indicating
that the reliability of the test paper is good.

Table 3. Reliability Analysis.

3.2.2 Validity Analysis
Structural validity is a reflection of whether the experiment
can really measure the constructed theory. In this study,it is
used to explain whether the setting of each item is
reasonable, and the test questions are tested through
confirmatory factor analysis. As shown in Table 4, the
KMO value is 0.627, exceeding 0.5, and the significance is
less than 0.05, indicating that the data is suitable for factor
analysis.

Table 4. Validity Analysis.
KMO 0.627

Bartlett Test of
Sphericity

Approximate
Chi-square 209.716

df 105
P .000

4. ANALYSIS OF THE DEVELOPMENT
STATUS OF JUNIOR HIGH SCHOOL
STUDENTS' COMPUTATIONAL
THINKING
4.1. Basic information of survey objects
This study focused on sending questionnaires to grade 7
and grade 8 students in three regions. Among them, there
were 152 in grade 7, accounting for 49.5%, and 155 in
grade 8, accounting for 50.5%; There were 147 boys,
accounting for 47.9%, and 160 girls, accounting for 52. 1%;
There were 194 people in area A, accounting for 63.2%,
100 people in area B,accounting for 32.6%, 5 people in
area C, accounting for 1.6%, and 8 people in other areas,
accounting for 2.6%.

4.2. Correlation analysis
The correlation analysis of the five index dimensions of the
evaluation tool of computational thinking is carried out,
and the results are shown in Table 5.

Table 5. Correlation Analysis between the Dimensions of
Computational Thinking of Junior High School Students.
Dimension 1 2 3 4 5
Modularization

Formalization .238*
*

Modeling .343*
*

.316*
*

Automation .113* .187*
*

.151*
*

Systematization .181*
*

.296*
*

.309*
*

.248*
*

Note: **p<0.01; 1:modularization; 2:formalization;

Dimension 1 2 3 4 5
3:modeling; 4: automation; 5:systematization.
As can be seen from Table 5, there is a positive correlation
between the five dimensions.In computational thinking,
modularization allows the overall problem to be broken
down into smaller, more manageable parts, while
formalization allows these parts to be more normalized and
precise, leading to better understanding and solving of the
problem. Modeling makes problems simpler and clearer,
thus providing the basis for automation, which in turn
makes the modeled solution more efficient and reliable,
thus improving the efficiency and quality of problem
solving. Systematization is interrelated with other
dimensions, modularization, formalization, modeling, and
automation are all in order to better achieve the goal of
systematization, that is, to understand and solve problem
from a holistic perspective. Therefore, in the teaching
process, teachers should pay attention to the connection
and integration between these dimensions, so as to better
cultivate students' computational thinking ability and
creativity.

4.3. Difference analysis

4.3.1. Gender difference analysis
The author conducted an independent sample T test on the
gender of the research object. As shown in the Table 6, In
the Levin variance equality test, P=0. 155 >0.05, indicating
that the score variance of students of different genders is
equal, and the significance P=0.299>0.05, indicating that
the score difference of students of different genders is not
statistically significant.

Table 6. Sex-independent Sample T Test.
Levin's
test for
variance
equality

Mean equivalence t test

F Si
g. t df

Si
g.
(2-
t)

Mean
Diffe
rence

Std.
Error
Diffe
rence

A
V
G

Equiva
riance
assum
ed

2.
02
8

0.
15
5

1.
04 305

0.
29
9

0.047
79

0.045
95

Equiva
riance
not

assum
ed

1.
03
5

292.
713

0.
30
2

0.047
79

0.046
18

4.3.2. Grade difference analysis
Independent sample T-test was conducted for grades. As
shown in the Table 7, P=0.003 in the Levin variance
equality test indicates that the score variance of students of
different genders is not equal, and the significance P
indicates that the score difference of students of different
grades has significant statistical significance.

Table 7. Grade Independent Sample T Test.
Levin's
test for Mean equivalence t test

Cronbach’s Alpha Item
0.815 15
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variance
equality

F Si
g. t df

Si
g.
(2
-t)

Mean
Diffe
rence

Std.
Error
Diffe
rence

A
V
E

Equiva
riance
assume

d

8.6
93

0.0
03

4.3
44 305 0 0.193

87
0.044
63

Equiva
riance
not

assume
d

4.3
54

291
.22 0 0.193

87
0.044
53

4.3.3. Regional difference analysis
The variance analysis of regions was performed, as shown
in the Table 8 and the significance was 0.417>0.05,
indicating that there was no significant difference in the
calculation thinking scores of students in different regions.

Table 8. Regional Variance Analysis.
SS df MS F Sig.

BG 1.154 7 0.165 1.019 0.417
WG 48.353 299 0.162
Total 49.507 306

4.3.4. Dimensional difference analysis
The differences of the five index dimensions of the
evaluation tool of computational thinking are analyzed, and
the results are shown in Table 9.

Table 9. Differential Analysis between the Dimensions of
Computational Thinking among Junior High School

Students.
Dimension Score F LSD

Modularization 3.21±0.62

24.728** 5，4＜2
＜1＜3

Formalization 3.19±0.60
Modeling 3.37±0.63
Automation 2.97±0.63

Systematization 2.92±0.72
Note:**p<0.01;1:modularization;2:formalization;3:modeli
ng;4:automation;5:systematization.
As can be seen from Table 9,the F value between the
groups is 24.728, and the significance is indicating that the
computational thinking level of junior high school students
has significant differences in different dimensions. The
LSD(minimum significant difference)method was used to
compare the difference between the mean values of
different dimensions of computational thinking of junior
high school students. It was found that the difference
between automation and systematization level of junior
high school students was not significant, but the level of
automation and systematization level of junior high school
students was significantly lower than that of the other three
dimensions, and the level of modeling was significantly
higher than that of other levels.

4.4. Conclusion

4.4.1. Junior high school students have significant
differences in the level of computational thinking in
different grades
Students in Grade one have a relatively weak foundation of
computational thinking. In problem solving, we begin to
try to break down complex problems into smaller, more
manageable parts, which is the first manifestation of
modularization in computational thinking. However,it is
still difficult to describe the problem by using normalized
language and symbols, and the formalization level needs to
be improved. The second grade students have more
knowledge accumulation and skills improvement in
computational thinking, and begin to try to use abstract
models to describe and solve problems, which shows that
their modeling ability has been enhanced. And with the
in-depth understanding of programming, the second grade
students began to realize the importance of automation,
and tried to use computers to achieve some automated
tasks.

4.4.2. Junior high school students have higher level of
computational thinking modeling
From the difference analysis,it can be seen that junior high
school students have a higher level of computational
thinking modeling. Junior high school students are in their
adolescence. At this stage,students have strong curiosity
and thirst for knowledge. They like to explore new things
and have a strong interest in computer programming and
other technologies. Secondly, the cognitive ability of
junior high school students is gradually mature, and they
can understand and master relatively complex logical
relations and abstract concepts. In the learning process of
computational thinking, they can better abstract problems
in real life into mathematical models for solving them.In
addition, more and more schools begin to pay attention to
the training of computational thinking, and set up
programming, robotics and other courses, which provide
students with practical operation opportunities, so that they
can continuously improve the level of modeling in
practice.

4.4.3. Junior high school students have low level of
automation and systematization of computational
thinking
From the difference analysis, it can be seen that junior high
school students have a low level of automation and
systematization of computational thinking. First of all,
junior high school students are at a critical stage of
thinking development, their logical thinking and abstract
thinking abilities are still under construction, and they may
not be able to fully understand and master complex
concepts and systems, which leads to certain difficulties in
the automation and systematization of computational
thinking. Secondly, in the current junior high school
education system, there are still some deficiencies in the
training of computational thinking. Although many schools
have begun to pay attention to the teaching of
computational thinking, on the whole, the relevant
curriculum and teaching resources are still limited, which
cannot meet the needs of students' all-round
development.In addition, because junior high school
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students are in adolescence, some students may have
problems such as inattention and weak self-management
ability, which also affects their learning of automation and
systematization of computational thinking.

5. TRAINING SUGGESTIONS ON
COMPUTING THINKING FOR JUNIOR
HIGH SCHOOL STUDENTS
5.1. Teaching by stages
In the face of the significant differences in the level of
computational thinking of junior high school students in
different grades, the method of phased teaching can be
adopted. First, differentiated teaching plans can be
formulated for students in different grades. For lower
school students, emphasis is placed on the development of
basic concepts and skills, while higher school students can
focus more on the development of complex problem
solving and systematic thinking. Secondly, the advanced
courses are designed in stages to ensure that students
gradually transition to the next stage of learning on the
basis of mastering the previous stage. This can not only
ensure the learning effect of students, but also avoid
affecting the enthusiasm of students because the difficulty
span is too large.

5.2. Enhance the automation and systematic training of
computational thinking
The level of automation and systematic thinking in the
computational thinking of junior high school students is
relatively low, so we should strengthen their training. First,
it is important to ensure that students have a solid basic
knowledge of mathematics, algorithms and data structures,
which is the foundation for developing the ability to
automate and systematize computational thinking.
Secondly, teach students some systematic thinking
methods, such as system analysis,design and evaluation, to
help them master the way of systematic thinking. Thirdly,
through the completion of some complex projects
involving system design and automation, students can
exercise computational thinking in practical operation
and improve their automation and systematization ability.
In addition, students can be encouraged to explore
automated and systematic applications of computational
thinking to improve their abilities through independent
learning and practice.

6. SUMMARY
With the promulgation of the Core Literacy of Chinese
Students' Development, computational thinking has
become one of the four core literacy of information
technology discipline. (Zhang Xiaoqing, Li Peng, Wen
Chang & Li Haixiao, 2019) Training computational
thinking is conducive to improving students' information
technology knowledge and skills, and cultivating students'
interdisciplinary comprehensive problem-solving ability.
(Chen Peng, Huang Ronghuai, Liang Yue & Zhang Jinbao,
2018) The promulgation of the "Compulsory Education
Information Technology Curriculum Standards (2022
edition)" will sink computational thinking from the high
school stage to the primary and secondary school stage.As
a transitional stage between primary school and high
school, junior high school plays a vital role in bridging the

development of computational thinking. Therefore,research
on the development status of junior high school students'
computational thinking is also extremely important.

In line with the development requirements of the
information age, this paper investigates and studies the
current situation of junior middle school students'
computational thinking ability through the evaluation tool
based on information technology curriculum standards
developed by the research team, and concludes that there
are significant differences in the level of computational
thinking of junior middle school students in different
grades. The present situation of high level of modeling and
low level of automation and systematization of
computational thinking in junior middle school students is
presented. In this paper,some suggestions on the training of
computational thinking in junior middle school students
are given in order to provide reference for the development
of computational thinking education in junior middle
school students in China. However, due to the small
number of respondents, the results of this survey are
lacking in universality and need to be further improved in
the future.
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Secondary Education Teachers' Self-Efficacy and TPACK Patterns Relating to
Computational Thinking: A Cluster Analysis

ABSTRACT
This research aimed to validate a computational thinking-
TPACK survey for secondary school teachers in the
compulsory education and identify profiles of teachers'
self-efficacy in teaching computational thinking (CT). A
questionnaire based on the TPACK framework was
administered to 234 teachers, and confirmatory factor
analysis and cluster analysis were performed. The results
showed that while teachers had sufficient pedagogical
knowledge (PK), there was room for improvement in the
CT content-related dimensions. STEM teachers rated
themselves higher in these dimensions compared to non-
STEM teachers. However, there were no significant
differences based on gender or teaching experience. Three
distinct profiles of teachers' CT-TPACK self-efficacy were
identified. This study highlights the importance of
professional development and support for teachers in
successfully integrating CT into education. Government
initiatives that recognize the significance of CT should
prioritize these areas to enhance teachers' confidence and
competence in teaching CT.

Keywords
computational thinking, self-efficacy, teacher profiles,
TPACK, secondary education

1. INTRODUCTION
The fusion of computer technology and programming has
significantly impacted society, becoming imperative for
academic and professional success in the 21st century
(Shute et al., 2017). This influence has given rise to the
recognition of computational thinking (CT) as a crucial
21st-century skill, integrated into national curricula
globally (Angeli et al., 2016). In alignment with this trend,
the Flemish government has made "computational thinking
and acting" a mandatory learning goal in secondary schools
since September 2019 (Gesquière, 2022). However,
challenges arise due to the lack of teacher expertise in
computer science and the interdisciplinary nature of CT
(Angeli & Giannakos, 2020; Güven & Gulbahar, 2020).

This study aims to understand teachers' self-perceived
ability to teach computational thinking and proposes a
methodology using two-step clustering analysis for a
nuanced examination of their self-efficacy beliefs. By
exploring teachers' attitudes and perceptions, the research
seeks to contribute insights for designing effective training
and preparation programs to integrate CT into education.

1.1. Computational Thinking
The integration of programming and CT in education has
historical roots, with CT defined by Wing (2006) as a
problem-solving approach drawing from computer science
concepts. While definitions vary, CT is recognized as a
distinct psychological construct, encompassing problem-
solving abilities applicable beyond computer programming
(Román-González et al., 2019). The study operationalizes
CT based on frameworks from CSTA, ISTE, and literature

synthesizing CT abilities (ISTE and CSTA, 2011; Oliveira
et al., 2019; Shute et al., 2017)

1.2. Teaching Computational Thinking
Teaching CT involves designing practices that develop CT
abilities in learners, impacting STEM fields and critical
thinking skills (Angeli et al., 2016). Various frameworks
guide CT integration, including those from NSF, ISTE,
CSTA, and the Partnership for 21st Century Skills (2011).
While research suggests positive impacts on students,
challenges persist, such as teachers' limited understanding
of CT and a lack of professional development opportunities
(Feng & Yang, 2022; Kong et al., 2023).

1.3. Teachers' Sense of Efficacy
Teacher self-efficacy, defined by Bandura (1997)
significantly influences student learning. High self-efficacy
correlates with innovative teaching practices, technology
use, and positive classroom environments. This study
explores teachers' self-efficacy through standardized scales
like TSES and TSECT, emphasizing the link between CT
and technological pedagogical content knowledge
(TPACK).

1.4. TPACK
The TPACK framework, developed by Mishra and Koehler
(2006), provides a lens for understanding the interplay of
technology, pedagogy, and content knowledge in teaching.
This study utilizes TPACK to explore teachers' self-
efficacy in integrating CT, recognizing the need for
comprehensive assessment in educational settings.

1.5. Purpose and Research Questions
Given the ongoing integration of CT into education, this
study aims to validate a CT-TPACK survey, identifying CT
teaching self-efficacy profiles. The research questions
focus on the measurement validity of TPACK self-report
items, differences in CT-TPACK variables based on
teachers' characteristics, and the identification of teacher
profiles regarding CT-TPACK.

2. METHOD
2.1. Participants
A total of 209 grade 8-9 secondary school teachers from
the Flemish education system participated, recruited
through convenience sampling. The sample included 44
male (21%) and 165 female (79%) teachers, reflecting the
gender distribution among teachers in Flemish secondary
education in grade 8-9.

2.2. Measures
The questionnaire, adapted from (Schmid et al., 2020),
measured teachers' self-efficacy in teaching computational
thinking. Items were translated into Dutch for the Flemish
context, ensuring content validity through expert reviews.
Participants rated items on a five-point Likert scale.
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2.3. Analyses
Confirmatory factor analysis (CFA) assessed the factor
structure's validity. Scale reliability was assessed using
Cronbach’s α. Pearson's correlation analysis examined
inter-correlations among factors and relationships with
demographic variables. Two-step cluster analysis identified
CT self-efficacy profiles. Silhouette measures determined
the optimal number of clusters.

2.3.1. Validation of the Instrument
CFA assessed the CT-TPACK scale's factor structure.
Scale reliability was evaluated using Cronbach’s α.
Analyses were conducted using R and packages such as
lavaan and psych.

2.3.2. Correlation Analysis
Pearson's correlation analysis explored relationships
between CT-TPACK factors and demographic variables.
Effect sizes were interpreted following J. Cohen's
conventions.

2.3.3. Identifying Profiles
Two-step cluster analysis was used to identify CT self-
efficacy profiles. The silhouette measure determined the
optimal number of clusters. IBM SPSS Statistics and R
were employed for the analyses.

3. RESULTS
3.1. Validation of the Instrument
Addressing the first research question, a reliability analysis
and confirmatory factor analysis (CFA) were conducted to
assess the fit of the data to the theoretical structure. The
seven-scale TPACK model showed an acceptable fit (CFI
= .95, RMSEA = .05). Internal consistency, measured by
Cronbach's alpha, was high across scales, (except for
Pedagogical Knowledge (PK), which just exceeded the
acceptable threshold.

3.2. Factor Loadings and Mean Scores
All factor loadings exceeded 0.4, indicating moderate to
strong relationships. Mean scores for the scales revealed
that teachers rated their Pedagogical Knowledge highest,
followed by Technological Knowledge (TK),
Technological Pedagogical Knowledge (TPK),
Computational Knowledge (CK), Pedagogical
Computational Knowledge (PCK), Technological
Computational Knowledge (TCK), and Technological
Pedagogical Computational Knowledge (TPCK). The
variation in Pedagogical Knowledge ratings was lower than
other knowledge types.

3.3. Correlation Analysis
Pearson's correlation analysis demonstrated significant
intercorrelations among CT-TPACK subscales. Notably,
strong correlations were observed between PCK and TPCK,
as well as TPK and TPCK. Teacher experience and gender
showed marginal or insignificant correlations with
subscales. However, a modest correlation was found
between teaching STEM subjects and self-efficacy in CK (r
= .35) and TCK (r = -.35).

Figure 1. CT-TPACK scale variables by subject

3.4. 3dentifying Profiles
A three-cluster solution was optimal, explaining variance in
knowledge types. Cluster characteristics and a graphic
representation were generated. STEM teachers were more
prevalent in Cluster 3, while non-STEM teachers were
distributed across clusters. Predictor importance indicated
TCK, PCK, TPCK, and CK as crucial for cluster
membership.

Table 1. Comparison of motivation profiles

3.5. Cluster Characteristics:
Cluster 1 (25%): Low knowledge levels, particularly in
PCK and TCK, indicating the lowest TPCK. Cluster 2
(32%): Mediocre knowledge levels across all scales, with
slightly higher TPK and neutral levels in other areas.
Cluster 3 (43%): High knowledge levels across all scales,
with significantly higher TPCK than Clusters 1 and 2.

These results provide a nuanced understanding of CT
teaching self-efficacy profiles among secondary school
teachers, highlighting variations in knowledge types and
their distribution across clusters.

Figure 2. CT-TPACK scale variables by cluster
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4. DISCUSSION & CONCLUSION
This study aimed to validate a CT-TPACK survey for
Flemish secondary school teachers and explore their self-
efficacy in teaching computational thinking (CT) using the
seven TPACK knowledge dimensions. The research
questions led to valuable insights that contribute to the
broader understanding of CT integration in education.

4.1. Research Question 1: TPACK Self-Report Items
Validation
The questionnaire demonstrated satisfactory fit indices,
validating its reliability. Intercorrelations between
subscales aligned with previous studies, reinforcing the
robustness and generalizability of the results. Notably, the
moderate correlation between Technological Knowledge
(TK) and Content Knowledge (CK) suggests an interesting
connection, likely rooted in the overlap between
Technological Innovation and Computational Thinking.

Varying knowledge levels among teachers, especially in
TK and CK, highlight the need for targeted professional
development. The overall neutral stance of teachers across
domains indicates a call for additional support to facilitate
successful CT integration in the Flemish education system.

4.2. Research Question 2: Differences in TPACK
Variables
Teaching experience exhibited minimal influence on
TPACK self-assessment, emphasizing consistency
regardless of experience. However, subject background,
particularly STEM vs. non-STEM, revealed noteworthy
differences, with STEM teachers reporting higher self-
efficacy in CK and TCK. This underscores the role of
content specialization in shaping teachers' perceptions of
their CT-related knowledge.

These findings offer crucial implications for professional
development, urging targeted support for non-STEM
teachers in CK and TCK to bridge knowledge gaps
effectively.

4.3. Research Question 3: Teacher Profiles
Three distinct clusters of teacher profiles emerged,
revealing variations in self-efficacy across TPACK
dimensions. Cluster 1, representing 25% of teachers,
exhibited the least favorable profile, indicating lower
confidence in CT integration. Cluster 2 displayed a
moderate profile, while Cluster 3, comprising 43% of
teachers, showcased the most favorable profile with high
self-efficacy across TPACK dimensions.

STEM teachers predominated in the favorable Cluster 3,
aligning with their generally higher self-efficacy. This
further emphasizes the importance of subject specialization
and content expertise in CT integration.

4.4. Conclusion
In conclusion, this study addressed the challenges of CT
integration in compulsory education by validating a CT-
TPACK survey and examining teachers' self-efficacy. The
findings underscore the importance of targeted professional
development initiatives to enhance teachers' knowledge and
skills, particularly in content-related dimensions. As

governments worldwide recognize the significance of CT,
efforts should focus on empowering teachers through
ongoing training, fostering effective CT integration, and
nurturing critical thinking and problem-solving skills
among students.

Building on this study’s contributions, there's a compelling
need to translate its findings into actionable strategies for
teaching practice. Educators and policymakers can use this
research as a blueprint for developing targeted professional
development that addresses specific gaps in teachers' CT
knowledge and self-efficacy. Future investigations could
employ a longitudinal approach with a more varied
participant pool to gain richer insights into the evolution of
teacher profiles and the tangible effects of professional
development on CT pedagogy. By doing so, they can create
a more conducive environment for CT integration across
educational settings.
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ABSTRACT
Students often encounter challenges in grasping basic
concepts and principles of programming. These are partly
due to difficulties in understanding basic concepts, partly
difficulties when modelling class diagrams, and partly, the
lack of individualized guidance. OOP is chosen for this
project, as it enables study of computational thinking’s (CT)
decomposition, algorithmic logic, pattern recognition and
abstraction in diverse similar yet adapted/differentiated
scenarios. A chatbot application is proposed in contrast to
intelligent tutoring systems (ITS), as ITS requires rigorous
modelling and testing. The chatbot can capitalize on CT, to
serve as a modular/agile teaching assistant, to assist novice
students to reinforce and debug their own understanding,
for more meaningful engagement and knowledge retention.
The chatbot also provides students with comprehensive
OOP and class diagram learning materials, e.g. recap
questions, exercises, quizzes, gamified challenges and
basic personalized guidance and support, to enhance
engagement and motivation in learning OOP and class
diagram concepts. A reward system is also implemented to
encourage students to take on challenges, earn points and
redeem rewards. Alpha-beta user testing are carried out to
assess user experience and learner satisfaction. Findings are
promising. Sample size however, is small. Furthermore,
our weak AI personalized chatbot still needs refinement
and enhancement.

KEYWORDS
Efficacy, Design, CT, OOP, Chatbot, Concepts, Modelling,
Class Diagrams, Personalized Guidance, Debug,
Gamification, Chunking/granularity

1.INTRODUCTION
Mastering OOP requires substantial time and effort to
master. This struggle is evident through the prevalence of
four common mistakes made by students, when modelling
class diagrams. These four common mistakes, include
syntactic errors, class-related errors, attribute-related errors
and association-related errors. They can eventually affect
the quality of the program, as the diagrams may contain
inaccuracies, redundancies, or omissions.

Moreover, students sometimes lack individualized
guidance as university lecturers lack time to provide instant
and personalized feedback to each student, especially in
huge class. Lecturers often need to prioritize delivery and
discussions, within the given timeframe.

Furthermore, students who have just started learning, are
not familiar with programming syntax. Though OOP
exercises involve working on a compiler that promptly
displays syntax errors whenever mistakes are made,
comprehending these syntax errors can be challenging.

Errors are mostly described in technical terms, leading to
increased frustration and a high likelihood of students
giving up easily. Hence, an alternative solution should be
developed to address these challenges and enhance students’
learning experience.

1.1. Objectives
Wing’s (2006) computational thinking (CT) emphasizes the
link between computer science and real-life, while Brennan
& Resnick’s (2012) CT, focuses on developing concepts,
practice and perspectives. With these in mind, we have
chosen OOP because it enables study of decomposition,
algorithmic logic, pattern recognition and abstraction, in
diverse similar yet differentiated scenarios.

The main objective of this project is to develop and test the
efficacy of the design of an interactive prototype, which
provides students with opportunities to engage via practice
exercises, quizzes and gamified challenges. The lessons
cover fundamental OOP principles, and concepts e.g.
classes, objects, inheritance and class diagrams. Simple
personalized guidance supports students’ specific needs
and learning pace. The voice chatbot guides students
through learning materials and explains syntax errors using
non-technical terms.

2.RELATEDWORK
2.1. Challenges to Learning OOP
Several research papers are analysed to identify the
challenges, that students normally face in learning OOP.

2.1.1. Issues in Modelling Class Diagrams
Object-oriented programming and class diagrams are
interrelated, as the class diagram presents a comprehensive
view of the classes and their relationships, including
association, aggregation, composition and inheritance, in a
single picture (Nikiforova, Sejans, & Cernickins, 2011;
Shmallo, & Shrot, 2020).

However, students often encounter issues when it comes to
modelling complete and accurate class diagrams, due to the
diagrams’ size and complexity during the design, analysis
and maintenance stages. These result in inaccuracies,
redundancies and omissions when modelling a class
diagram.

These errors stem from incorrect understanding, which is
often a result of either overly general knowledge structures
or unclear, faulty or missing knowledge components, or
inconsistency in adhering to conventions (Shmallo & Shrot,
2020). More specifically, Kayama, Ogata, Asano, and
Hashimoto’s (2016) study on 174 beginner-level university
students’ understanding when modelling class diagrams,
has revealed four types of errors (Table 1), i.e. syntactic,
class-related, attribute-related and association-related errors.
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Table 1. Common Types of Errors Made when Modelling Class Diagrams and their Respective Error Categories

2.1.2. Lack of Individualized Learning Support
In traditional learning settings, it is difficult to provide
individualized learning support or address each student’s
requests (Hobert, & Wolff, 2019). This is true, especially in
universities, where large classes pose additional challenges
for lecturers in terms of workload and opportunities for
meaningful interaction (Cunningham-Nelson, Boles,
Trouton, & Margerison, 2019). This will negatively impact
students’ academic performance and overall satisfaction.

2.1.3. Difficulty in Coping with OOP Learning Tools
Students also find it challenging when coping with the
tools utilized when teaching OOP. Some of these teaching
tools are initially designed for professional software
engineers. This results in programming languages and
programming environments, that are too complex for
learners to handle and comprehend, especially for
beginners (Kölling, 1999).

2.2. Addressing Challenges in Learning OOP

2.2.1. Virtual Learning Companion (VLC)
By analysing the challenges associated with learning OOP,
a major portion of these challenges stems from insufficient
support available to students during their learning journey.
Building on Self’s (1988) Intelligent Tutoring Systems
(ITS), Chan and Chou (1995) have introduced Learning
Companions (LC), for primary schools. At the highest level
of the LC, a reciprocal tutoring mode is adopted, i.e., the
student and the virtual learning companion, take turns to be
tutor and tutee. An overlay student modelling approach
enables mapping of the student and LC’s performance to
the expert teacher’s performance. This will enable learning/
refinement of the rules in the LC. More well-known LCs
are Google Assistant, and IBM’s Jill Watson (Wang, Jing,
Camacho, Joyner & Goel, 2020).

2.2.2. Educational chatbots
Personalized educational chatbots provide an easy and
cost-effective method to simplify and focus the processes
of teaching and learning (Kuhail, Alturki, Alramlawi, &
Alhejori, 2023; Okonkwo, & Ade-Ibijola, 2021). Through
chatbot conversations, lecturers can identify areas where
students struggle, and assess their learning abilities
(Okonkwo & Ade-Ibijola, 2021b). In another example,
Latham, Crockett, McLean, and Edmonds’ (2012) study
finds that, students provided with a learning path tailored to
their individual learning styles, achieve 12% more accurate
answers, compared to those who utilized chatbots without

personalized learning materials. Personalized educational
chatbots can generate learning materials customized to
meet the specific individual needs of students, resulting in
increased motivation and engagement (Baskara, 2023).
Thus, by establishing a more assisted learning environment,
students can pursue their studies, at their preferred pace,
and in their preferred style. This greatly helps in facilitating
a thorough comprehension of the topics being studied,
ultimately resulting in better knowledge retention.

2.2.3. Types of Chatbot
There are different types of chatbots, e.g. rule-based
chatbots which are more structured with pre-defined input,
processing and output, AI (unsupervised or supervised
learning) chatbots, which learns over time, linguistic
chatbots e.g. Messenger, and contextual chatbots.
Contextual chatbots are the most advanced, as they
reference prior conversations, and their history, to identify
the progression of a conversation, and possibly what may
be next (Chaturvedi, Srivastava, Rai, & Cheema, 2020).
These chatbots can involve only text, or include voice as
well.

3. METHODOLOGY
This project is implemented using the iterative incremental
prototyping methodology, where the system’s functions are
developed in increments, starting with the main
functionalities. The chatbot system provides personalized
guidance on learning OOP and class diagram concepts by
allowing students to express their needs through a menu of
response options. Subsequently, recap questions, exercises,
quizzes and gamified challenges that cover the fundamental
OOP and class diagram concepts are provided for students
to engage in, so that they can assess their understanding.
The prototype’s context diagram is presented in Figure 1.

Figure 1. Prototype’s Context Diagram

Moreover, Grover, Pea, and Cooper (2015) promote
multiple forms of assessments, to develop a bigger picture
of the students’ CT development/learning outcomes. Hence,
we have applied Schrepp, Hinderks, and Thomaschewski’s.

Error type Criteria Error type Criteria
Syntactic Inadequate notation Attribute-

related
Same attributes are used in > than two classes

Lack of association, multiplicity Attribute name defined as value, not property
Lack of unique names for class,
attribute, association

Attribute that describes an action is used

Class-related Classes with different abstraction levels Attribute indicating multiplicity is used.
>=2 classes whose names or attributes
have the same meaning in one diagram

Duplicated attributes are used

Association-
related

Inadequate association name Association-
related

Inadequate multiplicity
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(2017) User Experience Questionnaire (UEQ) and
Lewis’/IBM’s Computer Systems Usability Questionnaire
(CSUQ) for this pilot study. These questionnaires are
carried out via Google Form. Hence, convenient sampling.

4. PROTOTYPE DEVELOPMENT AND
TESTING
The chatbot system consists of 7 sections, i.e., the home
page, OOP concepts content, class diagram content (20
classes), challenge content, submission page, rewards page,
and the

about us page. The BrainShop API acts as a service that
works with Chat Natural Language Processing tasks
(Brainshop, nd).

4.1. Screenshots (alpha user testing)

Some screenshots from the alpha prototype is presented in
Figure 2 below. Feedback is factored in, and each reward is
assigned a redeem point. The total points for students are
displayed at the top. If the redeem points of a reward are
lesser than a student’s total points, the student can redeem.

Home page Navigation Drawer
(Student)

Recap Q & A OOP Exercise with
hints

Challenges list Feedback to Students’
Answers to Challenges

Figure 2. Alpha System’s Recap, Exercise and Submit Code Screenshots

4.2. Alpha testing

4.2.1. Demographics
The demographics (Figure 3) shows that most of the

respondents are female, around 18-24 years old, pre-
university or university graduates, beginners in
programming and object-oriented programming (OOP).

Figure 3. Demographics from Alpha Testing

4.2.2. User Experience Questionnaire (UEQ) testing
The UEQ alpha testing mean results all score above 3.5/5.
“Confusing vs. Clear” has the highest mean of 4.13/5 (83%)
(Table 2), followed by easy, interesting and inventive at
3.97/5 (79%). “Boring vs. Exciting” achieve a mean of

3.83/5 (77%) and “Usual vs. Leading edge” 3.73/5 (75%).
The UEQ alpha testing results, shows that users are clear
about the core idea of the application. Thus, interaction
approaches within the application and the design of the
application need to be improved.

Table 2. Alpha UEQ testing results
Constructs Avg. Constructs Avg. Constructs Avg. Constructs Avg.
Confusing/Clear 4.13 (Un)interesting 3.97 Obstructive/Supportive 3.93 Boring/Exciting 3.83
Complicated/Easy 3.97 Conventional/Inventive 3.97 Inefficient vs. Efficient 3.87 Usual/Leading

edge
3.73

4.2.3. CSUQ testing
From Table 3, we find that majority of the higher averages
are in the affective domains (highlighted in yellow), e.g.

easy, need, pleasant, comfortable, satisfied, effective,
simple, like. These indicate that more needs to be done to
improve productivity, in terms of effectiveness and
efficiency.
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Table 3. CSUQ Alpha Testing Results (Averages in Descending Order)
Questions Avg. Questions Avg.
The information provided is easy to understand. 5.83 It was simple to use this system 5.47
It is easy to find the information I needed 5.73 I like using the interface of this system 5.47
The interface of this system is pleasant 5.70 Overall, I am satisfied with how easy it is to use. 5.40
I feel comfortable using this system 5.63 The system has all the functions/capabilities expected. 5.40
The organization of information on the screens
is clear

5.63 I am able to complete my work quickly using this
system.

5.37

Overall, I am satisfied with this system 5.63 I believe I became productive quickly using this
system

5.27

It was easy to learn to use this system 5.57 I can effectively complete my work using this system 5.23
The information is effective in helping me
complete the tasks

5.50 I am able to efficiently complete my work using this
system

5.23

Based on Table 3, a hierarchy/dependency among factors
relevant to the sample respondents, is derived (Figure 4).

Figure 4. Hierarchy/dependency in Value Propositions

4.3. Beta iteration (refinements from alpha testing)
 Recap questions are provided to assess students’
knowledge. This is more engaging and interactive.

 A rewards page is added for students to redeem points for
rewards, if they score >=70 for the challenge.

 A list of more exciting real-life scenario challenges is
added. These test understanding of logic, class diagram.

Sample screenshots are presented in Figure 5.

4.3.1. Beta testing

4.3.1.1. Demographics
Most of the respondents are female, around 18-24 years old,

pre-university graduates. Among these, 30% are beginners
or have intermediate programming experience and 26.7%
do not have any OOP experience (Figures 6a, b, c, d).
Compared to alpha’s user testing (Figure 7a), for beta,
there is an increase of 13.3% beginners, 3.4% intermediate,
a decrease of 3.3% advanced, and a decrease of 13.4%
respondents without OOP experience (Figure 7b).

More interaction approaches
(Recap questions, Rewards page)

Added challenges mostly
related to real-life scenarios

Figure 5. Screenshots from the Beta Prototype

Figures 6a, b, c. Beta Testing Demographics

Figure 6d, Figure 7a. Alpha Testing Respondents’ Experiences, Figure 7b. Beta Testing Respondents’ Experiences

4.3.3.2. Learning engagement (UEQ) testing
Table 4 presents the UEQ beta testing results, in
descending order. The 3 highest improvements between
alpha-beta (AB)

testings are leading edge, interesting, and efficient. There
is room for improvement in terms of inventiveness

Table 4. UEQ Beta Testing Results (Averages in Descending Order and Degree of Improvement)

36



Construct Avg. Construct Avg. Construct Avg. Construct Avg.
Confusing/Clear 4.23

(+0.10)
Complicated/Easy 4.13

(+0.16)
Usual/Leading
edge

4.10
(+0.37)

Boring/Exciting 4.06
(+0.23)

Uninteresting/
Interesting

4.23
(+0.26)

Inefficient/
Efficient

4.13
(+0.26)

Obstructive/
Supportive

4.06
(+0.13)

Conventional/
Inventive

4.00
(+0.03)

4.3.3.3. CSUQ testing
Similar to alpha testing’s findings, the affective factors
(satisfied, easy, pleasant, effective, simple, like,
comfortable), have higher averages compared to
productivity factors (Table 5). As noted from Figures 7a, b,
for beta testing, there are 13.3% more beginners, 3.4%
more intermediate level, 3.3% less advanced, and 13.4%
less respondents without OOP experience. This indicates
that prior programming experience mediates usability.

These findings complement Poursaed and Lee’s (2010)
prior study on factors which contribute towards more
effective problem-solving skills and thus, more meaningful
learning in mobile and ubiquitous learning, in terms of user
experience and satisfaction. The difference is Poursaed and
Lee’s (2010) study is for the learning of Java and without
chatbot. Thus, design-CT-self-efficacy are complementary,
to diverse demographics, objectives, phases of learning,
and

platforms (formal/informal, distance/flipped learning).

We thus agree with Grover, Pea, and Cooper (2015) and
Zhang and Specht (2023) that more attention should be
placed on designing suitable assessments, to develop more
holistic assessments. We agree with Kong’s (2019)
assessment modes, due to the common base, i.e., Brennan
and Resnick’s (2012) concepts, practice and perspectives.
Our research is however, scoped to Higher Education
within computer science/computing groundings only.

As for perspective developments, as the findings have
indicated, we need to first enable easier search of texts in
the chat or to enable bookmarking, to reduce cognitive load.
Greater decomposition of lessons/chat sessions and
stronger AI, may help, in developing Kong’s (2019)
programming empowerment. Other assessment criteria
reviewed in Lee and Jiang (2019) are exemplary when
localizing rubrics.

Table 5. CSUQ Beta Testing Results (Averages in Descending Order and Degree of Improvements)
Questions Avg. + Questions Avg. +
Overall, I am satisfied with this
system

6.10 +0.70 The organization of information on the
screens is clear

6.00 +0.37

It was easy to learn to use this system 6.10 +0.37 This system has all the functions and
capabilities I expect

6.00 +0.60

The interface of this system is
pleasant

6.06 +0.36 I am able to efficiently complete my work
using this system

6.00 +0.77

The information is effective in
helping completing tasks, scenarios

6.06 +0.56 I am able to complete my work quickly
using this system

5.97 +0.60

It was simple to use this system 6.06 +0.59 Overall, I am satisfied with how easy it is
to use this system

5.87 +0.47

I like using this system’s interface 6.06 +0.59 It is easy to find the information needed 5.84 +0.11
The information provided for the
system is easy to understand.

6.03 +0.20 I believe I became productive quickly
using this system

5.84 +0.57

I feel comfortable using this system 6.00 +0.37 I can effectively complete my work using
this system

5.77 +0.54

5. CONCLUSION
The main goals of this project are to develop interactive
learning opportunities to engage students more actively,
and to address the difficulties of learning OOP. OOP is
chosen as it enables study of CT’s decomposition,
algorithmic logic, pattern recognition and abstraction in
diverse similar/ differentiated scenarios. The chatbot
system has provided activities, e.g. multiple-choice recap
questions, which the students can answer via clicks or
voice, exercises, quizzes and gamified challenges. On-
demand hints generate learning materials, customized to
meet specific student needs. Students can also earn points
and redeem rewards by scoring 70 or more than 70 points,
for a challenge.

There are limitations to this humble study, as the current
personalization and remedial strategies are at the weak AI
level, as it is an undergraduate capstone. Furthermore, our
sample size is small. Hence, findings cannot be generalized.
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Abstract
This research investigates the impact of color scheme on
elementary school computational thinking (CT)
assessments. The study involved 116 4th-grade Israeli
students from diverse socio-economic backgrounds,
comparing performance between full color and grayscale
versions of the competent Computational Thinking Test
(cCTt). Overall, students in the grayscale group performed
better than those in the color group. Analysis of error types
indicated that grayscale printing reduced errors that depict
lower levels of understanding and had no associations with
responses that depict higher levels of understanding. The
study contributes valuable insights into the role of color in
CT assessments, emphasizing the importance of optimizing
assessment tools for young learners.

Keywords
Assessment, Pen-and-Paper test, Color, Computational Thinking,
cCTt, Elementary School

1. Introduction
One of the most common approaches to teach and assess
computational thinking (CT) is to present students with
visual blocks, with each block represents a different action,
and to use these blocks to construct a solution to a puzzle.
This approach is inspired by the way CT was initially
introduced to young learners, i.e. via Scratch block-based
programming. Today, blocks are closely associated with
CT, particularly at a young age, and have migrated from
digital learning environments to pen-and-paper assessment
tools.

To make these environments and tools more friendly to
young students, colors are used to code different types of
actions. In the context of comprehension and learning,
color has been long suggested to play an important role. As
for the importance of color in learning and assessment, its
role in CT assessment needs to be addressed. Nonetheless,
there remains an evident gap in the existing literature
regarding the direct associations between CT and color;
this is indeed the focus of the current study.

1.1. The Relationship Between Color and Learning
Color perception is fundamental to human comprehension
of the world; understanding relationships between colors
and objects are vital mechanisms for higher-level color
processing (Derefeldt et al., 2004; Siuda-Krzywicka &
Bartolomeo, 2020) . Therefore, the expression of color in
learning resources--e.g., in text-based materials,
visualizations, or videos, is crucial for learning and
development (Liu et al., 2021).

Moreover, color has exhibited relevance in diverse contexts
that can be linked to Computational Thinking (CT). For
example, color scheme was found to be important in
learning to program (Liu et al., 2021) . In a study

investigating the correlation between two video lecture
conditions (color-coded vs. grayscale) and the efficacy of
learning programming, color coding was observed to
enhance programming comprehension more effectively
than grayscale. Also, color was found to play a role in
complex problem solving when subgoals are color-labeled,
specifically with regarding to affect and mood (Ramos-
Nuñez et al., 2018).

CT platforms and assessment tools—from block-based
platforms like Scratch to assessment environments like
Bebras to pen-and-paper tests like cCTt—often utilize tasks
presented in various color shades. Therefore, it is important
to explore the role of color in CT.

1.2. Measuring Computational Thinking
Computational thinking (CT) evaluation methods
encompass various areas, emphasizing problem-solving
abilities without necessarily focusing on programming
(Ezeamuzie & Leung, 2021; Ogegbo & Ramnarain, 2022).
Moreover, pen-and-paper assessments are more accessible
and still promote learning (Sun et al., 2021).

For elementary students, the Beginner's CT test (BCTt) has
been effective within the age range of 5-7 years, while the
competent CT test (cCTt) is tailored for third and fourth
graders (ages 7-9), demonstrating effectiveness in assessing
CT skills (El-Hamamsy, Zapata-Cáceres, Barroso, et al.,
2022; El-Hamamsy, Zapata-Cáceres, Marcelino, et al.,
2022). These assessments comprise of a set of puzzles that
include a grid on which a chick and its mother hen are
positioned; students should choose the solution that leads
the chick to the hen under the conditions of the puzzle. The
possible paths—4 for each puzzle—are decoded in blocks
which represent different operations (see under
Methodology section for more details). The utilization of
colors aids in distinguishing between different operations
(blocks).

1.3. Research Goals
The purpose of the present study is to compare elementary
school students’ cCTt performance between color and
grayscale test versions.

1.4. Research Questions
1. What are the relationships between computational

thinking and print type?
2. What are the relationships between types of errors

in cCTt and print type?

2. Methodology
2.1.Population
The study comprised of 116 fourth-grade students (ages 9-
10 years old) from three elementary schools in Israel. The
recruitment process involved reaching out to school
administrators and participation upon their approval. The
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participating schools were located within a large city which
represents diverse socio-economic backgrounds ranging
from low to medium-high. Of the participants, 45% were
girls (52 out of 115), 55% were boys (63 out of 115); and
one participant did not indicate their gender. The data
collection sessions were incorporated into the school
schedule, and participation was voluntary. Of the whole
grade population in these schools, an overall of fifty-two
students abstained from participation due to various
reasons like absence, lack of consent, participation in off-
site activities, etc. Additionally, we excluded six students
who responded to less than half of the questions.

2.2.Design and Procedure
The study received approval from both the Ministry of
Education, which was necessary because data collection
took place in school, and the authors' Institutional Review
Board (IRB). Parents and relevant school staff were
informed about the study's objectives and were provided
with detailed information to address any potential
objections or concerns regarding data collection.
Participation was managed on an opt-out basis.

Data collection was held in June 2023. The class session
began with a 5-minute brief explanation on how to
complete the questionnaire and an overview of the types of
questions. This was followed by approximately 40 minutes
during which students filled out the questionnaires;
students who needed more time kept working on the
questionnaire until completing it. The research team was
available to address individual questions aimed at
clarifying the content of the questionnaire.

2.3.Instruments
The competent Computational Thinking Test (cCTt):
The cCTt (Computational Thinking Test) is a pen-and-
paper multiple-choice questionnaire designed to evaluate
computational thinking skills among third and fourth-grade
students. The questions were sourced from a recent study
(El-Hamamsy, Zapata-Cáceres, Barroso, et al., 2022)
which assessed and validated a computational thinking
questionnaire tailored to elementary school students in
these grades. The decision to adapt a questionnaire
specifically for this age group was supported by theoretical
and research justifications (El-Hamamsy, Zuuerey, et al.,
2022; El-Hamamsy, Zapata-Cáceres, et al., 2022) . Initially
containing 25 questions, a recommendation was made to
utilize a subset of 15 questions covering fundamental
concepts from the original questionnaire (sequences,
simple loops, nested loops, conditional and while
statements), excluding the most challenging questions
involving combinations, deemed difficult for the students
(El-Hamamsy, Zapata-Cáceres, et al., 2022).

Each questionnaire item is accompanied by a diagram
illustrating various potential response types (El-Hamamsy,
Zapata-Cáceres, Barroso, et al., 2022), including the correct
answer that exemplifies computational thinking and three
types of mistakes. The questionnaire underwent translation
into Hebrew and underwent review and refinement by the
first and second authors of this paper. Subsequently, the
test was administrated to two 3rd- and 4th-grade students
who evaluate the questionnaire's clarity and
comprehensibility; adjustments were made based on their

feedback. The questionnaire comprises 15 progressively
challenging questions, each presenting a scenario of
guiding a chick to its mother hen while potentially
accomplishing side-goals like picking up a flower or
avoiding a cat. Students are presented with four possible
answers per question and required to select one (refer to

Figure 1 for an example).

2.4.Research Variables
Personal Characteristics: Our questionnaire included two
additional self-reported items: gender and age.

Print Type: 55 questionnaires (47%) were printed in color,
and 61 questionnaires (53%) were printed in grayscale.

Computational Thinking: Overall Computational
Thinking score was calculated by taking the number of
correct solutions (normalized by 15). Correct Solutions
(M=0.71, SD=0.19, N=116). For each question, we
calculated for each student the correctness of the answer.
We then averaged this count for each student across all
questions.

Types of incorrect answers (profiles): For each cCTt
question, there are four potential responses of which one is
correct, and the others are categorized into three types of
errors, known as profiles (El-Hamamsy, Zapata-Cáceres,
Barroso, et al., 2022). Profile 1 entails an incorrect target or
a primary focus on arrow directions, disregarding repetition
and condition. Profile 2 involves ignoring objectives or
misinterpreting repetition and condition. Profile 3 consists
of misinterpreting either objectives or non-arrow-related
restrictions. Frequency for each profile was calculated as
the count of incorrect responses under this profile divided
by the total number of questions (15).

To better understand the profiles, we will use the first cCTt
questions, which is focused on simple sequences, see
Figure 1. Profile 1 corresponds to option D: Incorrect target.
The student got confused about the target, and chose the cat
as the target. Profile 2 is represented by option C: The
student reaches the target, but ignoring objectives – failing
to collect the flower and avoiding crossing the cat's square.
Profile 3 is reflected in option A: Misinterpreting
objectives – in this case, the student does collect the flower,
and reaches the target, but forgets to avoid passing through

Figure 1. Questions of the Sequences of the cCTt
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the cat's slot. Option B signifies the correct answer– the
student succeeds in all the terms of the task.

For another illustration of profiles, we will examine

question number 18, which is focused on if-else
conditionals, see Figure 2. Profile 1 is mirrored in option D:
Wrong arrow directions – ignoring the box with the clouds
in it. Profile 2 is conveyed by option C: Misinterpreting
condition – The box with the clouds was misinterpreted as
expressing one downward progression. While in this case,
the player can only go down if there is no cloud. Profile 3
is portrayed in option A: Misinterpreting restrictions – the
interpretation of the box with the cloud as a kind of loop
that can be repeated several times.. The correct answer is
option D.

2.5.Analysis
Analysis was conducted using JASP version 0.17.3. Since
some of our variables did not exhibit a normal distribution,
we opted to employ the Spearman test and Mann-Whitney
U test for conducting correlations in our analyses.

To assess the normality of the variable distribution, we
applied the methodology developed by Kim (2013), which
tests whether the Z-scores of Skewness and Kurtosis are
above an a-priori threshold which depends on the
population size. Z-scores are calculated by dividing the
Skewness or Kurtosis values by their Standard Error. The
relevant threshold for our study is 3.29, and if either of the
Z-scores exceed it – we should declare for deviation from
normality. Indeed, the Z-score values for the CT values
were indicative of a non-normal distribution (see Table 1).
Moreover, effect size is given by the rank biserial
correlation (RBC); it is commonly agreed that RBC values
between 0.1-0.2 denotes a small effect size, between 0.3-
0.5 denotes a medium effect size, and between 0.8-1
denotes a large effect size (Cureton, 1956; Mann &
Whitney, 1947).

Table 1. Z-scores, Means, Standard Deviations, and Standard
Error for the 5 Response Profiles (N=116)

Variable Z-skewness
(Z-kurtosis) mean (SD) SE

Missing Value 10.67 (13.90) 0.04 (0.08) 0.01
Profile 1 4.67 (0.64) 0.08 (0.11) 0.01
Profile 2 2.8 (0.38) 0.11 (0.09) 0.01
Profile 3 6.32 (3.96) 0.06 (0.08) 0.01

Overall CT Score 4.63 (3.24) 0.71 (0.19) 0.02

3. Findings
No significant difference was found between gender and
computational thinking (U=1757, at p=0.50). Therefore, we
conclude that the entire population can be seen as a unified
whole.

3.1.Computational Thinking, Demographics, and Print
Type (RQ1)
A notable correlation was identified between computational
thinking and print type; notably, among the students who
filled-up a color printed version of cCTt, the average was
lower compared to those who filled-up the grayscale
printing version; this difference had a medium effect size
(Table 2).

Table 2. Comparison between Computational Thinking and
Print Type

Variable mean (SD) U p RBC
Print Type 1137.5 0.003 -0.32

color 0.66 (0.19) (N=55)
grayscale 0.75 (0.18) (N=61)

3.2.Types of Errors in cCTt and Print Type (RQ2)
The values of the three profile variables represent the
frequency of errors of each type; values were calculated as
the count of incorrect responses under each profile divided
by the total number of questions (15). On average, students
had 11% of Profile 2 errors, 8% of Profile 1 errors, and 6%
of Profile 3 errors. The examination of error types revealed
a significant association between CT and printing type. The
grayscale printing group displayed fewer Profile 1-type
errors, with a small-medium effect size (statistically
significant with a small effect size), and fewer Profile 2-
type errors (marginally significance, small-medium effect
size). No significant difference was found regarding Profile
3-type errors. Findings are summarized in Table 3.

Table 3. Error Type Comparison between cCTt and Print Type
Variable mean (SD) U p RBC

Profile 1
Print Type 2114.0 0.01 0.26

color 0.11 (0.10) (N=55)
grayscale 0.06 (0.09) (N=61)

Profile 2
Print Type 2009.0 0.06 0.21

color 0.12 (0.09) (N=55)
grayscale 0.09 (0.08) (N=61)

Profile 3
Print Type 1769.0 0.59 ..

color 0.07 (0.01) (N=55)
grayscale 0.06 (0.08) (N=61)

4. Discussion
In this study, we explored the associations between CT—as
measured by the pen-and-paper cCTt—among 4th-grade
children (N=116) and print type (color or grayscale).
Overall, we found that the grayscale group performed
better than the color group. It is plausible that this finding
may be attributed to an increased cognitive load associated
with information processing, specifically that color
processing added another layer of required encoding
activity in the brain (Gnambs et al., 2015; Wenjie et al.,

Figure 2. Questions of the Conditional Statements of the cCTt
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2021) . This additional effort may have hindered problem-
solving abilities (Beddow, 2018) ; indeed, reducing
cognitive load was shown to improve students’
performance (Ben-Haim et al., 2019; Gillmor et al., 2015).
Importantly, colors can be used as a means to reduce
cognitive load and to improve performance; this requires an
association between colors and required cognitive
operations, and should be accompanied by getting students
used to these associations (Ekman & Waliullah, 2019).

Moreover, we took a step forward, and explored the types
of errors students made, in order to understand whether
color has a unique impact on certain error types. In a sense,
the profiles that correspond to types of errors represent the
level of understanding, ranging from Profile 1 (low level of
understanding) to Profile 3 (high level of understanding
albeit still incorrect answer). Grayscale printing appeared
to decrease Profile 1 and Profile 2 errors; Profile 3 errors
showed no color-related difference. This may suggest that
color was mostly harmful to students with lower levels of
understanding.

These findings echo previous studies of the different effects
multiple information channels have on students with low vs.
high levels of knowledge (Kastaun et al., 2021; Kuldas et
al., 2014) . Although those studies were mostly focused on
multimedia and multiple representations of information, the
main insight from them still holds: Students of different
levels of knowledge may react differently to cognitive load,
hence instructional design should be better adapted to level
of knowledge. This is an important lesson to assessment as
well, and here we highlight the role color plays in CT
assessment.

Another explanation to our findings—that goes beyond
cognitive load—relates to affective aspects of learning. The
utilization of color may trigger emotional processes,
consequently influencing learning processes; that is, color
adds to the cognitive load and can make the learning
process more difficult. It seems that among female learners,
color caused poorer performance compared to gray. (Liew
et al., 2022) . On the other hand, bright colors that are
interpreted in an emotionally positive way, may reduce
cognitive load and positively impact their ability to solve
problems (Le et al., 2021) . Furthermore, color may impact
various sub-groups differently than others, as was shown in
the context of solving puzzles: Girls demonstrated a
superior ability to solve problems presented in colors
compared to boys (Honrales, 2020) . This non-cognitive
impact of color on CT should be further explored.

Considering that color can impact student performance in
various ways (Al-Ayash et al., 2016; Amarin & Al-Saleh,
2020; Kumi et al., 2013) , it is recommended to carefully
consider color schemes while designing learning- or
assessment-related materials. We should note that colors in
cCTt are used mostly to distinguish between different
objects and shapes that serve as either obstacles on the grid
or triggers for conditionals; for example, there is a black
cat, a bourdeaux flower, a red heart, a light blue cloud, a
cyan triangle, a yellow star, etc. Contrary to that, the
directing arrows, and their related symbols (e.g., numbers,
frames), are presented mostly in grayscale. That is, color
codes are not fully necessary for the CT-related objects,

hence omitting them may not meaningfully harm the
measurement of the task performance.

5. Limitations and Further Research
This study is, of course, not without limitations. First, we
only measured CT by using a single tool (cCTt), and our
findings may be somehow biased due to the unique
characteristics of this tool. Second, the analysis was based
on students from a single country (Israel), which is
characterized by a set of educational, technological, and
cultural beliefs and practices that may have biased our
findings. Finally, it's important to note that our research
population was limited and may not be considered
representative. Therefore, it is suggested to replicate this
study in other geographically and culturally varied
populations, and to use further CT measuring tools, both
physical and digital.
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ABSTRACT
Computational thinking is a core competency for
problem-solving in the digital age. This study focuses on 344
upper elementary school students from four different-level
primary schools in City K. Descriptive statistical analyses,
including Spearman correlation, differences, and multilevel
regression, were conducted to examine the computational
thinking levels of upper elementary school students.
Additionally, a structural equation model (SEM) was
employed to identify the factors influencing their
computational thinking levels. The results indicate that the
overall computational thinking levels of upper elementary
school students in City K are good. Gender, grade level (fifth
or sixth grade), internet usage frequency, and attitudes
towards information technology courses do not significantly
influence computational thinking levels. However, attitudes
towards internet usage, programming experience, information
technology course content, math scores, and science scores
show significant positive correlations with computational
thinking levels. Finally, based on the data analysis results and
a comparison with the requirements set by the Ministry of
Education, recommendations are provided to promote the
development of computational thinking in upper elementary
school students.

KEYWORDS
Upper elementary school students, computational thinking,
current status,influencing factors

1. INTRODUCTION
With the advent of the digital age, the ability to solve
problems using computers has become increasingly important.
In response, the concept of computational thinking has
emerged and is considered as an "attitude and skill that
everyone should possess"(The New Media Consortium,2017).
Countries and regions such as Europe, the United States,
Australia, and Singapore have incorporated the cultivation of
computational thinking into their K-12 talent development
plans(Angeli C et al,2016). In China, the 2022 revised
version of the "Compulsory Education Information
Technology Curriculum Standards" designates computational
thinking as one of the four core competencies in the field of
information technology(Beijing Normal University Press,
2022). It is evident that the cultivation of computational
thinking is becoming more focused on younger age
groups.Upper elementary school students have a certain level
of knowledge and cognitive foundation, making it a critical
period for cultivating computational thinking. However, there
is currently limited research on the factors that influence
computational thinking abilities in primary school students.
Therefore, this study utilizes a questionnaire survey to

analyze the current status of computational thinking levels
among upper elementary school students in City K. It aims to
deeply explore and analyze the influencing factors and
investigate the correlations between these factors and
computational thinking. The study strives to provide valuable
insights for the development of computational thinking
abilities in upper elementary school students.

2. Conceptual Explanation and Problem
Statement

2.1. Definition of Computational Thinking Concept
Definition of Computational Thinking The concept of
computational thinking was first elaborated by Professor
Jeannette M. Wing of Carnegie Mellon University in 2006,
stating that "computational thinking is the process of applying
fundamental concepts of computer science to solve problems,
design systems, and understand human behavior"(Wing J
M,2006). In 2011, Professor Wing further summarized
computational thinking as "a thinking process that can be
effectively executed by information processing agents"(Liu
m&Zhang Q,2018), indicating a shift from emphasizing
operational skills to focusing on thinking processes.
Subsequently, more scholars from both domestic and
international contexts have joined the research on
computational thinking. For example, the International
Society for Technology in Education (ISTE) in the United
States proposed in 2015 that computational thinking is a set
of mental tools that effectively combines digital technology
with human thinking to solve complex real-world
problems(Liu m&Zhang Q,2018). In the 2022 revised version
of the "Compulsory Education Information Technology
Curriculum Standards" in China, computational thinking is
defined as the use of thinking methods from the field of
computer science, involving activities such as abstraction,
decomposition, modeling, and algorithmic thinking in the
process of problem-solving.(Beijing Normal University Press,
2022) Based on the above, this study defines computational
thinking as a series of thinking processes centered around
problem-solving, including dimensions such as
problem-solving ability, creativity, critical thinking,
algorithmic thinking, and collaboration skills.

2.2. Influencing Factors
In terms of inherent individual attributes, grade level and
gender are the first two variables that should be considered.
Existing research has yielded conflicting results regarding the
impact of these two factors on computational thinking. For
example,(Atmatzidou S&Demetriadis S,2016)found no
significant correlation between grade level, gender, and
computational thinking. Similarly, (Crews T&Butterfield
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J,2013)suggested that girls need to invest more time to
achieve computational thinking levels equivalent to boys,
indicating that the influence of grade level and gender on
computational thinking levels remains inconclusive.

In terms of external factors, with the widespread use and
development of the internet, students' attitudes and frequency
of internet usage for learning and entertainment can also
influence their problem-solving thinking processes.
Programming learning plays a role in the development of
students' abstraction and algorithmic thinking abilities,
making programming skills a potential influencing factor on
students' computational thinking levels. The primary school
information technology curriculum is an important subject for
cultivating students' computational thinking abilities.
Therefore, students' satisfaction with the information
technology curriculum and the novelty of the curriculum may
also be factors influencing computational thinking levels [8].
Subjects such as mathematics and science also revolve
around problem-solving, and students' computational thinking
levels may change during the learning process. However,
there is limited research exploring the impact of other subject
grades on computational thinking abilities.

Based on the above, this study aims to investigate the
influence of grade level, gender, attitudes and frequency of
internet usage, programming experience, attitudes and
content of information technology courses, as well as
mathematics and science grades on computational thinking
levels.

3. Research Design and Procedure

3.1. Research Instruments
In the assessment of computational thinking levels, this study
utilized the "Computational Thinking Scale for Elementary
School Students" developed by Zhang(Zhang Y et al,2020).
The scale consists of 23 items and can be administered in
both programming and non-programming environments. To
better align with the reading habits of upper elementary
school students, the language expressions of some items in
the scale were optimized. In terms of reliability, the overall
Cronbach's Alpha coefficient and split-half reliability
coefficient of the scale were 0.890 and 0.858, respectively,
both exceeding 0.8, indicating high reliability. In terms of
validity, the KMO value of the scale was 0.896, indicating
strong correlations among the items and good questionnaire
validity.For the factors influencing computational thinking,
the grade and gender of the participants were recorded as
unordered categorical variables. The attitudes and frequency
of internet usage, programming experience, attitudes and
content of information technology courses, as well as
mathematics and science grades were recorded as ordered
categorical variables. Attitudes were assessed using a Likert
five-point scale, ranging from negative to positive with scores
of 1-5. Frequency and programming experience were scored
based on the duration of time. Grades were scored in
ascending order within the specified range.

3.2. Participant Selection
To ensure a good level of coverage in the research data, this
study selected three primary schools in City K with different
quality levels. A total of 360 students from the fifth and sixth

grades were randomly chosen as participants. The research
team distributed 360 questionnaires on computational
thinking to these upper elementary school students, and
successfully collected all 360 questionnaires, resulting in a
response rate of 100%. Among them, 16 questionnaires were
deemed invalid, leaving a total of 344 valid questionnaires,
with an effective response rate of 95.5%. The participants
included 179 fifth-grade students (52% of the sample) and
165 sixth-grade students (48% of the sample). The gender
distribution consisted of 169 male students (49.1%) and 175
female students (50.9%).

3.3. Data Processing
The self-assessment scale for computational thinking adopts a
Likert-type five-point distribution: ranging from "completely
not applicable" to "extremely applicable," with scores of 1-5
assigned accordingly. The scale consists of 23 items, with a
total score of 115. To facilitate the research, the overall score
for computational thinking is converted into a percentage
score (calculation method: actual score/115*100). Scores
below 60 are considered as failing, 60-79 as passing, 80-89 as
good, and 90-100 as excellent. The obtained data were
analyzed using SPSS 27.0 for descriptive statistics,
differences, correlations, and multiple regression analysis.
Additionally, Amos 26.0 software was used to construct a
structural equation model to explain and predict the
relationships between various factors and computational
thinking levels. This further facilitated the construction of a
relationship model between the factors and the development
of computational thinking.

4. Research Findings

4.1. Descriptive Statistical Analysis of Computational
Thinking

Figure 1. Histogram of the overall scores of computational
thinking.

In the overall sample, the lowest score for computational
thinking among upper elementary school students was 46.33,
the highest score was 98.67, and the mean score was 80.01
(SD=10.301). From the normal P-P plot, it can be observed
that the distribution of the sample data does not perfectly
follow a normal distribution. Therefore, the median score
(80.83) was chosen to represent the overall situation. The
median indicates that the collected sample group has a good
level of computational thinking, but there is still room for
improvement. The histogram in Figure 1 shows that most
students' computational thinking scores fall within the range
of 75-85, which is above the passing score of 60.
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The scale used to measure the computational thinking
abilities of upper elementary school students adopts a Likert
5-point scoring method, with a theoretical midpoint of 3.
After statistical analysis, the overall average score for
computational thinking abilities in the sample data was found
to be 3.99, which is greater than 3 (as shown in Table 1). This
indicates that upper elementary school students, as a whole,
possess computational thinking abilities that are slightly
above average.From Table 1, it can be observed that the
factor levels for the five dimensions of computational
thinking are as follows: creativity > critical thinking >
collaboration > problem-solving > algorithmic thinking.
Among these dimensions, creativity, critical thinking,
problem-solving, and algorithmic thinking exhibit a
left-skewed peaked distribution, with the mean values
underestimating the central tendency. On the other hand, the
collaboration dimension shows a right-skewed peaked
distribution, indicating a tendency for overestimation in the
mean score for collaboration. Overall, the dispersion trend is
relatively weak.

Table 1. Current levels of CT in each dimension.
Dimension MV SD Skewness PV
Creativity 4.11 0.58 -0.47 -0.55

Critical thinking 4.09 0.66 -0.62 -0.20
Problem solving 3.92 0.64 -0.44 -0.20

Algorithmic thinking 3.77 0.78 -0.24 -0.76
Collaboration 4.00 0.79 -0.94 0.69

Total 3.96 0.52 -0.47 -0.15

4.2. Analysis of Differences in Computational Thinking
Levels

4.2.1. Independent Samples t-test
The computational thinking levels of students may be
influenced by individual factors. Independent samples t-tests
were conducted to compare the differences in computational
thinking levels based on grade and gender (a binary
variable).In terms of grade distribution, the overall
computational thinking level of fifth-grade students
(M=78.97±10.32) was slightly lower than that of sixth-grade
students (M=80.85±10.28), but the difference was not
significant (t=-1.68, p=0.093). However, in terms of specific
dimensions, sixth-grade students showed significantly higher
creativity levels compared to fifth-grade students (t=-2.10,
p=0.037).Regarding gender, there was a small difference in
the overall computational thinking level between male
students (M=79.90±10.65) and female students
(M=79.85±10.03), but this difference was not significant
(t=0.048, p=0.96). No significant differences were observed
in the specific dimensions between genders.Overall, the
analysis suggests that there are no significant differences in
computational thinking levels based on grade or gender,
except for a higher level of creativity in sixth-grade students
compared to fifth-grade students.

4.2.2. One-Way ANOVA test
One-way ANOVA tests were conducted to examine the

differences in computational thinking levels among students
based on the following influencing factors: attitudes and
frequency of internet usage, programming experience,
attitudes and content of information technology courses, and
mathematics and science grades (all variables with three or
more levels).The results showed significant differences in
computational thinking levels among students with different
attitudes towards internet usage (F=5.15, p=0.002),
programming experience (F=3.13, p=0.004), attitudes
towards information technology courses (F=3.59, p=0.007),
content of information technology courses (F=6.12, p<0.001),
mathematics grades (F=9.73, p<0.001), and science grades
(F=9.26, p<0.001).

Specifically, in terms of attitudes towards internet usage,
students who considered internet usage for learning as
moderately important (M=77.47±10.74) had significantly
lower computational thinking levels compared to those who
considered it as relatively important (M=80.71±10.11) or
very important (M=82.92±8.23).

Regarding programming experience, students who had
learned programming for more than two years through
various methods (M=81.79±17.64) had significantly higher
computational thinking levels compared to those who had no
exposure to programming courses (M=72.89±15.37).

In relation to information technology courses, students who
highly enjoyed the courses (M=81.20±10.60) had
significantly higher computational thinking levels compared
to those who did not enjoy the courses (M=76.10±14.31).
Students who perceived the content of information
technology courses as uninteresting and outdated
(M=75.92±11.17) had significantly lower computational
thinking levels compared to those who found the content
interesting and up-to-date (M=82.25±9.69).

Regarding academic performance, students who scored above
90 in their most recent mathematics exam (M=82.75±10.04)
had significantly higher computational thinking levels
compared to students in any other score range, such as 70-80
(M=72.87±8.30). Similarly, students who scored above 90 in
their most recent science exam (M=81.79±10.18) had
significantly higher computational thinking levels compared
to students in the 60-70 (M=70.99±10.33) and 70-80
(M=77.14±9.48) score ranges.

4.3. Correlation Analysis between Variables and CT Levels
Spearman's correlation coefficient was used to explore the
correlation between two types of variables. The analysis
results are shown in Table 2.In the sample data, gender and
internet usage frequency did not show a significant
correlation with students' computational thinking levels.
However, grade, programming experience, attitudes towards
internet usage for learning, attitudes and content of
information technology courses, and mathematics and science
grades were found to be significantly correlated with
computational thinking levels.The correlation coefficients (r
values) ranged from small (r=0.107) to moderate (r=0.329),
indicating varying degrees of correlation. Moreover, all
variables that showed a correlation with computational
thinking had positive r values greater than 0, indicating a
positive linear relationship with computational thinking levels.

46



Table 2. Spearman's correlation analysis between variables.
Variables 1 2 3 4 5 6 7 8 9 10
1.Grade － -0.011 .206** .194** 0.057 .189** .126* .170** .430** .107*

2.Gender － -.196** -0.089 0.048 -.108* 0.003 -0.066 0.005 -002
3.Programming experience － .146** 0.089 .143** 0.103 .135* .245** .165**

4.Attitudes towards internet usage
for learning

－ .273** .229** .130* 0.093 .119* .186**

5.Frequency of internet usage － 0.023 -0.048 0.029 0.072 0.008
6.Attitudes towards IT courses － .500** 0.095 .157** .191**

7.Content of IT courses － 0.02 0.074 .231**

8.Mathematics grades － .426** .329**

9.Science grades － .252**

10.Total score of computational
thinking

－

4.4. Multiple Regression Analysis of Variables and CT
Levels
After conducting the correlation analysis, further
investigation of the causal relationship between variables and
computational thinking levels requires regression analysis to
identify the influencing factors of computational thinking
levels. Based on the results of the correlation analysis, it was
found that grade and frequency of internet usage did not have
a significant correlation with computational thinking levels.
Therefore, these two factors were treated as control variables,
while other potential influencing factors were considered as
core independent variables.Model 1 represents the impact of
control variables (gender and internet usage frequency) on the
dependent variable (computational thinking levels), while
Model 2 includes the core independent variables in addition
to the control variables. The F-value for Model 2 is 9.060,
which is significant at the p<0.001 level, indicating the
effectiveness of Model 2. The results of the multiple
regression analysis further confirm that attitudes towards
internet usage for learning (β=1.928, p<0.01), programming
experience (β=1.827, p<0.01), content of information
technology courses (β=2.159, p<0.001), mathematics grades
(β=2.362, p<0.001), and science grades (β=1.830, p<0.001)
have a positive impact on computational thinking levels.
However, gender, grade (fifth or sixth), frequency of internet
usage, and attitudes towards information technology courses
do not have a significant impact on computational thinking
levels.

4.5. Construction and Analysis of Structural Equation
Model (SEM)

Table 3.Model Fit Test

Using Amos, a structural equation model was constructed to
examine the relationships between variables and reveal the
structural relationships through path coefficients(Sun L,&Hu
L,2021). First, a model fit index test was conducted, and the

results are shown in Table 3. Comparing the values with the
standard values, it indicates that the model has a good fit.

The results of the model path coefficients, as shown in Figure
2 and Table 4, indicate that the relationships between grade,
gender, frequency of internet usage, and attitudes towards
information technology courses with computational thinking
levels did not pass the significance test. The path coefficients
between attitudes towards internet usage for learning,
programming experience, content of information technology
courses, mathematics grades, and science grades with
computational thinking levels varied within the range of 0.14
to 0.25. The validation of the structural equation model
further confirms the results of the multiple regression analysis,
indicating that in the sample data, students' attitudes towards
internet usage for learning, programming experience, content
of information technology courses, and mathematics and
science grades have an impact on computational thinking
levels. However, gender, grade (limited to upper elementary
school in this study), frequency of internet usage, and
attitudes towards information technology courses do not have
an impact on computational thinking levels.

Figure 2.SEM Path Coefficient Diagram.
X2/df GFI CFI NFI TLI RMSEA

Model 2.315 .967 .921 .875 .858 0.062

Standard 1-3 >0.8 >0.8 >0.8 >0.8 <0.08
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Table 4. Hypothesis testing

5. Conclusion and Recommendations

5.1. Research conclusions
The statistical results indicate that upper elementary school
students have a generally good level of computational
thinking. In terms of sub-dimensions, students have the
highest level of creativity, while problem-solving ability and
algorithmic thinking are relatively weaker. Within the fifth
and sixth grades and between genders, there is no significant
impact on students' computational thinking levels. In various
sub-dimensions, girls have slightly higher levels of creativity,
critical thinking, and collaboration abilities compared to boys.
However, their problem-solving abilities and algorithmic
thinking are slightly lower than those of boys, but these
differences are not statistically significant. Students' attitudes
towards internet usage have a significant positive impact on
their computational thinking levels. Students with
programming experience have significantly higher
computational thinking levels than those without, especially
in the sub-dimensions of problem-solving ability and
algorithmic thinking. The attractiveness and novelty of
information technology course content have a significant
positive impact on computational thinking levels.

5.2. Research Recommendations
China started relatively late in cultivating computational
thinking abilities among K-12 students. It was only in 2017
that it was first included in the information technology
curriculum standards and gradually integrated into classroom
teaching(Bai X&Gu X,2019). With the implementation of the
Education Informatization 2.0 initiative, interdisciplinary
STEAM education, programming instruction, and the
widespread use of intelligent teaching environments have
contributed to the development of students' computational
thinking. Upper elementary school students are in a
transitional stage from concrete operations to formal
operations(Huang R&Liu X,2016). They can classify, sort,
and engage in rule-based games, but their abstract logical
thinking, hypothetical thinking, and analogical reasoning
abilities are still in the early stages of development. Currently,
teaching in various subjects in primary schools mainly
focuses on imparting declarative knowledge, and the main
focus of the information technology curriculum, which is the
main field for cultivating computational thinking, is on
operational skills(Wang X,2022). This is not conducive to
students applying knowledge to solve complex real-life
problems. Therefore, in future teaching, attention should be

given to creating suitable environments, guiding students in
problem decomposition, and gradually developing abstract
thinking through concrete examples, in order to
comprehensively enhance students' computational thinking
abilities.

Learners in the fifth and sixth grades of primary school have
a high degree of similarity in terms of age characteristics,
cognitive development, and existing knowledge foundation.
Therefore, for the development of computational thinking
levels in upper elementary school students, it is important to
formulate continuous and spiral training programs. In daily
teaching activities, family education, and social discourse,
there should be no differentiation between boys and girls.
Equal learning resources should be provided, and both boys
and girls should be encouraged to actively participate in
computational thinking-related activities and projects,
fostering confidence and providing personalized and diverse
learning approaches.

With the advent of the information age, the internet, as a
technology, medium, and cognitive tool, has an impact on the
cognitive development and academic achievement of primary
and secondary school students(Chen J et al,2018). When
students approach internet learning with a positive attitude,
they become more open to accepting new information and
perspectives, which helps foster creativity and
problem-solving abilities. Upper elementary school students
already possess certain information retrieval and filtering
skills, and engaging in online learning and following social
trends on the internet can promote the development of their
computational thinking. However, schools and parents should
also pay attention to positive guidance. Upper elementary
school students tend to process information at a superficial
level(Chen P,2022). Without proper supervision, they may
use the internet for entertainment or rely on it for learning,
which is not conducive to the development of their
independent thinking abilities.

Students with more than two years of programming
experience performed well in various sub-dimensions, while
students with 8-12 months of learning experience had higher
levels of computational thinking compared to those with 1-2
years of learning experience. This may reflect the current
focus on programming learning for competition purposes(Xie
Z et al,2019), where teachers and parents prioritize the
acquisition of knowledge and skills, overlooking the
cultivation of computational thinking. Research by
Özcan(Özcan M Ş et al,2021) suggests that programming
education has a positive impact on the development of
computational thinking, albeit a relatively small one.
Therefore, further exploration is needed to understand how
the design of programming courses and the process of
programming learning influence the development of
computational thinking levels.

The information technology curriculum covers knowledge
and skills related to computer hardware and software,
programming, and data processing, which are of significant
importance in cultivating and enhancing students'
computational thinking abilities(Xu X&Dang B,2023). The
attractiveness and novelty of the information technology
curriculum can stimulate interest in learning, provide the
ability to translate abstract knowledge into concrete

Hypothesis Path Coefficient Acceptance
Attitudes towards internet

usage→CT
.140** Accepted

Programming
experience→CT

.151** Accepted

Content of IT
courses→CT

.200*** Accepted

Mathematics grades→CT .235*** Accepted
Science grades→CT .181** Accepted
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operations, inspire creativity, and promote sustained learning.
When the curriculum content is engaging, students are more
likely to actively participate in learning and maintain their
motivation to learn.

Information technology is not the only subject that cultivates
computational thinking(Sun L&Hu L,2021). Mathematics and
science performance can predict computational thinking
levels. Additionally, the improvement of computational
thinking plays an important role in common skills used in
mathematics and science. The essence of computational
thinking lies in its interdisciplinary integration with
problem-solving at its core. Therefore, teachers can create
scenarios, adopt problem-based approaches, and utilize
teaching methods such as cooperative learning and
brainstorming in primary schools. Encouraging
self-assessment and peer assessment can also be combined in
the evaluation process.
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ABSTRACT
Computational thinking (CT), as the core quality of
information technology in China, has been highly
concerned, but there are still ambiguities and controversies
in computational thinking education (CTE). Teachers are
the designers and participants in the class, and they have
rich experience in CTE. From the perspective of teachers,
we can find the commonness, essence and significance of
CTE in primary schools, and provide new perspectives and
suggestions for the development of CTE. Therefore, this
study conducts in-depth interviews with teachers and
adopts the phenomenological method to explore how
teachers understand and practice CTE, discover its theme
and reveal its significance. It is found that “creating multi-
level experience of CT for students” is the common theme
of teachers in the practice of CTE in primary schools.
Teachers aim to gain participation, recognition and interest
by designing experience activities, and finally cultivate
students’ computational thinking. This study holds that
“multi-level experience” reflects the concern for students’
pondering space and emotional experience in primary
school CTE, and reflects the special role of teachers in
creating experience environment and maintaining internal
motivation for students in primary school CTE.

KEYWORDS
computational thinking education, phenomenological
method, primary school, experience, teacher

1. INTRODUCTION
Computational thinking is highly valued in both research
and teaching practice. However, at present, computational
thinking still faces several challenges, including a vague
connotation, unclear meaning (Li & Yang, 2023), and a
disconnect between theory and practice (Zhang, 2019), etc.
Many related research discusses the concept, connotation,
educational content, and teaching methods of CT from the
perspective of what it “ought to be”. Nevertheless, in actual
school classrooms, teachers must carry out appropriate
CTE tailored to specific student characteristics, teaching
conditions and needs. The methods and strategies proposed
in literature research are often challenging to learn from
and apply (Zhang, 2019).
Computational thinking, as the core literacy of information
technology in compulsory education in China, has
generated rich practical experience in classroom teaching.
As a crucial role of teaching activities, teachers not only
play a key role in implementing CT but also possess an
intuitive understanding and experience of CTE. By
adopting a teacher-centric perspective and utilizing
phenomenological methods, we can explore how teachers
carry out CTE in information technology courses. This

approach can unearth commonalities and characteristics in
teachers’ practices across different teaching situations, can
reflect the unique features and significance of CTE.
Moreover, this exploration can help determine the essence
and importance of what computational thinking “is”. Such
insights can provide enlightenment and a new perspective
for research in CTE.

2. LITERATURE REVIEW
Phenomenology insists on the attitude of “going back to the
thing itself” and emphasizes the significance of people’s
intuitive experiences. It takes people’s experience and
consciousness as the method for uncovering the essence
and meaning of things. Phenomenology holds that life
experiences have a definite essence, which can be clearly
identified through introspection. Furthermore, life
experience has the characteristics of intersubjectivity,
which can transcend individuals and obtain general
characteristics. Unlike empirical positivism, which focuses
on discovering rules to control behavior, phenomenology
obtains profound significance and essential characteristics
of something by describing and explaining its experience
(Loren, et.al., 2010, 49). In the field of education,
educational phenomenology centers on educational
experience. It adopts the perspective of pre-reflection and
pre-theory to explore and question the unique behavior and
experience of individuals in specific educational situations.
From these experiences, we can get some useful reflections
on the teaching content, and explore the teaching wit and
significance (Li, 2005).
In the field of computational thinking education, there have
been numerous studies and analyses on the key elements
and compositional structure of computational thinking. The
most representative ones include the five elements of CT
(Selby & Woollard, 2013) and the three-dimensional
framework of CT (Brennan, et.al., 2012). Many studies
have demonstrated the role of specific teaching content or
teaching modes in cultivating students’ CT from the
perspective of scientific demonstration. However, limited
attention has been given to teachers’ experiences with CTE
in actual classroom settings and the educational wisdom
and significance it reflects.
Scientism-oriented research often treats “computational
thinking” as an objective and scientific object. However,
education is a complex system involving multiple subjects,
and its significance can only be revealed through diverse
and situational experiences related to CT. Shi (2018) have
explored the characteristics of children’s experiences in
programming and their educational significance through
grounded research. Additionally, some scholars have
delved into the teaching concepts of computational
thinking held by different types of teachers using the
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phenomenological method. These studies are of great
significance in promoting the teaching practice of
computational thinking. However, generally speaking,
research on CTE from the perspective of practical
experience is still in its early stages. The purpose of
phenomenology is to clarify and find the common core of
meaning (Van, 2003, 23). Studying teachers who have
experienced and felt computational thinking education
through phenomenological methods, while paying attention
to teachers’ behaviors and experiences, will help discover
how computational thinking is understood by teachers and
transmitted to students in real teaching. This approach aids
in a thorough understanding of the characteristics, essence,
and significance of computational thinking education.
Perhaps only through the life world and practical
experiences can we genuinely grasp the educational
meaning of computational thinking.

3. RESEARCH DESIGN
3.1. Research Questions
Actually, teachers make different choices based on
students' situations, the teaching context, and the
characteristics of the teaching content. They carry out
personalized classroom designs to introduce diverse
teaching activities to students. The choices and designs
made by teachers reflect their understanding of
computational thinking teaching in primary schools,
providing insights into the characteristics and connotations
of computational thinking teaching in primary schools.
This study focuses on how teachers bring computational
thinking experiences to primary school students and
explores their characteristics and significance. Specifically,
the research addresses the following three issues:

Q1. What experiences do teachers have regarding
computational thinking education?

Q2. What are the characteristics and commonalities of
teachers’ experiences in computational thinking
education?

Q3. What structural features does this commonality reflect
in the education of computational thinking in primary
schools, and what is its educational significance?

3.2. Research Methods
Researchers conducted in-depth interviews to gather
teachers’ descriptions of their teaching practices and
experiences in computational thinking. Guided by the
phenomenological concept, the textual data of these
experiences were processed and analyzed using a
combination of Van Manen’s phenomenology of education
and Giorgi’s phenomenology of experience. In the actual
implementation, the study referred to the explanation and
refinement of Giorgi’s method by scholar Lee (2009) and
also drew on Colaizzi’s (1978) framework for theme
extraction. This allowed the identification of themes related
to primary school teachers’ experiences in computational
thinking teaching practices and the revelation of their
significance. The specific steps are illustrated in the figure
below.

Figure 1. Specific Operation Steps in This Study.

3.3. Study Participants
On the one hand, we need to consider whether the selected
research subjects can provide experiential information
related to the studied phenomenon. On the other hand, the
research subjects should be accessible. To gain insights
into the design, implementation process, and experiences of
computational thinking teaching, this study followed the
purposive sampling method and selected four teachers who
clearly expressed their experiences in computational
thinking teaching as the research subjects. These four
teachers come from different regions, with varying genders
and teaching experiences. They possess unique
understandings and concepts of computational thinking,
and the specific situations in teaching computational
thinking also vary. Through interviews with these teachers,
we aim to capture more representative and diverse practical
experiences in computational thinking teaching and
identify commonalities within the differences. The specific
information about the research subjects is presented in the
following figure.

Figure 2. Participants in This Study.

3.4. Data Processing and Analysis
Researchers conducted one-on-one in-depth interviews
with four typical and representative primary school
information technology teachers, focusing on the theme of
the “typical implementation process and experience of
computational thinking teaching”. After the interviews, the
researcher repeatedly read the collected interview texts. On
this basis, the research rewrote the key paragraphs and
extracted the meaning units (MU).
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Figure 3. Rewrite and Determine Meaning Units.

The study initially categorizes the meanings associated
with semantic words as potential categories. It then
conducts a screening process, excluding repeated meaning
categories or merging them. Subsequently, each category is
defined. Finally, the theme is determined to obtain a
description of the general structure of computational
thinking teaching in primary schools. The study reveals
that the term “experience” holds a rich structure and
profound connotation in teachers’ descriptions of
computational thinking teaching practices (as presented in
the following figure).

Figure 4.Meaning Units and Core Theme.

4. MULTI-LEVEL CT EXPERIENCE:
RESULTS FROM PHENOMENOLOGICAL
ANALYSIS

Figure 5.Multi-level CT Experience in Primary School.

4.1. Body-based CT Experience
“Experience” begins with a hands-on approach. When
describing typical CTE activities they have conducted, all
four teachers mentioned attracting students to participate in
the activities by creating scenarios, constructing problems,
and other methods. They emphasized gaining intuitive
experiences related to CT through actions and interactions.
Whether designing game activities, asking students to
imitate hands-on tasks, or inviting students to role-play,
these four teachers demonstrated a focus on students
“doing” and gaining direct experiences. They consciously
delayed the introduction and teaching of knowledge,
concepts, principles, etc., expecting students to obtain
natural and direct understanding and experiences of a
specific object through participation and action.
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4.2. Cognition-based CT Experience
“Experience” begins with perceptual knowledge and leads
to rational thinking. The design of teachers’ computational
thinking teaching involves not only students’ subjective
understanding and experience but also introduces key
elements of CT based on these experiences, enabling
students to establish a connection between intuitive feeling
and rational understanding. After activities, teachers guide
students to observe, reflect, and summarize the experiential
process. Subsequently, they introduce abstract and
objective knowledge and methods to help students
transition from perceptual interactive behavior and personal
experience to rational and objective laws. Moving from
unconscious perception to conscious thinking allows for a
profound understanding of the key contents of CT,
including important knowledge, process methods, the
ability to solve problems with computers and so on.

4.3. Emotion-based CT Experience
Get positive emotions in “experience” and boost students’
active and sustained actions. In teachers’ statements, the
significance of positive emotions such as a sense of
accomplishment, curiosity, and interest in the development
of students’ CT is emphasized. During the implementation
of CTE, teachers create opportunities for students to
experience positive emotions by adjusting difficulty levels,
allowing room for free play, and introducing novel and
interesting knowledge content.

In CTE, teachers not only assist students in acquiring
knowledge and skills through creating “multi-level
experience of CT”, but also provide a space for the
emergence of emotions. Transitioning from cognition to
behavioral occurrence requires an intentional system with
emotion as the core (Zhu, 2019, 9), and emotion plays a
crucial role in shaping behavior, will, goals, and motivation.
Equipped with certain knowledge and skills, students, with
the aid of positive emotions, acknowledge the efficiency
and advantages of using computers to solve problems. This
fosters an interest in information technology, enabling them
to shift from passive experience to active action. Students
actively engage in learning, explore problems, reflect on
the process, and subsequently develop their computational
thinking.

4.4. Evaluation of Experience
Judging from the teachers’ statements, students’
participation is an important factor in evaluating the
effectiveness of “experiencing it”. YB and LY think that
the students’ participation in their own design activities is
high. Students will be confused at first, because they don't
know why they want to sort it like this, but their enthusiasm
is still very high, and they are willing to cooperate with you
(YB), They are quite interested in this kind of hands-on
activity (LY). WS did not feel the enthusiasm of students to
participate in the experience, so it’s difficult for WS to
teach the following content. They are not very interested,
even role-playing seems to be far away from their lives, so
it is hard to say what they have learned (WS).

In addition to students’ participation, the help of
“experience” in follow-up teaching is also a key factor to
evaluate its effectiveness. YB and YZ pay more attention to

students’ help in learning relevant knowledge of
computational thinking after the experience in class. I feel
that after they have experienced the computer sorting
process, they will understand it much better later. At first,
they had no idea about these, but they all answered the last
exercises in the class better (YB). They can finally draw
the shortest road map after correct abstraction. However, I
hope that if someone really asks them the way in life, they
can solve the problem with this abstract idea, which means
that my class is effective (YZ). WS and LY pay more
attention to the students’ performance after a similar
experience lasts for a period of time. When I point out their
problems in class, their behavior has changed, but I can't
tell whether their thinking has changed. I can only watch
their performance in the later class (WS). After a semester
like this, it is obvious that the students' ability to write
programs has improved. Many times, they have some
difficult problems before I say them (LY).

5. THE SIGNIFICANCE OF “MULTI-
LEVEL EXPERIENCE” TO TEACHERS
AND STUDENTS
5.1. Teachers’ Roles and Functions in “Multi-level
Experience”
This study discovered that in primary school information
technology course, students often grasp CT through
“experience”, subsequently prompting active cognitive
engagement. “Thinking like a computer scientist” is a
concept detached from the daily life experiences of primary
school students, and the associated principles and working
methods of computers are even more abstract and
challenging to comprehend directly. Therefore, teachers’
representative teaching practices in understanding CT
always commence with direct experiential activities.
Starting from physical participation and action, progressing
to the development and reflection of knowledge, and
culminating in the heartfelt recognition of subject value and
ways of thinking, teachers create an optimal learning and
thinking environment for students through the design of
“multi-level experiences”. They assist students in
perceiving and gradually forming computational thinking
through progressive approaches. Eventually, students come
to recognize the value of information technology
disciplines and actively apply the knowledge and methods
of information technology disciplines to think and
problem-solve “like computer scientists”.
Creating a “multi-level experience of CT” in primary
schools requires careful design and planning by teachers,
who play a crucial role in the process. And teachers’ design
of “multi-level experience” also reflects their own CT.
Teachers’ comprehension and understanding of CT directly
impact the richness and interest of the “experience”,
consequently influencing the development of students’ CT.
In this study, teachers LY, YB, and YZ all formulated their
own understandings and beliefs regarding computational
thinking. Through in-depth contemplation of the key
elements and essence of CT, coupled with considerations
of the teaching and actual situations, they were able to
create multi-level and enriching experiential activities,
gradually guiding the development of students’ CT.
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Simultaneously, upon reviewing and reflecting on the
“multi-level experience”, teachers gained new insights and
understanding of computational thinking teaching. This
ongoing process allows them to deepen their
comprehension of computational thinking and further
optimize their classes.

5.2. Students’ Thinking and Emotion in “Multi-level
Experience”
It’s found that cultivating primary school students’ CT
places greater emphasis on students’ active participation
and experiential learning in action, cognition, and emotion.
It not only pays attention to students’ mastery of
knowledge and skills, but also considers students’ emotions
and attitudes during the learning experience. In “multi-level
experience”, abstract concepts originally associated with
computers are integrated into students’ classroom activities
and daily life experiences. This integration allows students
to gain direct insights into the key elements of
computational thinking in familiar and relaxed experiences,
fostering a deeper understanding under the guidance of
teachers, then eliciting positive emotions such as interest,
curiosity, excitement, and confidence.
Emotion and thought develop in tandem. Guided by
positive emotions, students can actively explore and think
critically. They not only acquire relevant knowledge and
methods but also engage in innovative explorations using
computers, creating unique works with personal
characteristics. This process fosters respect and recognition
for information technology disciplines, gradually
developing thinking and problem-solving methods based
on information technology, leading to the germination and
development of CT.
The cultivation of CT in primary school has the trend of
being closer to daily life. In primary school, students are
not required to master profound computer knowledge or
complicated programming methods, but pay more attention
to the cultivation of students’ problem-solving ability. In
the “multi-level experience of CT”, students gain new
knowledge and new insights about computers from their
familiar experiences, and then provide methods and
wisdom for solving daily life problems.

6. CONCLUSION AND DISCUSSION
Through phenomenological analysis, it’s found that
different teachers prioritize whole-hearted participation,
experiences, and multi-dimensional development in
cultivating CT in primary school students. Recognizing it
as a gradual, long-term process, teachers continually
observe students’ development in both classroom works
and daily behavior. The design of the “multi-level
experience” in the classroom integrates key computational
thinking elements, from body-based experience to
cognition-base experience, finally upon to emotion-based
experience, teachers guiding students from participation to
understanding and recognition, facilitating the progressive
formation of computational thinking.

The “multi-level experience”, embracing the idea of
embodied cognition, actively involves students in

constructing cognition through various perceptual channels.
Teachers initiate diverse experience activities, allowing
students to engage with CT elements visually, auditorily,
and tactually, and this interactive process fosters direct
perceptions of abstract information. Guided by teachers,
students establish connections between perceptual
knowledge and rational thinking, promoting cognitive
expansion and thinking development. Ultimately, this
nurtures an interest in information technology disciplines
and enhances students’ problem-solving abilities with
computers.

While there’s a common perception that cultivating CT in
primary school students is challenging, teachers’ practical
experiences demonstrate its effectiveness through “multi-
level experience”. These activities provide intuitive
experiences, expanding students’ thinking and cognition,
better preparing them to adapt to the information society
and solve daily life problems flexibly through knowledge
transfer.
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ABSTRACT
The importance of computational thinking (CT) in K-12
education is widely recognized. Given its significance,
there has been a growing need and interest in exploring
how to measure children’s CT skills. However, existing
tools predominantly targeted primary or secondary school
children, with very limited measures available for
preschool children. Moreover, there is a lack of valid and
reliable CT assessments that can comprehensively evaluate
different CT skills of preschool children. In this study, we
developed and validated a new digital CT test for assessing
preschool children’s six CT skills: algorithms,
representation, modularity, pattern recognition, conditional
logic, and debugging. Two-hundred-and-twelve Chinese
preschool children (age: M ± SD = 53.96 ± 9.38 months)
completed the new digital CT test. Confirmatory factor
analysis showed that a six-factor model fit the data best.
The ordinal coefficient alphas of the test and each sub-scale
were good, indicating sufficient reliability of the test.
Overall, the results demonstrate that the new digital CT test
has adequate construct validity and reliability for assessing
CT in preschool children aged four to five years. The study
offers a new tool for future researchers and educators to
comprehensively assess different CT skills of preschool
children.

KEYWORDS
Computational thinking, preschool children, confirmatory
factor analysis, construct validity, reliability

1. INTRODUCTION
In recent years, computational thinking (CT) has received
increasing attention from worldwide researchers, educators,
and policymakers, particularly in K-12 education. Jeanette
Wing (2006), who popularized the concept of CT,
underscored the fundamental role of CT by arguing that it
should be valued as the fourth “R,” akin to reading, writing,
and arithmetic. Furthermore, it has been highlighted that
early education of CT can better prepare children to
harness the power of computing in the digital society
(International Society for Technology in Education [ISTE]
& Computer Science Teachers Association [CSTA], 2011)
and has been associated with lower costs and more long-
lasting effects than introducing CT to children at a later
stage (Bers, 2022).

While the importance of CT has been emphasized and
numerous efforts have been devoted to studying and
fostering CT, debates on CT conceptualization have
continued. Some scholars defined CT in a broad sense and
conceptualized it as a set of skills that can be used to solve
problems systematically across contexts (e.g., ISTE &
CSTA, 2011; Shute et al., 2017). However, other scholars

used a narrow scope by defining CT as domain-specific
skills that are applicable to solve problems in
computational contexts (e.g., Barr & Stephenson, 2011; K-
12 Computer Science Framework Steering Committee,
2016). In this study, we followed the second branch of CT
definitions and conceptualized CT as a set of cognitive
skills for solving computational problems by using
computers or robots. Defining in this way allows for a clear
distinction between CT and other thinking skills or domain-
general problem-solving skills. Such clarity is crucial as it
can avoid ambiguity regarding what CT is and is not,
which is essential for designing effective assessments.

To understand CT in preschool children, it is important to
identify the CT components that are age-appropriate for
them. Bers’ (2021) seven powerful ideas of CT offered a
valuable framework to explore young children’s CT. This
framework suggests seven powerful ideas of CT that are
critical and age-appropriate to young children, including
algorithms, modularity, control structure, representation,
hardware/software, design process, and debugging.
According to Bers (2021), algorithms refer to the ability to
solve a problem by taking sequential steps. Modularity
refers to the ability to decompose a larger task into smaller
modules. Control structure determines the logical order of
instruction to be followed in a program and includes loops
and conditionals. Representation refers to the ability to
transform and manipulate information in various ways.
Hardware/software is the factual understanding of what
hardware and software is. The design process describes the
engineering design cycle and includes several steps (i.e.,
ask, imagine, plan, create, test and improve, and share).
Debugging is the ability to identify and fix problems.

In this study, we further refined Bers’ framework based on
previous literature and our CT conceptual definition. We
first separate the control structure into pattern recognition
and conditional logic, as these two skills have been
considered foundational cognitive skills underlying loop
and conditional concepts embedded in the control structure
and bedrock competencies in the field of computer science
(CS). The design process was excluded from our
framework as it was grounded in engineering thinking
(Bers, 2021), instead of being fundamental to CS (Wing,
2006), and its broadness makes it not feasible for
operationalization. Hardware/software was also excluded
as it describes the factual knowledge of children, rather
than domain-specific PS skills for computational problem
solving. The rest CT components were included as they
aligned with the domain-specific definition of CT, were
feasible for operationalization, received consensus across
previous studies (e.g., Bers et al., 2022; Shute et al., 2017),
and were age-appropriate for young children (e.g.,
Kazakoff et al., 2013; Saxena et al., 2019). Together, we
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proposed a six-component model of CT in our study,
including algorithms, representation, modularity, pattern
recognition, conditional logic, and debugging. The
conceptual definitions of the six CT components in this
study are shown in Table 1.

Table 1. Conceptual Definitions of Six CT Components.
CT

Component
Conceptual Definition

Algorithms The ability to develop a sequence of
codes to solve computational problems.

Representation The ability to use data in various forms to
solve computational problems.

Modularity The ability to decompose codes into
smaller modules that can be combined to
solve computational problems.

Pattern
Recognition

The ability to identify the similarities and
regularities of the codes.

Conditional
Logic

The ability to make decisions based on
certain conditions using codes.

Debugging The ability to identify and fix the errors
in the codes.

There are increasing numbers of instruments for assessing
CT (For a review, see Tang et al., 2020). However, the
majority are designed for primary or secondary children,
with relatively few tailored to preschool children. In
general, CT assessments for young children typically fall
into two categories (Tang et al., 2020): portfolio-based and
traditional assessment. Portfolio-based assessments
measure children’s CT skills through the examination of
their work products, often using predetermined rubrics.
Examples are Strawhacker and Bers’ (2014) “Solve-Its”
tasks and Bers’s (2010) 5-point “SSS” rubric along with
robotic programming tasks. Traditional assessments
evaluate children’s CT skills through closed-ended or
selective-response tasks. Examples include Marinus et al.’s
(2018) Coding Development (CODE) Test 3-6 and
TechCheck-K (Relkin & Bers, 2021). Nevertheless,
existing tools for assessing young children’s CT have
several limitations. First, most have undergone rigorous
validation; therefore, whether they are reliable or valid
measures is yet to be confirmed. Second, the available tools
predominantly indicate the overall CT skills. Hence, a
comprehensive measure that can comprehensively evaluate
multiple components of CT skills is lacking. Third, a more
fundamental issue is that many of these tools were
developed without a sound conceptual framework,
resulting in a relatively weak theoretical foundation on CT
structure and components that these instruments aim to
measure.

To address these gaps, this study developed a new digital
CT test based on the six-component model of CT and
examined the construct validity and reliability of this test in
Chinese preschool children. We hypothesized that the new
digital CT assessment would have good construct validity
and reliability.

2. METHOD
2.1. Participants and Procedures
A total of 212 children were recruited from two preschools
in Guangdong Province, China, to participate in this study.
The mean age of the participating children was 53.96
months (SD = 9.38). There were 112 boys and 100 girls.
Most mothers (87.9%) and fathers (90.5%) obtained an
associate degree or higher diploma degree. The median
monthly incomes for mothers and fathers were RMB 5,000
to RMB 5,999 (equivalent to USD 704 to USD 845) and
RMB 8,000 and RMB 8,999 (equivalent to USD 1,127 to
USD 1,267), respectively.

Data collection was completed in the fall semester of 2023.
Children were tested individually in a quiet room of their
preschools. During the assessment, children were read
aloud the instructions by trained research assistants (RAs)
and completed the new digital CT test on a tablet. The test
took about 45 minutes for each child, and it was separated
into two to three sessions to avoid children’s fatigue. All
the recruitment and data collection procedures were
approved by the institutional review board of the authors’
university.

2.2. Measures
Children’s CT skills were assessed by a new digital CT test
that was developed by the first author. The test was
designed in the “drag-and-drop” graphical programming
context, in which children could produce graphical code
response to each item. Such programming context has
shown age-appropriateness for preschool children (e.g.,
Flannery et al., 2013; Papadakis et al., 2016).

The original test comprised 54 items measuring six CT
components (nine items per component): algorithms,
representation, modularity, pattern recognition, conditional
logic, and debugging. In the algorithms task, children were
asked to generate a set of arrow codes (i.e., Forward,
Backward, Left, and Right) in correct sequence to direct a
moving agent (i.e., a cartoon insect character, such as a
caterpillar) to a target position on the 5×5 grid navigation
map. In the representation task, children were asked to
select one out of three new symbols – each symbol
representing a set of arrow codes (e.g., “moon” symbol
represents a Right arrow) – to complete a code sequence
that would direct the agent to reach a target position on the
navigation map. In the modularity task, children were
asked to identify which decomposed modules can be used
to guide the agent to the target position on the navigation
map. In the pattern recognition task, children were asked to
identify the repeating pattern embedded in the given codes
and generate the following three/four codes that allow the
agent to move based on the specific pattern. In the
conditional logic task, children were asked to use
conditional codes employing two types of logics: “if-then”
and “if-then-else,” along with the arrow codes, to navigate
the agent to a target position on the navigation map. In the
debugging task, children were given a set of codes and
asked to evaluate whether there is an error in the codes and
fix the errors if any. One point was given for the correct
response to each item. Total scores were calculated.
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All aforementioned tasks of the new digital CT test were
administered on the Microsoft Surface Go 3 tablet, which
features a touch-screen interface. The touch-screen
interface allows young children to perform the test by
simply dragging and dropping the graphical codes using
their fingers. Such interface is familiar to and comfortable
for children, as they can easily access touch-based devices
in daily life. By leveraging the affordances of touch-screen
technology, the new digital CT test provides an accessible,
engaging, and age-appropriate way to evaluate young
children’s CT skills. Figure 1 shows the home page and
menu page of the new digital CT test. Figure 2 shows a
sample item of the new digital CT test.

Figure 1. Home Page (Left) and Menu Page (Right).

Figure 2. A Sample Item of the New Digital CT Test.

2.3. Data Analytic Strategy
The construct validity of the test was evaluated using
confirmatory factor analysis (CFA). We estimated a six-
factor CFA model, which corresponds to the hypothesis
that the test consists of six dimensions (i.e., algorithms,
representation, modularity, pattern recognition, conditional
logic, and debugging), and two competing models: a one-
factor model, which corresponds to the hypothesis that the
new digital CT test assesses a single dimension of CT, and
a higher-order CFA model corresponds to the hypothesis
that the test consists of six aforementioned dimensions as
first-order factors and an overall CT as a second-order
factor. The weighted least squares estimator with means
and variance adjustments (WLSMV) for ordered
categorical data was used because all the test items were
dichotomous (i.e., 1 = correct and 0 = incorrect). Four fit
indices were used to evaluate the goodness-of-fit of the
model: the chi-square statistic (χ2), comparative fit index
(CFI; ≥.95), Tucker-Lewis index (TLI; ≥.95), and root
mean square error of approximation (RMSEA; ≤.06) (Hu &
Bentler, 1999). The chi-square difference test was
conducted and ΔCFIs were reported for model comparisons.
A non-significant chi-square difference test statistic and
ΔCFI values lower than .01 indicate that a more complex
model does not demonstrate a better fit to the data and a
more parsimonious model should be selected. Further,

ordinal coefficient alphas were computed to examine the
reliability of the test. An ordinal coefficient alpha greater
than .70 indicates acceptable reliability (Gadermann et al.,
2012). All analyses were conducted in R software (R Core
Team, 2022).

3. RESULTS
3.1. Construct Validity
Table 2 shows the model fit indices of all estimated CFA
models and model comparison results. The hypothesized
six-factor model demonstrated good fit to the data: χ2(1362)
= 1439.28, p = .07, CFI = .98, TLI = .99, RMSEA = .02.
We then estimated two alternative CFA models: a one-
factor model and a higher-order model. Results showed
that both models had a good fit to the data, with χ2(1377) =
1566.76, p < .001, CFI = .97, TLI = .97, RMSEA = .03 for
the one-factor model and χ2(1371) = 1444.67, p = .08, CFI
= .99, TLI = .99, RMSEA = .02 for higher-order model.
Furthermore, model comparison results showed that the
six-factor model had significantly better fit to the data than
the one-factor model, Δχ2 = 132.38, Δdf = 15, p < .001;
ΔCFI = .02. However, the higher-order model did not fit
significantly better than the six-factor model: Δχ2 = 5.58,
Δdf = 9, p = .78; ΔCFI = .001. Therefore, the six-factor
model was selected. However, a further examination of the
factor loading of the six-factor model showed that three
items in the representation dimension had low factor
loadings (i.e., < .30). We removed these items and
estimated a modified six-factor model. Results showed that
the modified six-factor model continued to have a good fit
to the data: χ2(1209) = 1286.25, p = .001, CFI = .99, TLI
= .99, RMSEA = .02. The standardized factor loadings of
the modified six-factor model ranged from .33 to .92 and
all loadings were statistically significant. Therefore, the
modified six-factor model was selected as our final model.

Table 2. Confirmatory Factor Analysis Results.
Models χ2 df CFI TLI RMSEA

(90%CI)
Six-factor
model (M1)

1439.28,
p = .07

1362 .98 .99 .02 (.01
– .02)

One-factor
model (M2)

1566.76,
p < .001

1377 .97 .97 .03 (.02
– .03)

Higher-order
model (M3)

1444.67,
p = .08

1371 .99 .99 .02 (.00
– .03)

Revised Six-
factor model

(M1R)

1286.25,
p = .06

1209 .99 .99 .02 (.00
– .03)

Model
comparisons

Δχ2 Δdf ΔCFI

M1 vs M2 132.38, p < .001 15 .02
M1 vs M3 5.58, p = .78 9 .001

3.2. Reliability
Ordinal coefficient alpha was computed to evaluate the
reliability of the overall test and its six dimensions. Results
showed good reliability of the new digital test. Specifically,
the ordinal coefficient alphas were .97 for the overall
test, .91 for algorithms, .75 for representation, .88 for
modularity, .94 for pattern recognition, .86 for conditional
logic, and .90 for debugging.

58



4. DISCUSSION AND CONCLUSION
This study developed and validated a new digital CT test
for preschool children. Adapted from Bers’ (2021)
framework of CT for young children, we proposed a six-
component CT model. The CFA results confirmed the six-
factor structure of CT, suggesting that preschool children’s
CT consisted of components including algorithms,
representation, modularity, pattern recognition, conditional
logic, and debugging. Reliability analyses demonstrated
that the new digital CT test and its six sub-tests had
adequate reliability. Together, these findings provide
empirical evidence on the construct validity of the new
digital CT test and suggest that it is a reliable instrument
for assessing CT in preschool children aged four to five
years in China.

Our new digital CT test has several strengths. First, this test
was based on a theoretically sound CT model. Most of the
previous work provided little information about the
theoretical justifications for CT structure and components
in the development of CT assessments. Our test was
designed grounding on the six-component model that was
adapted from Bers’ (2021) CT framework, which
strengthens the theoretical bases of the new digital CT test.
Second, this test has showed good construct validity and
reliability. Only limited studies have validated the existing
CT assessments; therefore, whether these CT assessments
were valid and reliable is yet unknown. In our study, we
examined a series of CFA models and evaluated the ordinal
coefficient alphas of the test. Our findings offered
empirical evidence supporting the adequate construct
validity and reliability of the new digital CT test. Third,
this test can indicate children’s proficiency in different CT
skills. Unlike most existing CT assessments, which use the
total score to indicate children’s overall CT skill, our test
includes six dimensions (i.e., algorithms, representation,
modularity, pattern recognition, conditional logic, and
debugging). Each of these dimensions contains several
items, allowing for a comprehensive evaluation of
children’s proficiency across multiple CT skills. Fourth,
compared to non-digital tests, the new CT test uses digital
format, which allows an autoscoring process that
minimizes the risk of scoring and data entry errors.
Meanwhile, the digital format of the test increases the
standardization of the test procedures, thereby enhancing
the internal validity of the test.

Despite these strengths, the new digital CT test requires
further validation in future studies. For instance, future
research can collect multiple-wave data to examine the
longitudinal measurement invariance and check if the six-
factor structure remains consistent over time in young
children. It is also important to establish convergent
validity by examining the associations between children’s
the new digital CT test and other criterion measures.
Furthermore, future research can consider applying Item
Response Theory (IRT) to analyze psychometric properties,
such as item difficulty, which can enhance our
understanding of each test item’s quality. Lastly, given that
this study only included Chinese preschool children,
whether the new digital CT test is applicable to young
children from different cultural backgrounds is unclear.
Thus, cross-cultural adaptation and validation of the new

digital CT test are essential steps to ensure that the test is
effective for evaluating CT in diverse cultural contexts.
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ABSTRACT
Computational thinking (CT) is an immensely important
skill in the 21st century, and enhancing students' CT has
become a focal point for educators and researchers.
Numerous studies have identified cognitive abilities
related to CT. However, relying solely on cognitive
abilities does not fully explain the learning outcomes that
are associated with CT. Additionally, research exploring
the non-cognitive aspects of CT is scarce, especially in the
context of university students. To address this gap, our
study aims to explore the relationship between university
students' personalities and CT, understanding the role of
different personality traits in CT. The participants of this
study were 133 sophomore university students, and data
on personality traits and CT performance were collected.
The findings reveal significant differences in
Conscientiousness (C) and Agreeableness (A) among
students with different levels of CT, with linear regression
analysis further suggesting that Conscientiousness (C) can
predict CT performance. The results highlight the
importance of students' personalities in CT, implicating
the necessity of incorporating these traits in future
teaching practices.

KEYWORDS
computational thinking, programming, personality, higher
education

1. INTRODUCTION
Computational Thinking (CT) is an essential skill for
everyone (Wing, 2006), defined as a problem-solving
approach that integrates technology with cognitive skills
and is applicable across all disciplines (ISTE, 2015). It has
now been comprehensively integrated into K–12 education
(Rana et al., 2022). CT can be employed to solve various
types of problems (Pelánek & Effenberger, 2023). While
different activities can foster the development of CT in the
classroom (Zapata-Caceres et al., 2021), programming is
widely acknowledged as a fundamental way to bring CT
to life (Lye & Koh, 2014). Consequently, coding, rooted
in Computer Science (CS), has become the primary
method educators use to teach CT (Grover & Pea, 2013)
spanning from early childhood education (Bers et al., 2014)
to higher education (Romero et al., 2017).

In this context, enhancing students' CT learning outcomes
has become a focal concern for educators and researchers
(Zhang & Wong, 2023b). Consequently, many scholars
have dedicated themselves to identifying factors related to
CT (Gerosa et al., 2021; Marinus et al., 2018; Zhang &
Wong, 2023a). Current research indicates that on a
cognitive level, skills such as mathematics, spatial ability,
and reasoning have been confirmed to be associated with

CT (Scherer et al., 2019; Zhang & Wong, 2023a),
suggesting that fostering these skills can further enhance
students' CT development. However, relying solely on
cognitive abilities is insufficient to fully explain students'
learning outcomes (Leeson et al., 2008; Meyer et al.,
2024), necessitating continued exploration of the impact of
non-cognitive factors on students. On the non-cognitive
level, it has been found that personality traits can
significantly influence learning outcomes, as different
characteristics affect learners' behaviors and motivations,
thereby impacting their academic performance (Tlili et al.,
2023). Consequently, researchers have begun investigating
the impact of personality on CT. For instance, Zhang and
Wong (2023b) studied the relationship between
personality traits and CT in elementary school students,
discovering that Conscientiousness (C) notably predicts
students' CT performance. Similarly, Román-González et
al. (2016) explored the correlation between middle school
students' personality traits and CT, finding that CT is
associated with Extroversion (E), Conscientiousness (C),
and Openness (O). These studies collectively indicated
that personality indeed affected students' CT performance.
However, research on the relationship between personality
and CT among university students remains limited.

To address this gap, this study explores how personality
influences CT in the context of university students. It
seeks to provide in-depth insights that can assist educators
and curriculum designers in developing more personalized
teaching methods and learning strategies. These tailored
approaches aim to cater to students with different
personality types, thereby enhancing their learning
efficiency and effectiveness in the field of CT. The
research questions for this study are as follows:

RQ1. How do personality traits differ across students with
different levels of CT performance?

RQ2. To what extent do personality traits predict CT
performance?

2. METHOD
2.1. Participants
The research sample was drawn from three sophomore
classes in the Electronic Information Engineering
Technology program at a public university in Southern
China, comprising a total of 133 students. Among them,
103 were male and 30 were female, with an average age of
19 years.
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2.2. Measurements

2.2.1. Personality
Since Fiske identified the five major personality traits in
1949 (Fiske, 1949), researchers have consistently
replicated and refined their findings over the subsequent
decades. It was not until McCrae and Jogn proposed what
is now widely recognized as ‘the Big Five Personality
Traits' or the 'Five-Factor Model' (McCrae & John, 1992).
This model has become a foundational framework in the
field, representing a comprehensive understanding of
personality traits.

In this study, the Big Five Personality Inventory utilized
was a Chinese version translated from the Big Five
Inventory (BFI-2) (Soto & John, 2017), with its validity
and reliability already established (Zhang et al., 2022).
This scale designed to assess individual personalities
consists of 60 items across five dimensions (Roccas et al.,
2002):

● Extraversion (E): Characterized by sociability
and activity, people high in extraversion tend to
exhibit talkativeness, assertiveness, and lively
energy.

● Agreeableness (A): Reflecting qualities such as
kindness, cooperativeness, and modesty, agreeable
individuals often display a compliant and gentle
nature in social contexts.

● Conscientiousness (C):Marked by a sense of
responsibility and organization, they are generally
meticulous, reliable, and display a strong
adherence to duty.

● Negative Emotionality (N): This trait is linked
with emotional challenges like anxiety, depression,
and anger, suggesting a predisposition towards
feelings of insecurity.

● Open-Mindedness (O): Those who are typically
intellectual and imaginative, showing a marked
openness to new experiences and a sensitivity to
diverse perspectives.

Students completed the self-report questionnaire using a 5-
point Likert scale, ranging from 1 (strongly disagree) to 5
(strongly agree), to rate the occurrence of behaviors
described in each item. The scale demonstrated good
reliability for all five factors in our research, with
Cronbach's Alpha values of .771, .786, .861, .827,
and .706 for Extraversion (E), Agreeableness (A),
Conscientiousness (C), Negative Emotionality (N), and
Open-Mindedness (O), respectively, all of which exceed
the threshold of 0.7 (Nunnally, 1994).

2.2.2. Computational thinking
At present, there are no specialized tools specifically for
assessing CT in university students, except for the
Computational Thinking Scale (CTS) (Korkmaz et al.,
2017). However, since CTS is a self-report scale, it may
not align precisely with students' actual CT performance.
Recognizing that computer programming is a fundamental
medium for applying CT (Lye & Koh, 2014), this study

utilized the overall assessment scores from a Python
programming course, undertaken in the first semester of
the sophomore year, as a proxy for CT. The assessment for
this course comprises both theoretical and practical
components, with a total test duration of 1.5 hours.

2.3. Procedure
The Python programming test was conducted by the
course instructor in a university-organized setting. One
week after completing this test, the first author distributed
the Big Five Personality Inventory to the students through
an online survey platform. The students were required to
complete the questionnaire simultaneously during a
designated period. All participants were informed of the
study's purpose and consented to participate in the
research.

2.4. Data analysis
After data preprocessing, 120 valid questionnaires were
obtained for final analysis. Initially, Pearson's correlation
coefficient was used to measure the strength and direction
of the linear relationship between students' personality and
their CT performance. To answer RQ1, a one-way
ANOVA was conducted to compare whether there were
significant differences in the mean values of personality
traits among three independent groups with different
levels of CT performance. For RQ2, a linear regression
model was employed to observe the extent to which
personality can predict students' CT performance.

3. RESULTS
3.1. Descriptive statistics and correlation analyses
The descriptive statistics and correlations among the
variables are presented in Table 1. The results indicated
that, based on the Likert scale, the mean values for all
personality traits exceeded the midpoint of 3, except
Negative Emotionality (N). The overall CT performance
of the students was at a good level, with an average score
of 80.58 out of a total of 100. Pearson's correlation
coefficient was used for the correlation analysis, which
revealed that CT performance was significantly positively
correlated with Conscientiousness (C) and moderately
positively correlated with Agreeableness (A). However, no
correlation was found with the other three personality
traits.

Table 1. Descriptive statistics and correlations.
M SD (E) (A) (C) (N) (O)

(E) 3.04 .49
(A) 3.71 .46 .511**
(C) 3.42 .52 .538** .641**

(N) 2.78 .56 -
.441**

-
.514**

-
.466**

(O) 3.38 .46 .578** .318** .342** -
.243**

CT 80.58 6.80 .115 .196* .257** .010 .125
**p < 0.01; *p < 0.05.
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3.2. Personality traits of groups with different levels of
CT performance
To observe the personality traits of students with varying
levels of CT, we have roughly divided students into three
categories based on their grades. Students scoring 85 or
above are classified as having excellent CT performance,
while those scoring 78 or below are considered to have
poorer CT performance. Students with scores falling
within the remaining range are categorized as having
medium CT performance. Table 2 presents the average
personality trait scores and the results of a one-way
ANOVA for each CT performance level.

The table reveals that students with high CT performance
have higher average scores in Extraversion (E) and
Conscientiousness (C). Additionally, the ANOVA
revealed statistically significant differences in
Agreeableness (A) (F (2,117) = 4.757, p < .05) and
Conscientiousness (C) (F (2,117) = 6.500, p < .01) among
groups with different levels of CT.

Table 2. ANOVA of the personality factors across the CT
performance levels.

CT N M SD F P
(E) High 33 3.14 .48 1.872 .158

Medium 55 3.06 .52
Low 32 2.90 .45

(A) High 33 3.77 .42 4.757* .010
Medium 55 3.79 .45
Low 32 3.50 .48

(C) High 33 3.56 .52 6.500** .002
Medium 55 3.48 .47
Low 32 3.15 .51

(N) High 33 2.80 .58 .265 .768
Medium 55 2.73 .58
Low 32 2.80 .51

(O) High 33 3.43 .45 .825 .441
Medium 55 3.40 .49
Low 32 3.29 .41

**p < 0.01; *p < 0.05.

Table 3. Summary of multiple regression model on CT
performance.

Variable Standardized β t R R2

Model 1 .315 .099
(E) -.047 -.374
(A) .126 1.008
(C) .270* 2.189
(N) .196 1.815
(O) .068 .626
Model 2 .394 .155
(E) -.030 -.245
(A) .122 1.009
(C) .261* 2.166
(N) .126 1.166
(O) .045 .422
Gender a .247** 2.744
Note: aEffect coded: 0 = male, 1 = female.
*p < 0.05; **p <0.01.

3.3. Regression model of CT performance based on
personality.
Using CT performance as the dependent variable, a two-
stage multiple linear regression was conducted with five
dimensions of personality traits as independent variables.
The ENTER method was employed. Initially, students'
personality data results from the Big Five personality test
were inputted. Subsequently, gender was introduced as a
control variable. Table 3 summarizes the results of the
model estimation. In the first model, F (5,114) = 2.551, p
= 0.034, the variables predicted 9.9% of the CT
performance. In the second model, with the inclusion of
gender as a control variable, F (6,113) = 3.467, p = .004.
Conscientiousness (C) (β = 0.261, p = 0.032) and gender
(β = 0.247, p =.007) were predictive of students'
programming performance, and the overall regression
model could predict 15.5% of the CT performance.

4. DISCUSSION & CONCLUSION
This paper explores the relationship between university
students' CT performance and their personality traits. We
observed a positive correlation between CT in students
and two personality traits: Agreeableness (A) and
Conscientiousness (C). Further categorizing students' CT
performance into high, medium, and low groups, we noted
that the differences in average values across these groups
are significant in terms of Conscientiousness (C) and
Agreeableness (A). A further linear regression analysis
revealed that Conscientiousness (C) could significantly
predict CT, suggesting its potential as a key factor
influencing CT performance. Incorporating gender as a
variable improved the model's explanatory power,
indicating that gender may also be an influencing factor.

From the results of this study, Conscientiousness (C)
within the Big Five personality model appears to have the
most significant impact on students' CT. This finding
aligns with the results of Zhang and Wong's (2023b) study
on the relationship between CT and personality among
elementary school students. Similarly, in the context of
middle school students, Román-González et al. (2016)
also found a significant correlation between
Conscientiousness (C) and students' CT.
Conscientiousness (C) comprises three subdimensions:
Organization, Efficiency, and Responsibility. In our
research, we additionally discovered that Organization
significantly correlates (p <.001) with CT. Since CT is a
skill for problem-solving (Wing, 2008), and organization
is a critical component of problem-solving (Becker &
Baloff, 1969), this may contribute to the effect of
Conscientiousness (C) on students' CT performance.

Agreeableness (A) also appeared to play an important role
in CT, which aligns with Durak et al. (2021). Studies have
shown that Agreeableness (A) is associated with an
increase in students' autonomous learning motivation,
leading to enhanced goal progression (Levine et al., 2021).
Autonomous motivation plays a crucial role in the learning
process, as it can drive students to go beyond mere task
completion and deeply understand and master complex
concepts, such as CT. Nevertheless, similar findings were
not observed in relevant studies in the K–12 context
(Román-González et al., 2016; Zhang & Wong, 2023b),
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which could be attributed to the differences in the study
population. Thereby, more research can be conducted in
this area, expanding its reach to encompass higher
education.

The findings consistently indicate that students'
development in CT is associated with their personality
traits. Considering these findings, it becomes essential for
educators to go beyond merely focusing on cognitive
knowledge in their teaching strategies. It is suggested that
they could also give considerable attention to students'
non-cognitive traits, such as personality. Understanding
and tailoring approaches to accommodate individual
personality differences can enable educators to develop
more effective teaching methods and strategies, which
may help improve learning outcomes for each individual.
For example, Conscientiousness (C) is closely linked with
self-regulated learning (Barros et al., 2022), self-discipline
(Slovakia et al., 2021), persistence (Wilmot & Ones, 2019),
and achievement striving (Cardoso et al., 2017), which can
be incorporated into teaching practices to enhance the
development of students' CT.

Some limitations of the study need to be noted. Firstly,
due to convenient sampling, the sample size is relatively
small, which may not be representative of the entire
university student population. Future research should aim
to expand the sample size and include students from a
wider range of disciplines to replicate this study and
explore potential new findings. Secondly, the research
utilized students' programming course grades as a proxy
for their CT performance. While programming is a
primary tool for teaching CT in education, it is not
synonymous with CT. Therefore, it is suggested that future
studies develop appropriate CT assessment tools for
university students.

5. REFERENCE
Barros, A., Simão, A. M. V., & Frisson, L. (2022). Self-
regulation of learning and conscientiousness in
Portuguese and Brazilian samples. Current Psychology,
41(11), 7835–7842. Retrieved from
https://doi.org/10.1007/s12144-020-01232-y

Becker, S. W., & Baloff, N. (1969). Organization
Structure and Complex Problem Solving. Administrative
Science Quarterly, 14(2), 260. Retrieved from
https://doi.org/10.2307/2391104

Berinšterová, M., Bozogáňová, M., Magdová, M., Kapová,
J., & Fuchsová, K. (2021). PROCRASTINATION AND
SELF-CONCEPT IN MORE/LESS CONSCIENTIOUS
STUDENTS. 162–166. Retrieved from
https://doi.org/10.36315/2021inpact034

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.
(2014). Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145–157. Retrieved from
https://doi.org/10.1016/j.compedu.2013.10.020

Cardoso, A. P., Ferreira, M., Abrantes, J. L., & Seabra, C.
(2017). CONSCIENTIOUSNESS AND INTRINSIC
MOTIVATION AS PREDICTORS OF PERCEIVED
LEARNING AND ACADEMIC ACHIEVEMENT.

Fiske, D. W. (1949). Consistency of the factorial
structures of personality ratings from different sources.
The Journal of Abnormal and Social Psychology, 44(3),
329–344. Retrieved from
https://doi.org/10.1037/h0057198

Gerosa, A., Koleszar, V., Tejera, G., Gómez-Sena, L., &
Carboni, A. (2021). Cognitive abilities and
computational thinking at age 5: Evidence for
associations to sequencing and symbolic number
comparison. Computers and Education Open, 2, 100043.
Retrieved from
https://doi.org/10.1016/j.caeo.2021.100043

Grover, S., & Pea, R. (2013). Computational Thinking in
K–12: A Review of the State of the Field. Educational
Researcher, 42(1), 38–43. Retrieved from
https://doi.org/10.3102/0013189X12463051

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A
validity and reliability study of the computational
thinking scales (CTS). Computers in Human Behavior,
72, 558–569. Retrieved from
https://doi.org/10.1016/j.chb.2017.01.005

Leeson, P., Ciarrochi, J., & Heaven, P. C. L. (2008).
Cognitive ability, personality, and academic
performance in adolescence. Personality and Individual
Differences, 45(7), 630–635. Retrieved from
https://doi.org/10.1016/j.paid.2008.07.006

Levine, S. L., Milyavskaya, M., Powers, T. A., Holding, A.
C., & Koestner, R. (2021). Autonomous motivation and
support flourishes for individuals higher in collaborative
personality factors: Agreeableness, assisted autonomy
striving, and secure attachment. Journal of Personality,
89(5), 899–914. Retrieved from
https://doi.org/10.1111/jopy.12622

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching
and learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 41, 51–61. Retrieved from
https://doi.org/10.1016/j.chb.2014.09.012

Marinus, E., Powell, Z., Thornton, R., McArthur, G., &
Crain, S. (2018). Unravelling the Cognition of Coding in
3-to-6-year Olds: The development of an assessment
tool and the relation between coding ability and
cognitive compiling of syntax in natural language.
Proceedings of the 2018 ACM Conference on
International Computing Education Research, 133–141.
Retrieved from
https://doi.org/10.1145/3230977.3230984

McCrae, R. R., & John, O. P. (1992). An Introduction to
the Five‐Factor Model and Its Applications. Journal of
Personality, 60(2), 175–215. Retrieved from
https://doi.org/10.1111/j.1467-6494.1992.tb00970.x

Meyer, J., Lüdtke, O., Schmidt, F. T. C., Fleckenstein, J.,
Trautwein, U., & Köller, O. (2024). Conscientiousness
and Cognitive Ability as Predictors of Academic
Achievement: Evidence of Synergistic Effects From
Integrative Data Analysis. European Journal of
Personality, 38(1), 36–52. Retrieved from
https://doi.org/10.1177/08902070221127065

64



Pelánek, R., & Effenberger, T. (2023). The Landscape of
Computational Thinking Problems for Practice and
Assessment. ACM Transactions on Computing
Education, 23(2), 1–29. Retrieved from
https://doi.org/10.1145/3578269

Rana, D. S., Dimri, S. C., Malik, P., & Dhondiyal, S. A.
(2022). Impact of Computational Thinking in
Engineering and K12 Education. 2022 4th International
Conference on Inventive Research in Computing
Applications (ICIRCA), 697–701. Retrieved from
https://doi.org/10.1109/ICIRCA54612.2022.9985593

Roccas, S., Sagiv, L., Schwartz, S. H., & Knafo, A. (2002).
The Big Five Personality Factors and Personal Values.
Personality and Social Psychology Bulletin, 28(6), 789–
801. Retrieved from
https://doi.org/10.1177/0146167202289008

Román-González, M., Pérez-González, J.-C., & Moreno-
León, J. (2016). Does computational thinking correlate
with personality? The non-cognitive side of
computational thinking.

Romero, M., Lepage, A., & Lille, B. (2017).
Computational thinking development through creative
programming in higher education. International Journal
of Educational Technology in Higher Education, 14(1),
42. Retrieved from https://doi.org/10.1186/s41239-017-
0080-z

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2019). The
cognitive benefits of learning computer programming: A
meta-analysis of transfer effects. Journal of Educational
Psychology, 111(5), 764–792. Retrieved from
https://doi.org/10.1037/edu0000314

Soto, C. J., & John, O. P. (2017). The next Big Five
Inventory (BFI-2): Developing and assessing a
hierarchical model with 15 facets to enhance bandwidth,
fidelity, and predictive power. Journal of Personality
and Social Psychology, 113(1), 117–143. Retrieved from
https://doi.org/10.1037/pspp0000096

Tlili, A., Sun, T., Denden, M., Kinshuk, Graf, S., Fei, C.,
& Wang, H. (2023). Impact of personality traits on
learners’ navigational behavior patterns in an online
course: A lag sequential analysis approach. Frontiers in
Psychology, 14, 1071985. Retrieved from
https://doi.org/10.3389/fpsyg.2023.1071985

Wilmot, M. P., & Ones, D. S. (2019). A century of
research on conscientiousness at work. Proceedings of
the National Academy of Sciences, 116(46), 23004–
23010. Retrieved from
https://doi.org/10.1073/pnas.1908430116

Wing, J. M. (2006). Computational thinking.
Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717–3725. Retrieved
from https://doi.org/10.1098/rsta.2008.0118

Yildiz Durak, H., Saritepeci̇, M., & Aksu Dünya, B.
(2021). Examining the Relationship between
Computational Thinking, Lifelong Learning
Competencies and Personality Traits Using Path
Analysis. Bartın Üniversitesi Eğitim Fakültesi Dergisi,
10(2), 281–292. Retrieved from
https://doi.org/10.14686/buefad.888374

Zapata-Caceres, M., Martin-Barroso, E., & Roman-
Gonzalez, M. (2021). Collaborative Game-Based
Environment and Assessment Tool for Learning
Computational Thinking in Primary School: A Case
Study. IEEE Transactions on Learning Technologies,
14(5), 576–589. Retrieved from
https://doi.org/10.1109/TLT.2021.3111108

Zhang, B., Li, Y. M., Li, J., Luo, J., Ye, Y., Yin, L., Chen,
Z., Soto, C. J., & John, O. P. (2022). The Big Five
Inventory–2 in China: A Comprehensive Psychometric
Evaluation in Four Diverse Samples. Assessment, 29(6),
1262–1284. Retrieved from
https://doi.org/10.1177/10731911211008245

Zhang, S., & Wong, G. K. W. (2023a). Exploring the
underlying cognitive process of computational thinking
in primary education. Thinking Skills and Creativity, 48,
101314. Retrieved from
https://doi.org/10.1016/j.tsc.2023.101314

Zhang, S., & Wong, G. K. W. (2023b). Unravelling the
underlying mechanism of computational thinking: The
mediating role of attitudinal beliefs between personality
and learning performance. Journal of Computer Assisted
Learning, jcal.12900. Retrieved from
https://doi.org/10.1111/jcal.12900

65



K–12 Pre-service Teachers' Perspectives on AI Models and Computational
Thinking: The Insights from an Interpretative Research Inquiry

Muhammad ALI1*, Gary K.W. WONG2, Ming MA3

1,2,3The University of Hong Kong, Hong Kong (S.A.R.)
akula@connect.hku.hk, wongkwg@hku.hk, mingma@connect.hku.hk

ABSTRACT
Computational thinking (CT) has emerged as a pivotal
component of K–12 education for fostering problem-
solving skills among the next generation of learners.
However, CT integration remains an arduous challenge for
K–12 teachers due to their limited preparation, prior
knowledge, and relevant expertise in CT. To respond to
this challenge in Hong Kong, we designed and
implemented an introductory CT course employing
plugged and unplugged CT approaches alongside AI
technology to prepare pre-service teachers. To inform the
design of our future course iterations, we conducted an
interpretative research inquiry within the course to explore
how these teacher trainees learn CT through different
teaching and learning activities. Our data analysis
accentuated the emergence of three core themes,
encompassing numerous subthemes within our data. The
three core themes are delineated as themes of (1) CT
Knowledge, (2) CT Perspectives, and (3) Potential Barriers.
This paper disseminates part of our findings on the trainees'
CT Perspectives only: It delves into their post-course
perspectives on AI models and CT, seeking to elucidate the
pedagogical implications of integrating AI models and CT
into K–12 education. These perspectives provide new
insights into teaching and learning CT through prompt
engineering, which could emerge as a novel approach to
democratizing CT education and could be the conduit to
bridge the divide between CT and general education.

KEYWORDS
AI models, computational thinking, K–12 education, pre-
service teachers, perspectives

1. INTRODUCTION
The cultivation of computational thinking (CT) in K–12
education has been consistently emphasized, yet it remains
a formidable challenge, primarily attributed to the limited
knowledge, training, and preparedness of teachers in
designing and implementing appropriate teaching and
learning (T&L) activities within their specific K–12
contexts (Kong et al., 2020; Ung et al., 2022). Concurrently,
with AI technology becoming ubiquitous, a growing corpus
of research focuses on integrating AI with traditional CT
tools. These studies typically aim to acquaint K–12
students with AI and its sub-domains via leveraging CT
tools such as autonomous and programmable educational
robotics, block-based programming, and specifically
designed games (e.g., Park & Shin, 2022; Priya et al.,
2022). Regardless, a research gap persists in exploring such
integrations from a teacher's perspective, owing to its
nascent nature, particularly in the context of T&L of CT.

The rapid proliferation of AI models (e.g., large-scale pre-
trained and large language models) is being extensively
debated in higher education settings (Michel-Villarreal et
al., 2023; Xia & Li, 2022; Yilmaz & Karaoglan Yilmaz,
2023). However, these models' full potential and
implications remain predominantly unexplored within K–
12 education and teacher education. The study under
consideration, therefore, endeavored to contribute to
bridging this burgeoning research gap. It explored how CT
T&L activities, employing both plugged (i.e., with
computers, programming, or digital) and unplugged (i.e.,
without computers, programming, or non-digital)
approaches alongside AI technology, influenced pre-
service teacher trainees' perspectives on applying AI
models for their prospective T&L to cultivating CT in K–
12 education.

2. METHODS
2.1. Research Participants & Context
The research inquiry was conducted in a unique
introductory CT course at the undergraduate level at a
prominent university in Hong Kong. This course was a free
elective for undergraduate students across the participating
institution who aspired to become K–12 teachers. The
course cohort comprised twenty-eight students, including
twenty-five pre-service teachers and three part-time in-
service teachers. The in-service teachers did not participate
in the research. Altogether, fifteen (n=15) pre-service
teachers participated in the inquiry; the sampling criteria
are described in the next section. The pre-service teachers,
who were undergraduate students, came from several
faculties and departments within the institution. As a result,
the cohort showcased a significant diversity in terms of
educational backgrounds and disciplinary expertise,
including applied artificial intelligence, computer science,
mechanical engineering, information management,
quantitative finance, economics, chemistry, biological
sciences, molecular biology, biotechnology, education,
social sciences, and education psychology.

The course was designed and implemented with T&L
activities to facilitate CT knowledge construction, which
was identified based on the past foundation of research.
Firstly, this encompassed the theoretical and conceptual
aspects of CT (Kong et al., 2020; Rich et al., 2021; Shute et
al., 2017), with learning content including introductions to
CT practices (e.g., decomposition, pattern recognition,
abstraction, algorithm design, debugging), formal logic,
technology integration, the history of computing and
algorithms, and pedagogical approaches such scaffolding,
active learning, and constructionism. The trainees were
engaged through various passive and active T&L activities,
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such as lectures, individual Q&A sessions, group
discussions, and interactive demonstrations.

Secondly, the course entailed T&L activities purposefully
addressing the technical and applied aspects of CT (Angeli,
2022; Tedre et al., 2021; Ung et al., 2022), with learning
content including CT concepts and constructs (e.g.,
initialization, functions, variables, conditionals, iteration,
and arrays), learning of these concepts and constructs using
unplugged platforms such as LEGO patterns, and
applications of these concepts and constructs with plugged
platforms using block-based programming languages (e.g.,
Blockly and Snap!). The trainees utilized Blockly to
program Micro-Bits to develop peripheral devices and DIY
(Do-It-Yourself) projects. More importantly, they designed
and interacted with rudimentary chatbots leveraging AI
models (e.g., ChatGPT, GPT-3, Cohere, DALLE-2, and
Stable Diffusion) using Snap! (see Figure 1).

Figure 1. A Rudimentary AI Chatbot Powered by GPT-3
Model and Developed Using Snap!

Lastly, the course engaged the trainees in collaboratively
developing learning designs for their preferred K–12
context: kindergarten, primary, or secondary (Tucker-
Raymond et al., 2021). This involved designing intended
learning outcomes based on the revised Bloom's Taxonomy
(Krathwohl, 2002) and developing age-appropriate T&L
activities with the CT tools they had previously practiced.

2.2. Data Collection & Analysis
We conducted an interpretative research inquiry exploring
the pre-service teacher trainees' learning experiences of CT
during the course (Merriam & Tisdell, 2015b). The trainees
were sampled purposively with the following criteria: (i)
Undergraduate students who aspire to be K–12 teachers, (ii)
have no formal teaching experience, (iii) participated in all
the T&L activities, (iv) completed all their weekly
reflections, and (v) consented to participate in the study.
Fifteen trainees met the criteria and were engaged in the
data collection. We used multiple qualitative data sources
for triangulation and generating a think description (see
Figure 2). This included (a) Participant Observations (e.g.,
field notes, photographs, video records, and learning
artifacts), (b) Participant Reflections (e.g., reflections,
personal insights, and comments), and (c) Participant
Interviews (e.g., response to semi-structured interview

questions). Concurrently, we engaged in the inductive
content analysis following a two-phase iterative coding
process (Merriam & Tisdell, 2015a). During this, two
coders worked independently and reported an inter-coder
agreement greater than 89% afterward. The data analysis
accentuated the emergence of three core themes,
encompassing numerous subthemes within our data. The
three core themes are delineated as themes of (1) CT
Knowledge, (2) CT Perspectives, and (3) Potential Barriers
(see Figure 2). Nevertheless, this paper disseminates part of
our findings on the trainees' CT Perspectives only: It delves
into their post-course perspectives on AI models and CT,
seeking to elucidate the pedagogical implications of
integrating AI models and CT into K–12 education,
respectively.

Figure 2. Iterative Process of Data Collection & Analysis.

3. FINDINGS
This section presents part of our findings on the pre-service
teacher trainees' CT Perspectives. The inductive content
analysis revealed that only ten of the fifteen participating
trainees extensively evidenced meaningful perspectives on
AI models and CT; Table 1 provides these trainees'
background information. Subsequently, four major themes
emerged within their perspectives based on the axial coding
(Merriam & Tisdell, 2015a): (i) Embrace AI Models to
Enhance T&L; (ii) Perceive AI Models as Computational
Thinkers; (iii) Employ CT for Effective Prompting of AI
Models; (iv) Recognize the Challenges of Adopting AI
Models. These themes are discussed along with the
qualitative evidence seriatim.

Table 1. Background Information of the Trainees.
Name Gender Major Study Year
Bennett Male BEng in Mechanical

Engineering
Year 3

Beckett Male BSc in Information
Management

Year 4
(Final Year)

Blaine Male BSc in Chemistry
and BEd

Year 4
(Final Year)

Carter Male BSc in Quantitative
Finance

Year 2

Nolan Male BEng in Computer
Science

Year 2

Jasper Male BASc in Applied AI Year 2
Ethan Male BEng in Computer

Science
Year 2

Orion Female BEng in Computer
Science

Year 2

Graham Male BSc in Biological
Sciences

Year 1

Mateo Male BSocSc in Education Year 5
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Psychology and BEd (Final Year)

3.1. Embrace AI Models to Enhance T&L
Firstly, the trainees generally perceived AI models to have
the capacity to enhance the T&L experience of K–12
students and beyond. These models can facilitate idea
generation, provide students with new insights, and enable
them to solve problems independently (Bywater et al., 2019;
Holstein & Aleven, 2022; Kim et al., 2022). They can
catalyze creativity, nudging students towards curiosity and
inspiring them to think outside the box. For instance, Mr.
Bennett, a Bachelor of Engineering (BEng) in mechanical
engineering student, remarked,

These days, students are born into an AI generation.
They're surrounded by AI, and it's [an] essential and very
useful tool for them to tackle problems in the world for
their future. So as a teacher, we must use [or] apply AI in
our education, in our teaching. The role is vital. For
example, we have to teach our students to get used to AI
chat systems and AI language models. These are very
useful tools for generating ideas in education.

Similarly, Mr. Beckett, a student of a Bachelor of Science
(BSc) in information management, said,

Talking about AI, I think it can certainly help people do
things, learn things, or manage things. Integrating these
tools into education seems like a great opportunity.
Education is about teaching, and AI tools also serve a
similar purpose—to help someone find the right way.

Another trainee, Mr. Blaine, studying BSc in chemistry and
Bachelor of Education (BEd), expressed,

Well, in my learning, it's a good way that I can learn with
AI supplementing me with some very insightful ideas,
perhaps some of the insights such as commonly mentioned
[insights] or common sense that AI provides me. And also,
it may give ideas that I've already thought of. But yes, I
don't know why they always bring me some new insights.

3.2. Perceive AI Models as Computational Thinkers
Secondly, some trainees perceived AI models as capable of
employing CT when tackling complex problems. These
models can systematically approach an overarching,
complex problem by breaking it down into smaller, more
manageable parts (Kojima et al., 2023; Wei et al., 2022).
Thus, they can give an impression of employing CT
practices, notably decomposition and abstraction. They can
simplify and analyze intricate problems methodically, akin
to human reasoning (Huang & Chang, 2023; Qiao et al.,
2023). For instance, Mr. Carter, pursuing a Bachelor of
Science (BSc) in quantitative finance, observed,

Like you ask ChatGPT, “I have this math problem, how do
I solve it?” It's going to break that problem up for you in
an easier manner and try to make you understand it. So, it's
also using its own sort of CT mindset, you could say, in
order to solve the problem that you give it.

Mr. Nolan, a BEng in computer science student, noted,
“But if you're talking specifically about AI models, since
they're programmed and they are running on CT
themselves, in a sense…”

3.3. Employ CT for Effective Prompting of AI Models
Thirdly, the trainees overwhelmingly perceived CT as
critical for effectively prompting AI models, which entails
instructing and interacting with the models (Arora et al.,
2022; X. Liu et al., 2023). They recognized that strategic
formulation of prompts (i.e., prompt engineering) could
drastically improve the quality of AI-generated outputs.
This can lead to more accurate and contextually relevant
outputs, mirroring sophisticated, human-like interactions
(Clavié et al., 2023; Y. Liu et al., 2023; White et al., 2023).
Moreover, they stated that CT can give users an intuitive
understanding of AI models, at least at a rudimentary level,
helping them heuristically leverage the underlying
mechanisms that drive the models' behavior and
adaptability. For instance, Mr. Jasper, a student of Bachelor
of Arts and Sciences (BASc) in applied AI, stated,

With the invention of ChatGPT and Bing AI, when you run
into a problem, if you ask it a question like a human, you're
not going to get the best possible answer… But if you're a
programmer and you know that this is how it [AI] works, it
looks at these words, it makes this connection… You
probably will be able to give it a much better prompt and
get a much better response. So, I think today, especially,
it's more important for everyone in this field to learn CT.

Mr. Ethan, a trainee pursuing a BEng in computer science,
suggested, “I think the concept of prompt engineering is a
very CT-based concept. You design things in such a
manner that the computer or the AI really understands it
and does what you want.”

Another trainee, Ms. Orion, doing a BEng in computer
science, expressed,

I think that computational thinking is the base that is
required for individuals to be able to use AI technology… I
think prompt engineering is a lot about how to phrase what
you say and how to understand the design behind the AI
and to understand that it is AI at the end; it's not human.
And, as a user, I need to know, like the programmer who
designed that AI, “What thinking did they put into building
that AI?” And by thinking that it's my CT, I did either
knowingly or unknowingly.

Likewise, Mr. Graham, a BSc in biological sciences
student, proffered,

In CT, we need to remove all noise. Similarly, when we talk
to a chatbot, we need to remove all unnecessary
information… I think the student with CT skills will have an
advantage. Like, he understands better, at least like, how a
computer processes answers, so he’ll be able to refine his
input better or refine them.

Mr. Mateo, studying a Bachelor of Social Sciences
(BSocSc) in education psychology and BEd, remarked,

I think CT would empower students to make better use of
AI or different types of chatbots. Like, because our AI is not
as smart as a human being yet. When we expect the AI to
provide a detailed answer, sometimes it makes mistakes or
misunderstands our prompt. CT would help students
understand why we should instruct the AI about our tasks
in a certain way… How to decompose our task
requirements, [and] abstract them, like how to
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communicate them to the AI. We can explain our task
requirements to the AI in different ways.

Mr. Bennett said,

I think one aspect is that we need to have CT to understand
how AI works. And if we understand how AI works, we can
control it and make use of it. For example, we need to know
how ChatGPT processes information so we can ask
accurate questions and guide the AI model to the correct
outcome. Another example is that if we have an AI that
generates drawings, we need to understand the algorithm
behind it in order to generate a photo or a picture
accurately.

Likewise, Mr. Beckett mentioned, “CT can help you to
think more like a computer. So, when you have learned CT,
you can understand what kind of information to extract
from ChatGPT.”

Mr. Nolan noted,

I think with CT, you're better able to understand AI models,
any machine at that… You don't know how this model was
created. You don't know whether you should be afraid of it.
You don't know whether you should be fond of it. But I
think CT gives you a very basic idea of what's happening
behind the scenes.

3.4. Recognize the Challenges of Adopting AI Models
The trainees perceived various challenges when asked
about adopting AI models for their current and future T&L.
These challenges include (a) limited guidance and
experience in integrating AI models within educational
settings, (b) conflicting reasons among students when it
comes to utilizing AI models, (c) difficulties in designing
assessment tasks that ensure transparent and honest use of
AI models, and (d) adverse effects on learning transactions
in classroom settings. These challenges are evident from
the following quotes:

(a) Mr. Bennett acknowledged,

These [AI models] are very useful tools for generating
ideas in education. But how to apply AI in our education?
Currently, I do not have a very clear concept or idea
because I haven't had the chance to apply it.

(b) Mr. Carter expressed,

I would argue that people who are less adept at solving
problems would rely more on AI models, or these AI bots,
to solve their problems… On the other hand, you could
argue that the smartest students, who want to save their
time, would also utilize AI. So, I think it just goes both ways,
and it's a discussion that could continue indefinitely.

(c) Mr. Blaine relayed,

In teaching parts, it gets more challenging. Because I have
to design an assessment that AI can, I won't say cannot, but
it is more difficult for AI to finish. Because, yeah, we have
ChatGPT. We also have more and more of those language
models. So, if I still continue with very simple questions
that students can copy and paste.

(d) Mr. Graham noted,

In the past, before when students had a question, they
might raise their hand. Or ask teachers or use Google
search. But now, I think they're more likely to ask just AI…
But when they ask AI, like the AI might not be able to see
these problems and [might] provide an answer the student
wasn't needing.

4. DISCUSSION
4.1. Latent Synergies Between AI Models and CT
The pre-service teacher trainees' perspectives on AI models
and CT reveal latent synergies or interrelationships
between the two. On one side, their perspectives
recognized that AI models can seemingly deploy CT-like
problem-solving when dealing with complex problems
(Kojima et al., 2023; Wei et al., 2022; Yao et al., 2023).
Conversely, they accentuated the importance of CT for
human users to instruct and interact with AI models
effectively. These latent synergies are no mere coincidence;
it stands to reason that the AI models directly resulted from
the CT employed by computer scientists—they are the
outcome of CT—writ large (Celik, 2023; Lin et al., 2023;
Yilmaz & Karaoglan Yilmaz, 2023). Likewise, since AI
models (i.e., transformers) are trained on copious amounts
of human data, they have acquired human-like reasoning
and problem-solving abilities, such as CT (Huang & Chang,
2023; Qiao et al., 2023). However, one question remains:
Why did the trainees recognize CT for effectively
instructing and interacting with AI models, or what is the
interrelationship between prompting and CT? This question
has not been researched (to the best of our knowledge)
from either an a priori or a posteriori standpoint. This
highlights a research gap, but the question is, why is
answering this question significant from a real-world point
of view?

4.2. Prompting AI Models: A Novel Approach for
Cultivating CT
The current trends in CT education, especially at the K–12
level, can be divided into plugged or unplugged T&L
approaches. The plugged approaches include educational
robotics, block-based and text-based programming, and
digital gamification (e.g., Kong et al., 2020; Rich et al.,
2021; Umutlu, 2021). The unplugged approaches include
algorithm assembly and pattern recognition puzzles, board
games based on CT concepts (e.g., functions, conditionals,
iteration), and physical programming robots (e.g., Bell &
Lodi, 2019; Delal & Oner, 2020; Ung et al., 2022).
Regardless, the elephant in the room remains, as these
approaches are arduous to integrate within formal T&L
environments across different K–12 subject areas and
contexts (Ali, 2021; Angeli & Giannakos, 2020; Lodi &
Martini, 2021; Shute et al., 2017). Subsequently, the
cultivation of CT has been traditionally relegated to
specialized STEM-based lessons, projects, or competitions.
So, one may argue that prompting or prompt engineering
could emerge as a novel approach that potentially addresses
this issue and revolutionizes CT education.

The crux of prompting lies in its fluid adaptability and its
necessity to be taught across K–12. As AI models become
ever more prevalent, it becomes crucial for both students
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and teachers to learn how to harness them effectively
(Casal-Otero et al., 2023; Chiu, 2023; Lozano & Carolina
Blanco, 2023). Recognizing this, a promising opportunity
exists to integrate CT into the formal curricula to teach
prompting. This hinges on first investigating CT's role as a
foundational skill for effective prompting. If rigorously
evidenced, this could allow seamless integration of CT
across computer-based and noncomputer-based subject
areas, mainly thanks to increasingly affordable and
ubiquitous access to AI models (ChatGPT, Bing AI, Stable
Diffusion, etc.). This could democratize CT education and
help overcome its dependence on expensive, specialized
equipment. In this manner, CT and its practices could be
cultivated regardless of a school's resources, becoming a
proper egalitarian prerogative for all K–12 students and
teachers.

In brief, prompt engineering's versatility as a novel
approach could bridge the divide between CT and general
education. It could foster a generation of learners trained to
apply CT and its practices across diverse academic
disciplines and real-world scenarios. Most importantly, it
could prepare them to be AI-ready and excel in an
increasingly digital and automated world.

5. CONCLUSION
The study reveals latent synergies between AI models and
CT that beckon further exploration in future research. It
highlights the potential of prompt engineering as a novel
approach to cultivating CT in K–12 education and teacher
education. The teacher trainees acknowledged the
significance of CT in developing AI models and its
necessity for effectively harnessing them. Nevertheless,
future studies should pragmatically investigate this
interplay, particularly the extent and roles of different CT
practices during prompting and their implications across
different prompt engineering techniques.
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ABSTRACT
Since computational thinking is regarded as one of the
essential skills of the 21st century, many studies have
focused on assessing the development of CT in
mathematics education. However, there is still no clear
discussion on assessing the development of CT in
mathematics learning in different cultural contexts and how
different cultures influence the assessments of CT. We
conduct a scoping review to emphasize how cultures
influence CT assessment and how to describe the interplay
between CT and assessment tools. Based on the PRISMA-
ScR framework, we collected studies in three databases,
Scopus, Web of Science, and ERIC, and selected the most
relevant studies according to the inclusion and exclusion
criteria. Finally, we charted the data in 10 studies and
collated, summarized, and reported the results. In our
findings, we categorized four categories of assessment
tools, educational robot, unplugged activity, CT knowledge
test, and interview, and four categories of culture
sensitivity, language issue, ethnic issue, traditional culture,
and education culture. We suggest that researchers pay
much attention to describing and assessing how CT
integrates with mathematics thinking, which could help
clarify what happens in students' CT development. Besides,
we encourage researchers to revise assessments, like
translating into the mother language, improve traditional
assessment tools, change items unsuitable for participants
based on cultural, social, and sociocultural aspects, and be
careful about sensitive issues such as ethnicity and equality.

KEYWORDS
Computational thinking, Mathematics education,
Assessment, Cultural sensitivity

1. INTRODUCTION
As proposed by Jeannette M. Wing (2006), computational
thinking (CT) is a term used for problem-solving and
decision-making. It is a way of thinking and approaching
complex problems that draws on principles from computer
science. Since the concept of CT was popularized, research
on how CT promotes mathematics learning has continued
to emerge. CT and mathematical learning have already
been shown to have a solid connection (Miller, 2019).

Since CT is regarded as one of the essential skills of the
21st century (Wing, 2014), many studies have focused on
assessing the development of CT in mathematics education.
Still, the assessment tools of CT are diverse, such as
unplugged activities, robots, programming, questionnaires
and interviews, and the assessment forms vary across
different cultural contexts. Recently, reviews have
discussed the interplay between CT and mathematics
thinking (Ye, Liang, Ng, & Chai, 2023) and the approaches

to integrating CT and mathematics (Chan, Looi, Ho, &
Kim, 2023). However, there is still no clear discussion on
assessing the development of CT in mathematics learning
in different cultural contexts and how different cultures
influence the assessment of CT. We chose the framework
of CT developed by Grover and Pea (2017) mainly because
the categories in their framework clearly describe what the
cognitive concepts of CT are and what the practices related
to CT, which helped us figure out CT assessed in different
studies in which the definition of CT is diverse. In order to
address this research gap, our study aims to discuss how
different assessment tools assess the development of CT in
mathematics learning in different cultural contexts.

In this study, we conduct a scoping rather than a systematic
review. Although sharing similar protocol, the differences
between a systematic review and scoping review are as
bellow: systematic review is usually conducted by a group
of experts and aims to provide rigorous evidence for
making conclusions or suggestions in a particular field;
systematic review is more likely to use statistical analysis
while scoping review is more likely to synthesize the
finding qualitatively (Munn et al., 2018). Therefore, the
proper review type for our project should be a scoping
review, which fits our research purpose.

In this review, we aim to emphasize and synthesize the
assessment of CT in mathematics education from
kindergarten to Grade 12 in different contexts. Moreover,
we explore the cultural aspect and underline the
significance of cultural sensitivity in research. We
emphasize how cultures influence CT assessment and how
to describe the interplay between CT and assessment tools.
Therefore, we have two focuses: the assessment of CT and
cultural sensitivity, which drive us to pose the following
research questions (RQs):

RQ1: What assessment tools have been used to assess
CT in K-12 students’ mathematics education?

RQ2: What CT concepts and practices have been
assessed?

RQ3: How do the studies discuss cultural sensitivity if
they do?

By answering these questions, we want to determine the
relationship between different CT concepts and assessment
tools, providing suggestions for researchers when choosing
assessment tools. Also, we want to concentrate on cultural
sensitivity in those studies, trying to remind researchers of
cultural aspects while conducting empirical research in the
future.
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2. METHOD
We conducted a scoping review, which is suitable for
searching and identifying key characteristics of a certain
topic and examining what earlier research has been done
(Munn et al., 2018) to search for related studies that talk
about the assessment of CT in mathematics education,
synthesize the results and processes in those studies, and
discuss our research questions. In this study, we wanted to
identify prevalent assessment tools of CT in mathematics
education, pay attention to cultural sensitivity that relates to
research design, and contribute to future empirical research
on the assessment of CT. We followed the five processes of
conducting a scoping review: (1) identifying the research
question, (2) identifying relevant studies, (3) study
selection, (4) charting the data, (5) collating, summarizing,
and reporting the results (Arksey & O’Malley, 2005).

2.1. Search and Selection Process
In this study, we used three databases, including Scopus,
Web of Science, and ERIC, which cover our research
interest in education and contain numerous popular
journals and articles, to identify relevant studies. In order to
meet our research purpose, we focused on four topics:
assessment, computational thinking (CT), mathematics and
education. The search string elements (Table 2) were
performed in different search fields of different databases
(Table 1). We established a publication date restriction of 5
years to ensure the relevance and quality of up-to-date
studies, and the last source search was conducted on
October 4, 2023. Besides, we choose peer-reviewed articles
to ensure the quality of studies. We collected 260 studies
from three databases using these research terms and
removed 124 duplicated articles. After that, 136 articles
were included in the selection process.

According to the PRISMA-ScR framework, we conducted
the selection process in Covidence, a convenient website
that helps researchers review. There were two rounds of
screening, the title and abstract screening and the full-text
review, for identifying the relevant empirical studies that
talk about the assessment of CT in mathematics education
and filtering out the inappropriate articles. The reason for
choosing empirical research is that it is backed up by
evidence of practice results rather than relying on
theoretical derivation to reach conclusions. We developed
inclusion criteria aligned to our research questions in this
selection process: (a) available in English, (b) available in
full paper, (c) presenting adequate data and discussion, (d)
assessment design that included CT in mathematics or
STEM education, and (e) serving participants are K-12
students (Table 3). In each screening round, two of us
screened the same article independently. We negotiated for
consensus with each other to make sure that these articles
needed to be included in our discussion.

Table 1. Research Field of Database.
Database Search Field
Scopus Article title, abstract, and keywords.
Web of
Science

Topic (Searches title, abstract, author,
keywords, and keywords plus).

ERIC Title, author, source, abstract and descriptor.

Note. When searching in ERIC, we click “peer-reviewed
only”. All articles included in Scopus are peer-reviewed
articles.

Table 2. Search Terms.
Topic Search String Elements

Assessment Assess*
AND

Computational
thinking “computational thinking”

AND
Mathematics mathematics OR math OR STEM

And

Education

“primary school” OR “preschool” OR
“kindergarten” OR “pre-k” OR

“secondary school” OR “high school”
OR “junior high school” OR “senior

high school” OR “K-12” OR
“pretertiary” OR “elementary school”

Publication year 2019 - 2023

Table 3. Inclusion and exclusion criteria.
Screen Inclusion criteria Exclusion criteria

Type of
record

Full text available Full text is not
available

Population K-12 (Kindergarten
to grade 12)

post-secondary
education, university
students

Language Written in English Not written in
English

Subject Mathematics,
STEM (focus on
mathematics)

The study relates to
other subjects,
except mathematics

Data Complete Data
(means that the
article is reliable)

Without complete
data and analysis of
the data

Research
type

Empirical study Not empirical study

CT At least one of the
CT concepts and
practices are
mentioned

Mention CT but do
not mention specific
concepts or practice

Assessment
Tools

The study uses
specific assessment
tools to assess CT
and has an analysis
of it

The study mentions
assessment, but it
assesses
mathematics, not CT

According to the inclusion and exclusion criteria, a total of
106 articles were filtered for exclusion in the first screening
round. Then, we removed 20 studies that were not closely
relevant to our research when reviewing the full texts of
those studies. Finally, 10 studies were included in our
discussion. The selection process is presented in Figure 1.
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Figure 1. Paper Selection Procedure.

2.2. Data Extraction and Analysis
After selection, we finally got 10 articles for the analysis
process. According to our research questions, we settled
our focus on mathematics, CT, assessment tools and
cultural sensitivity and extracted related information
accordingly. Except for those four focus items, we
extracted the basic information about every study, such as
title, publication year, research design, and participant
description, from 10 selected articles. Two of us extracted
data from the same study independently and then
negotiated with each other for consensus. Finally, we form
the extraction data table, containing basic and important
information relating to our research questions, and ready to
do the next step: data analysis.

We conducted a “top-down” theoretical thematic analysis
(Braun & Clarke, 2006) since we facilitated an existing
framework of CT (Grover & Pea, 2017) to analyze the data
we extracted. Meanwhile, we generated our categories
about assessment tools and cultural sensitivity. Similar to
the selection and extraction processes, disagreements were
resolved through further review and discussion until a
consensus was reached. First, we used descriptive codes to
label data which could be the answers to our research
questions. Then, we categorized CT, adapting the existing
framework from Grover and Pea, and categorized
assessment tools and cultural sensitivity by generating new
categories according to the descriptions of assessment tools
and cultural aspects mentioned in selected articles. Finally,
we got three themes: CT, assessment tools, and cultural
sensitivity (Table 4).

Table 4. Coding System
Theme Category Code

CT
Concept

Logic and
logical
thinking

Logically analyzing and
organizing data, Logical

thinking, etc.

Algorithms
and

algorithmic
thinking

Calculations, Algorithmic
thinking, etc.

Patterns and
pattern

recognition
Sequence, Pattern
recognition, etc.

Abstraction
and

generalization
Generalizations,
Abstraction, etc.

Automation N/A
CT

Practice
Problem

decomposition
Problem decomposition,
Problem-solving, etc.

Creating
computational

artefacts

Create new artifacts,
Design complex systems,

etc.

Testing and
debugging

Debugging, Repeat the
reasoning, coding, and
observation processes,

etc.
Iterative
refinement N/A

Collaboration
& Creativity

Create and express
themselves. Creativity
and collaboration.

Assess-
ment

Educational
robots

Robotics kits within
educational settings,
Lego Education WeDo

2.0 kit, etc.
Unplugged
activities

Unplugged robotics
activities, Bebras Cards,

etc.
CT knowledge

tests
Computational thinking
ability test, Yune Tran's
CT questionnaire, etc.

Interview
Cognitive interview,
Semi-structured
interviews, etc.

Culture
Sensitivity

Language
issue

Attached to English
notations, etc.

Ethnic issue Student population with
racial issues.

Traditional
culture

Traditional Yupana,
Validation in a Latin

American population, etc.

Education
culture

Korean Nuri curriculum,
Content covered under
the Korean National
Curriculum for
kindergartens.

3. RESULTS
3.1. Assessment Tools Used to Assess CT in K-12
Students’ Mathematics Education
Table 5 summarizes the assessment tools used in the 10
selected articles. Most of the assessment tools were
designed for middle school (n=4) students, followed by
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primary school students (n=3) and kindergarten students
(n=3). The assessment tools can be divided into four types:
educational robot, unplugged activity, CT knowledge test,
and interview, with almost all studies using two or more
assessment tools.

Table 5. The Details of the Reviewed Articles.

Year Article Grade Level Assessment
Tool(s)

Mathematic
s

2023
Angraini
et al.
(2023)

Seventh-
grade
students

A CT ability
test; Interviews. Flat shapes.

2022 Luo et al.
(2022)

Fourth grade
students

Standardized
paper-and-
pencil test;
Cognitive
interviews.

Variables.

2023
Sung et
al.

(2023)

5- and 6-
year-old
students

Bebras Cards;
TACTIC-
KIBO.

Nuri
curriculum
(STEM).

2019
Chiazzes
e et al.
(2019)

Third- and
fourth-grade
students

The Bebras
tasks; Robotics
kits (the Lego
Education

WeDo 2.0 kit).

STEM
(angle and
distance).

2021
Chan et
al.

(2021)

Secondary 1
students

Unplugged
Math+C
activities;

Spreadsheet.

Number
patterns.

2022
Alvarado
et al.
(2022)

Elementary
students

Digital Yupana;
A CT test by

Roman
Gonazalez et al.

(2017).

Arithmetic
operations.

2021
Polat et
al.

(2021)

Fifth- and
sixth-grade
secondary
school
students

CT Test (CTt);
CT Levels

Scale (CTLS).

Math
courses

2023

Møller
and
Kaup
(2023)

Three boys
aged 13, 14
and 15; One
girl aged 12

The DJI
RoboMaster S1
educational
robot; Semi-
structured
interviews.

Coordinate
systems,
translation,

and
rotation.

2021
Gerosa et

al.
(2021)

Level 5
students

(kindergarten
)

Yune Tran's CT
questionnaire;
Tablet based

test;
Educational
robotics task

Sequencing
skills and
numerical
abilities.

2019
Nam et
al.

(2019)

Kindergarten
students (age
from 5 to 6
years)

TurtleBot;
Problem-
solving

performance
instrument
(test)

Categorizati
on, patterns,
numbering,
measuring,
statistics,
diagram.

Educational Robot. Educational robots refer to robots used
in learning activities, which can be physical robots,
modular systems, or robots built for programmed activities
(Gubenko, Kirsch, Smilek, Lubart, & Houssemand, 2021).
Educational robots are one of the most widely used
assessment tools in the selected articles (n=5) and are used
in kindergarten, elementary, and middle school. Robots in
preschool are generally shaped like animals, and students

can control the movements of robots through action
commands to complete different test questions, like
problem-solving performance in mathematics (Nam, Kim,
& Lee, 2019). Educational robots used in elementary and
junior high school evaluations may include two major steps
of robot assembly and programming, and the operation is
relatively more complex and can be used in STEM courses
(Chiazzese, Arrigo, Chifari, Lonati, & Tosto, 2019; Møller
& Kaup, 2023).

Unplugged Activity. This kind of activity does not involve
the use of computers and usually uses physical objects in
the form of games or competitions to stimulate students'
interest in learning (Tonbuloğlu & Tonbuloğlu, 2019), such
as cards and worksheets with cartoon elements including
different levels of tasks that evaluate CT concepts in STEM
programs (Sung, Lee, & Chun, 2023).

CT Knowledge Test. This kind of assessment usually
adopts more traditional testing methods (n=6), such as
single-choice, multiple-choice, and open questions
(Flanigan, Peteranetz, Shell, & Soh, 2017). Most CT
knowledge tests are based on tests designed by others with
validated validity, adapted or directly translated (Alvarado,
Falcon, Gutiérrez-Cárdenas, & Romero-Romero, 2022;
Gerosa, Koleszar, Tejera, Gomez-Sena, & Carboni, 2021;
Nam et al., 2019; Polat, Hopcan, Kucuk, & Sisman, 2021),
using a variety of media, some using traditional paper-and-
pencil methods, and some using electronic devices to
assess the basic arithmetic operations such as addition and
subtraction.

Interview. It can help researchers deeply analyze the
opinions and experiences of research subjects and better
understand the research field of CT that has not been fully
explored (Li, 2021). Few studies in the selected articles use
interviews (n= 3), and they are generally used as an aid to
other assessment methods, such as clarifying students'
answers through interviews and more accurately analyzing
their CT ability (Angraini, Yolanda, & Muhammad, 2023).
Or it is used to analyze aspects of cognition that are
difficult to measure with other assessment tools (Luo, Yan,
Liu, & Israel, 2022).

In case two or more authors are from different institutions,
type the corresponding author’s institutional affiliation
below the first author. In case two or more authors are at
the same institution, use the same institutional affiliation
just as it would for one author. Examples of three authors
are demonstrated at the top of the page.

3.2. CT Concepts and Practices Being Assessed
Figure 2 shows that the selected articles evaluated CT
concepts more frequently in terms of algorithms and
algorithm thinking (n=10) and patterns and pattern
recognition (n=8), while automation was not evaluated at
all. The most evaluated CT practices are Problem
composition (n=8) and Testing and debugging (n=5), while
Iterative refinement has not been evaluated. Overall, the
concept of CT is the main objective of mathematics
learning intervention and evaluation in the K-12 stage,
while CT practice has been relatively overlooked.
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Figure 2. CT Concepts and Practices Assessed in the
Selected Articles.

3.3. Cultural Sensitivity Discussed in Current Studies
According to data analysis, we categorize culture
sensitivity discussed in selected articles into four categories:
Language issue, Ethnic issue, Traditional culture, and
Education culture.

Language. A number of studies have focused on cultural
differences between languages and have therefore adapted
assessment tools and the language used in the assessment
process, i.e., Sung et al. (2023) utilized tasks translated into
Korean.

Ethnic. According to some research, ethnicity may
influence how assessments are conducted and designed.
We realize that there is a gap in current research comparing
different ethical populations. Especially using the same
assessment tools to compare the outcomes and discuss
whether ethnicity may affect the conduct of the assessment.
Gerosa et al. (2021) found that it has undergone validation
in a Latin American population and has shown stability
across time and cultures. However, due to the lack of
comparative studies of other ethnic groups, we cannot
deduce whether this is a specific or a general phenomenon
among Latin American ethnic groups. Though one study
mentioned the diversity of its population groups (Luo et al.,
2022), it did not adjust the assessment tools or discuss the
outcomes. We think that it is especially important in
multiethnic contexts.

Traditional culture. One research focus is on Tawa
Pukllay (Alvarado et al., 2022), which is unique in Peru.
Tawa Pukllay of Prem considers the basic arithmetic
operations. Alvarado et al. (2022) utilized it to develop a
digital Yupana for this study. Yet, they have not infused
this traditional cultural factor into their assessment process
or adapted their assessment tools. This study inspires us
that traditional culture can be applied to CT teaching and
assessment. For example, China has many traditional
mathematics manipulatives and teaching methods of CT,
i.e., Klotski and Abacus, which are overlooked, so
researchers can integrate these traditional elements with
cutting-edge research, making the CT assessment tool more
culturally sensitive and improving its accuracy and intrigue.

Education culture. There are many variations in
educational contexts in different settings, so the challenges
posed by factors such as educational policy must be

considered when assessing CT. The Turkish researchers
adapted the assessment tool to their population and revised
it by two IT teachers and four university academic experts
(Polat et al., 2021). Korean researchers adapted items from
the original instrument to represent the content covered
under the Korean National Curriculum for kindergartens
(Nam et al., 2019).

4. DISCUSSION AND CONCLUSION
CT is a broad term. The public may agree with the
definition “the thought processes involved in formulating
problems and their solutions”, mentioned by Wing (2011).
However, due to many existing improved definitions and
theoretical frameworks of CT, it becomes difficult to define
the standard version of the contents of CT. When
conducting data analysis, we also found that it is difficult to
evaluate the concepts and practices of CT in practice
accurately, and the evaluation elements of existing research
are also challenging to summarize under the same
framework. Besides, our framework has two components,
automation and iterative refinement, which are hardly
being assessed. Therefore, there is an urgent need to
produce an authoritative standardized CT framework that
could be assessed worldwide.

When an authoritative and widely accepted CT framework
emerges, adjusting assessment tools with the new one is
suitable. In our finding, there are four categories of
assessment tools, and many researchers would conduct two
or more of them. However, these assessments are mainly
used quantitatively. The advantages of qualitative methods
like interviews are not fully discussed in selected articles
that conduct mixed-method research. We suggest that
researchers pay much attention to describing and assessing
how CT integrates with mathematics thinking, which could
help clarify what happens in students' CT development.
Besides, cultural sensitivity should be emphasized during
the experiment design and assessment since the cultural
aspect could influence the assessment result. We encourage
researchers to revise assessments, like translating into the
mother language, improve traditional assessment tools,
change items unsuitable for participants based on cultural,
social, and sociocultural aspects, and be careful about
sensitive issues such as ethnicity and equality.
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ABSTRACT
Promoting undergraduates computational thinking (CT)
remains a significant challenge. The purpose of this study
was to foster students’ CT in a knowledge building (KB)
environment. The participants were 49 college students
from a Chinese university. They were randomly assigned to
ten groups. Each group used Knowledge Forum (a
computer-supported collaborative knowledge-building
environment), supported by customized scaffolding, to
discuss and develop the computational artifacts of their
choice. Data were collected from student groups’ online
discourse, pre-post CT scale, and group artifacts. We
employed Friedman test, Wilcoxon signed rankings test,
and Kruskal-Wallis test to analysis data. In general, we
found KB activities facilitated students’ CT. Engaging in
KB activities can significantly promote students’
algorithmic thinking, cooperativity, critical thinking, and
problem-solving skills, except for their creativity.
Moreover, students demonstrated differential engagement
in various CT tasks, as reflected by their discourse and
products, and needed more support in evaluation &
generalization. This study can offer insights for educators
to design KB environment to support students’ CT.

KEYWORDS
Computational thinking, Knowledge building, Knowledge
Forum

1. INTRODUCTION
Due to the rapid development of information and intelligent
technologies and the educational goals of preparing all
citizens for the 21st century literacy, computational
thinking (CT) has been discussed and greatly emphasized
in many countries’ educational reform policies in the last
decade (Denning & Tedre, 2019; Nouri et al., 2020; Yadav
et al., 2016). CT draws on concepts which are fundamental
to computer science (CS) (Wing, 2006), and is broader than
CS as it ‘includes a way of thinking about everyday
activities and problems’ (Shute et al., 2017, p. 146). The
acquisition of CT is widely discussed in K-12 education,
and numerous studies are exploring effective teaching
methods at this level. However, at higher education level,
research on promoting students CT is still lagging behind
(Lu et al., 2022; Tivka & Tambouris, 2021). Most attention
to computing may be focused on the undergraduates
majoring in computing and engineering. Students in non-
CS majors are exposed to basic computer courses in China.
However, such courses emphasize computer operational
skills, yet there is less attention on developing students’ CT
and considering it as a kind of universal thinking.
Obviously, CT should be a thinking skill for all
undergraduates in all professional fields, be embedded into

the classes for students of all majors, and become a
thinking ability to guide their daily lives and works (Sun et
al., 2022). Hence, integrating CT into undergraduate
curriculums, thereby benefiting students from diverse
majors, presents a substantial challenge. It becomes
imperative to study the theoretical and pedagogical
foundations in this area to better support educators.

Knowledge Building (KB) provides a framework for
teaching students how to work together creatively and
effectively to advance group knowledge. It is regarded as a
theoretical, pedagogical, and technological innovation that
holds prospects for promoting students’ CT (Bereiter,2020;
Soliman, 2020; Zhu et al., 2023). Recent studies provide
theoretical interpretations for understanding the potential of
KB in fostering CT (Bereiter,2020; Soliman, 2020). Some
studies also yield positive results, indicating that KB can
advance CT (Soliman, 2020; Zhu et al., 2023). However,
the nuances of KB environment design and the systematic
evidence-based research have been insufficiently explored.
This study aims to mitigate the gap, by introducing a KB
environment designed to foster CT. We evaluate the
effectiveness through its effects on both students’ CT
processes and outcomes. The following three research
questions were investigated:

RQ1: How do undergraduates engage in CT tasks during
their online inquiry in the KB environment?

RQ2: How does participation in KB activities influence
undergraduates’ CT skills in the KB environment?

RQ3: What is the overall quality of computational artifacts
designed by students in the KB environment?

2. METHOD
The study adopted a case study approach to assess the
effect of engaging a class of college students in online
knowledge building activities on their CT. The participants
of this study included 49 undergraduate students (37 males,
12 females) aged between 18 and 22 years old. They
enrolled in the course “Computational Thinking and
Problem Solving” over a period of 12 weeks at a key
university in Guangzhou, China. The subjects were from
several schools of the university, and they majored in
artificial intelligence, cultural industry management,
electronic information engineering, financial management,
and software engineering. This course was designed to
develop students’ computational thinking through engaging
in creative idea improvement activities. Participants were
randomly divided into ten different groups (G1 to G10)
through free teaming with each group averaging 4-6
participants. The instructor had a Ph.D. in education
technology and six years of teaching experience using the
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KB approach. One teaching assistant with a background in
CS and education technology also participated in the
students’ online activities, providing them with feedback.

In this study, we collected data from three sources: (1)
notes recorded in KF, (2) individual survey regarding their
CT skills, and (3) the final group artifacts. We gathered
student notes only from Phase 3 and Phase 4 of the course,
as these phases highlight the application of CT. It enables
us to understand student engagement in CT tasks. We
employed Friedman test, Wilcoxon signed rankings test,
and Kruskal-Wallis test to analysis data.

Throughout the creation process, students were introduced
to the five CT tasks to help them design their products.
Echoing our earlier statements, the five tasks follow the
frameworks of Città et al. (2019) and Selby and Woollard
(2013). Analyses focusing on these five tasks, as reflected
in the students’ discussions in KF, helped to answer the
first research question. Two researchers first reviewed and
discussed the notes, identifying CT task keywords/key
phrases based on task definitions and student-used CT
scaffolds. A coding scheme consisting of the CT keywords
for the five tasks was developed. Using the coding scheme,
two researchers coded all the notes of the nine groups
together to ensure reliable coding results. We calculated the
average agreement using the Kappa coefficient (Kappa
= .920 > .750), which indicated a good consistency of
coding results. Then, they discussed the disparities in their
understanding and eventually agreed on each note. Finally,
the results were represented in terms of frequency, and the
Friedman test was then applied to ascertain if significant
differences existed in student engagement across five CT
tasks.

The Chinese version of the Computational Thinking Scales
(CCTS), validated by Sun et al. (2022), was employed to
assess students’ CT skills, with consideration for the
cultural context. It contained a total of 24 items divided
into five subdimensions: creativity (7), algorithmic
thinking (6), cooperativity (4), critical thinking (4), and
problem-solving (3). The total questions were scored on a
5-point Likert scale ranging from “strongly disagree” (1) to
“strongly agree” (5). The Cronbach’s alpha value for the
scale was .852 (greater than 0.800). The coefficients of
each factor were: creativity (0.846), algorithmic thinking
(0.821), cooperativity (0.892), critical thinking (0.725), and
problem-solving (0.820), respectively. The values showed
that the revised CTS also maintained high levels of
reliability, which could be adopted to evaluate the CT skills
of Chinese undergraduates effectively. This instrument was
administered to the students as a pre-test prior to their
engagement in the KB activities and subsequently as a
post-test upon completion of the course. On the basis of
delegate code, 45 questionnaires were matched for pre and
post tests. The Shapiro–Wilk test, applied to the pre-test
data, yielded a value of .848 (p < .001), indicating a
deviation from normal distribution. The Wilcoxon signed-
rank test was then applied to ascertain significant changes
in students’ CT skills after participating in KB activities. In
addition, the effect size (r) was calculated. The guidelines
(Cohen, 1988) for interpreting this value are: .10 = small
effect, .30 = moderate effect, .50 = large effect.

Students’ group artifacts were scored with the rubric,
which was developed based on a previous relevant study
(Atmatzidou & Demetriadis, 2016; Wang, 2023). It
consists of the following three scoring categories:
abstraction & decomposition, data practices, algorithmic
thinking, automation, and evaluation & generalization. The
criterion column explains the evaluation criterion for each
dimensional CT skill in detail. The project will get a high
score, up to 100 points, if it meets all the evaluation criteria.
Two graduate students who were familiar with the graded
criterion instrument on CT skills graded students’ projects
separately before reaching an agreement. Similarly, Kappa
coefficient was employed and indicated a good agreement
between the two coders (Kappa = 0.71). For those
inconsistent results, two coders negotiated until reached an
agreement, resulting in the final score for each group.

3. RESULTS
3.1. Engagement of undergraduates in CT tasks
The Friedman test indicates there was significant
differences in student engagement across the five CT tasks
(χ2 (4) = 21.057, p < .001). Dunn-Bonferroni post hoc tests
were carried out and there were significant differences
between AD-AMS (p = .011), AD-EG (p = .011), DP-AMS
(p = .019), and DP-EG (p = .019) pairs after Bonferroni
adjustments. No significant differences were observed in
students’ efforts between any other tasks.

3.2. Changes in undergraduates’ CT skills
It was found that the scores of the students’ CT scale on
creativity, algorithmic thinking, cooperativity, and critical
thinking dimensions and the total scores of CT showed
statistically significant differences before and after
participating KB [z (algorithmic thinking) = -4.251; z
(cooperativity) = -4.424; z (critical thinking) = -3.833; z
(overall scores) = -4.756]. When the average and totals of
difference scores are taken into consideration, it is seen that
these observed differences are in favor of positive rankings,
i.e. posttest scores. The effect sizes of these determined
differences were found to be high [r (algorithmic thinking)
= .634; r (cooperativity) = .660; r (critical thinking) = .571;
z (problem-solving) = -2.931; r = 0.437; r (overall score)
= .709). However, students’ levels of creativity did not
exhibit significant differences pre- and post-activity
engagement [z (creativity) = -1.939; r = 0.290].

3.3. Performance of groups’ artifacts
We looked into the final computational artifacts students
designed in the KB environment. These products were
designed based on related products the students
encountered in their daily life. For example, one group
designed an online campus navigation map to help students
or visitors plan the shortest route. We used a rubric to score
each product design in terms of AD, DP, AT, AMS, and
EG. Kruskal-Wallis test revealed significant difference
among the five sub-skills (H (4) = 27.55, p < .05). We
conducted post hoc tests using Dunn-Bonferroni. There
were no significant differences between AD-DP, AD-AT,
DP-AT, DP-AMS, AT-AMS, and AMS-EG pairs after
Bonferroni adjustments. However, there was a statistically
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significant between AD-AMS (p = .021), AD-EG (p
< .001), DP-EG (p = .001), and AT-EG (p = .007).

4. DISCUSSION & CONCLUSION
This study aimed to explore the impact of a KB
environment on undergraduates' computational thinking
(CT) skills. The results revealed a significant enhancement
in algorithmic thinking, cooperativity, critical thinking, and
problem-solving abilities among students. These findings
underscore the effectiveness of the KB approach in
fostering essential components of CT in an academic
setting.

However, an unexpected outcome was the limited
improvement in students’ creativity. This suggests that
while the KB environment effectively promotes
algorithmic thinking, additional strategies might be needed
to equally enhance creative thinking. Future iterations of
the program could incorporate more open-ended tasks and
encourage innovative approaches to problem-solving.

The study also noted varying levels of student engagement
across different CT tasks. This variation provides valuable
insights into how different aspects of CT are received by
students and where more instructional support may be
needed. Educators should consider these variations when
designing and implementing KB activities, ensuring a
balanced approach that addresses all facets of CT.

The integration of CT into undergraduate education is
crucial in today’s technologically driven world. The
findings of this study affirm that KB environments can play
a significant role in developing these skills. While the
approach showed positive results in enhancing certain CT
skills, it also highlighted areas for improvement,
particularly in fostering creativity and ensuring uniform
engagement across all CT tasks.

Future research should focus on refining KB strategies to
address these areas, thereby offering a more comprehensive
approach to CT education. Despite its limitations, this
study provides a foundation for further exploration into the
effective integration of CT in educational settings,
ultimately contributing to the development of well-rounded,
competent graduate.
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ABSTRACT
As Computational Thinking (CT) has received increasing
attention in the field of education, the demand and interest
in how to evaluate computational thinking skills has
increased. This study adopts a systematic literature review
method, following the PRISMA procedure to screen 27
domestic computational thinking evaluation related
literature, systematically reviewing the way of evaluating
CT in the literature in China using the content analysis
method to integrate the data, and summarizing the current
status of research in the field of evaluation of
computational thinking in the country, and the focus of the
research. "Evaluation method: learning outcome-oriented,
reconstructing the multiple evaluation index system", in
order to provide reference to the research in the field of
computational thinking evaluation and enrich the relevant
theoretical research results.

KEYWORDS
computational thinking, evaluation, computational thinking
evaluation, systematic Literature Review

1. INTRODUCTION
Since Zhou Yizhen proposed computational thinking in
2006, computational thinking education has gradually
received wide support and attention from the international
education field. Many countries in the Americas, Europe
and Asia have issued policy documents on computational
thinking in order to develop computational thinking
education in K-12. 2011, the United States incorporated
computational thinking into the CSTA K-12 Standards
(2011 Revision); 2013, the United Kingdom incorporated
computational thinking into the New Curriculum Program;
2015, Australia included computational thinking as an
important part of the New Curriculum Program; and 2012,
Australia included computational thinking as an important
part of the New Curriculum Program. "In 2013, the United
Kingdom included computational thinking in the New
Curriculum Plan; in 2015, Australia included
computational thinking as an important part of the New
Curriculum Program; and the Ministry of Education
released the Information Technology Curriculum Standards
for General Senior Secondary Schools (2017 Edition) and
the Compulsory Education Information and Technology
Curriculum Standards (2022 Edition), both of which
explicitly mention computational thinking as the core of the
information technology (science and technology)
curriculum. one of the core literacies of the information
technology (science and technology) curriculum.
Computational thinking is a kind of thinking, which is a
thinking process of problem solving, system construction
and human behavior understanding by using the basic
concepts and methods of computational science, combining

engineering thinking, mathematical thinking and other
thinking styles and characteristics. Evaluation, as an
important part of computational thinking education,
enables students to monitor and evaluate the learning
outcomes of computational thinking in a timely manner,
thus promoting the effective occurrence of computational
thinking teaching. Evaluation of computational thinking
education is the weak link in the current stage of research,
and it is the focus of future research. In the process of
promoting the development of computational thinking
education, the role of computational thinking evaluation is
very important, which is both an important part of the
development of computational thinking and an important
basis for verifying the effectiveness of the training (Yu et
al., 2020).

Based on this, this paper will attempt to conduct a
systematic literature review of computational thinking
evaluation in China in order to explore the current research
status and research focus in this field. This study can help
relevant researchers to understand the research content of
computational thinking evaluation more comprehensively
and gain comprehensive insights into the topic; to position
their research in the overall research picture, to discover the
connection between the field of computational thinking
evaluation and other research fields, and to provide
valuable research topics for future related research.

2. STUDY DESIGN
In this paper, a systematic literature review approach was
used to conduct the review following the routine
procedures suggested by Jesson et al. "Planning"
"Literature search" "Literature assessment" "data
extraction," "data integration," and "writing the review" to
conduct the review. Specifically, this paper utilizes a
systematic literature review approach to conduct the study.

A systematic literature review is a necessary tool for
accurately and reliably summarizing research evidence.
This study adopts the method of systematic literature
review to sort and analyze the relevant research results of
computational thinking evaluation in China from 2019 to
2024, and the main processes are as follows: (1) according
to the research objectives, clarify the keywords of literature
search; (2) based on the keywords, launch literature search
in the database to obtain the literature; (3) based on the
research questions, set the criteria for the inclusion of the
literature, carry out the assessment of the validity of the
literature, and carry out literature primary screening; (4)
read the full text of the literature after primary screening,
and on this basis, carry out the secondary screening of the
literature. (3) Based on the research question, set the
literature inclusion criteria, carry out the assessment of the
validity of the literature, carry out the initial screening of
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the literature; (4) Read the full text of the literature after the
initial screening, and on the basis of this, carry out the
secondary screening of the literature, and carry out a
comprehensive analysis of the final sample of the literature.

2.1. Formulation of research questions Sub-sections
Guidelines
Referring to the experience of systematic literature review
in academia, this study will analyze the results from
descriptive statistics used to answer the questions "What is
the current status of computational thinking evaluation
research?" and "What are the future research priorities for
computational thinking evaluation research?" Two research
questions.

2.2. Formulation of research questions Sub-sections
Guidelines
This study draws on the method of literature acquisition in
systematic reviews, using the CNKI database as the main
data source, with the search time limited to 2019-2024 (as
of February 1, 2024), and the language of literature in
Chinese. The main search method was based on the subject
word ("computational thinking" AND "evaluation"), the
subject word ("computational thinking" AND "educational
evaluation ") and subject line ("computational thinking"
AND "educational evaluation") as the search formula, a
total of 2,065 literatures were obtained.

2.3. Literature screening and quality assessment Sub-
sections Guidelines
This study followed the Preferred Reporting Items for
Systematic Reviews and Meta Analyses (PRISMA)
methodology to screen the relevant literature on
computational thinking evaluation research through four
stages: search, screening, qualification and inclusion, and
the specific PRISMA screening process is shown in Figure
1. Among them, literature inclusion and exclusion criteria
were formulated according to the research questions, and
the criteria for literature exclusion were: (1) non-Chinese
papers; (2) non-journal papers; (3) non-CSSCI and Beida
core journals; (4) full-text unavailability; (5) the studies did
not have a clear research question, methodology, and
conclusions; and (6) the topic did not focus on the
evaluation of computational thinking. Finally, the valid
research literature was determined to be 27 articles.
Combining the 27 studies obtained from the screening, this
study analyzed them sequentially in terms of the
dimensions of literature publication, literature citation, and
research subjects.

Figure 1. PRISMA Flowchart for computational thinking
evaluation study.

3. STATUS OF RESEARCH ON THE
EVALUATION OF COMPUTATIONAL
THINKING
3.1. Literature published
The distribution of the sample literature by year provides
some insight into the general development of the research.
As shown in Figure 2, among the sample literature, in
terms of publication time, the literature shows that the
research on computational thinking evaluation in China
published the largest number of papers in 2022 (n=8),
followed by 2020 (n=6), indicating that this is related to the
relevant national policies put forward.In October 2020, the
Central Committee of the Communist Party of China (CPC)
and the State Council issued the Overall Program for
Deepening the Reform of Educational Evaluation in the
New Era (hereinafter referred to as the Overall Program),
which made an overall deployment and requirements for
education evaluation and opened the curtain of education
evaluation reform in China, so the research in the field of
computational thinking evaluation in 2020 showed a trend
of rapid growth in general. Since then until 2022, the
Ministry of Education released the Compulsory Education
Information Technology Curriculum Standards (2022
Edition), which explicitly pointed out computational
thinking as one of the four core literacies in the subject of
information technology. In general, the field of
computational thinking assessment has been hot in recent
years and is expected to remain a key research direction in
the field of education in the future.

Figure 2. Distribution of Computational Thinking
Evaluation Publications in China.
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3.2. Literature citations
The citation rate of a paper can reflect the academic
influence of the paper to a certain extent. Among the 27
sample literatures, the topics of the published highly cited
papers are mainly related to the cultivation path,
connotation, current situation, evaluation tools, and
evaluation system of computational thinking evaluation.
The citations of some of the highly cited papers, as shown
in Table 1, show that the academic focus has gradually
shifted from the connotation at the early stage of the study
to the cultivation path and evaluation tools from the year of
publication of the highly cited papers.

Table 1. Citation of highly cited papers (partial).

3.3. Analysis of Research Subjects
The research subjects of the 27 sample literatures are
characterized by plurality, as can be seen in Figure 3, the
students who are the subjects of the research cover
secondary education, primary education, and higher
education students. The research disciplines include
computer education, science education, educational theory
and education management, and STEM education.
Computational thinking scale mainly accomplishes the
measurement of computational thinking through students'
subjective evaluation of self-perception, and many teams in
China have already conducted research related to scale
ontologization, compiling computational thinking scales for
higher education teacher training students, high school
students, K12 students, and primary school students.

Figure 3. Distribution of research subjects of
computational thinking evaluation in China.

4. RESEARCH FOCUS ON
COMPUTATIONAL THINKING
EVALUATION
In education and teaching, the cultivation of computational
thinking is very important, and the change of students'
thinking is diverse and dynamic, which requires teachers to
be able to pay attention to the dynamic process of students'
computational thinking development in real time in the
process of cultivation. Evaluation can determine the current
level of students' computational thinking, which is of great
significance for teachers to target the cultivation of
students' computational thinking (Liu Jiao and Li Jiansheng,
2019). By studying and analyzing the content of the sample
literature, the research themes of computational thinking
evaluation in China can be summarized into three
categories: evaluation method research, evaluation tool
research, and evaluation index system research, which are
analyzed as follows:

4.1. A Study of Computational Thinking Evaluation
Tools
As shown in Table 1, Yu et al. have sorted out and
summarized the currently available evaluation methods (Yu,
Xiao Min and Wang Meiling, 2018). Different evaluation
methods are suitable for different grades, for example, for
students in the lower grades, using text-discourse analysis
may not be able to fully grasp the students' thinking process,
so it is more suitable for behavioral analysis. For students
in higher grades, they have already mastered certain basic
subject knowledge, and the use of topic tests, work analysis
and graphical analysis can all achieve the goal.

Table 2. Computational Thinking Evaluation Approach
Form.

4.2. A Study of Evaluation Tools for Computational
Thinking
Huigongjian (2020) and others screened out 14 typical
domestic and international assessment tools for
computational thinking, among which those applicable to
secondary school students and primary school students are
shown in Table 2. From the table, it can be seen that the
evaluation tools of various countries focus on three levels:
conceptual level, skill level and ability level, the conceptual
level is mainly to understand the concept of computational
thinking; the skill level: reasoning, abstraction,
decomposition, generalization, programming and so on;
and the ability level: problem solving ability, transferability,
creativity, cooperation ability, practical ability and so on.
From the view of foreign evaluation tools, they tend to
reflect the development level of computational thinking
through the development of students' ability in the process
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of problem solving, which is of great significance for this
study, especially the decomposition of thinking ability
involved in the process of problem solving in Turkey and
the U.S.A. is more inspiring for this study, and the
programming ability in Japan and the algorithmic ability in
the U.S.A., which are closely combined with the
information technology curriculum, are of great
significance for this study as well.

Due to the specificity of the research object, the dynamics
of the learning process and the complexity of
computational thinking, it is impossible for foreign
evaluation tools to be fully applicable to Chinese students.
The development of various technologies has facilitated the
design and development of tools, platforms, and systems
related to teaching and learning evaluation, thus helping to
carry out teaching and learning evaluation in offline, online,
and online-offline hybrid teaching. According to Qin
Yuyou, the construction of evaluation standards must take
into account their practicality in order to be implemented
on the ground, and the key lies in "exploring a systematic
and effective evaluation index system" (Qin Yuyou, 2021).
Therefore, combining the psychological characteristics of
our students with the evaluation criteria of computational
thinking is more in line with the actual situation in China.

Table 3. Computational Thinking Evaluation Tool Sheet.

4.3. Research on Computational Thinking Evaluation
Index System
The evaluation indicator system is an important part of the
evaluation implementation, and the establishment of the
evaluation indicator system is based on the overall guiding
direction of the evaluation objectives, and the
decomposition and refinement of the evaluation objectives,
in order to establish operable and specific indicators.
Therefore, the indicator system can comprehensively
reflect the characteristics of a certain thing, phenomenon or
process, and the indicators are interconnected with each
other to form a unified structural system (Zhou Guorong,
1993).

The evaluation index system of computational thinking is a
series of indicators reflecting the characteristics of
computational thinking, which cannot be separated from

the basic guiding role of the evaluation framework, and one
of the ideas of constructing the evaluation index system of
computational thinking is to decompose the evaluation
framework of computational thinking layer by layer. The
construction of evaluation index system from the
perspective of evaluation framework's guidance to the
index system is mainly divided into three major categories
and some minor categories, as shown in Table 4, one
category is based on the direction of computational
thinking three-dimensional framework, one category is
based on the direction of the ISTE five-dimensional
framework, and one category is based on the computational
thinking evaluation indexes or index system constructed
according to Selby's and Woollard's five elements
combined with other frameworks.

Table 4. Computational Thinking Evaluation Indicators and
Indicator System.

Most of the scholars in China form a localised evaluation
framework based on the introduction of foreign evaluation
scales and evaluation index systems. Yu et al. proposed a
competency-oriented micro-certification to evaluate and
certify the components of computational thinking,
decomposing computational thinking into six sub-
competencies, namely, problem identification and
decomposition, abstract modelling, algorithm design,
automation, problem transfer ability, and computational
concepts from the cognitive and operational levels as well
as from the non-cognitive level; discussing the
developmental level of the sub-competencies in the K-12
stage and the appropriate assessment methods;
demonstrating the implementation process of
computational thinking micro-certification, and exploring
the differences between the implementation in formal and
informal learning contexts (Yu et al. the implementation
process of computational thinking micro-certification, and
explore the differences in implementation in formal and
informal learning contexts (Yu, Xiaohua, Wang, Meiling,
Cheng, Jiamin, & Qiu, Zhenhua, 2022).

Based on the analysis of ISTE's theoretical framework of
computational thinking, Korkmaz et al. developed a scale
with a six-factor structure for measuring students'
computational thinking by combining the relevant research
results of previous researchers. Bai Xuemei and Gu
Xiaoqing used the CT scale with 22 measurement
indicators designed and developed by Korkmaz et al. as a
research tool, and combined it with the real educational
context in China, localised the scale, and finally formed a
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scale suitable for students at K12 level (Bai Xuemei and
Gu Xiaoqing, 2019). Finally, a computational thinking
framework suitable for Chinese K12 students was formed
(Bai Xuemei and Gu Xiaoqing, 2019). Chen Xingzhi et al.
developed an indicator system containing two primary
indicators, eight secondary indicators and 30 key indicators,
used the Delphi method to score the indicators at all levels
in the indicator system, collected the scores and
comprehensively analysed them before revising the
indicator system, and then formed the computational
thinking evaluation indicator system after three rounds of
iteration (Chen Xingye and Ma Yingying, 2020).

5. REFLECTIONS AND INSIGHTS
CONCLUSION
Evaluation of computational thinking is both an important
link in the cultivation of computational thinking and an
important basis for verifying the effectiveness of
cultivation. Combined with the current research status and
research focus, this study mainly puts forward
corresponding thoughts and insights from three aspects:
evaluation objectives, evaluation contents and evaluation
methods.

5.1. Evaluation Objective: Literacy development oriented,
focusing on human development and tailored to the needs
of the students.
In the era of digital intelligence, the use of big data analysis
technology to evaluate the comprehensive quality of
students and assess their high-level cognitive and non-
cognitive abilities is the focus of change in the field of
educational evaluation. Zhu Jing et al. point out that when
entering the new stage of smart education, the use of AI
technology to take care of the endogenous and innovative
needs of personalisation has become a historical necessity
again (Zhu Jing and Cai Jiandong, 2020). Based on the
personalised and precise learning characteristics of smart
education, Zhang Yaoyuan et al. point out that the purpose
of assessment should be at least as detailed as the ability to
'identify' learners' individual strengths and talents, so as to
'tailor teaching to individual students' (Zhang Yaoyuan and
Gong Xianghe, 2023). At the same time, intelligent
technology-enabled education evaluation is conducive to
the concept of "teaching according to ability". Therefore,
the mutual empowerment of AI and education, as well as
the deep expectation of innovative talents in the new era,
has pushed the evaluation concept from focusing on
"selection" to "teaching according to ability", and put
human development in the focus of evaluation. "It puts
human development at the centre of education evaluation
reform. In the future, we can continue to deepen our
theoretical understanding, combine with the actual situation
of students and schools, and actively explore the practical
research on the evaluation of computational thinking
education.

5.2. Evaluation content: a systematic framework of
evaluation content oriented towards computational
thinking
The current study, which constructs a framework of
evaluation content from three dimensions of computational

concepts, computational practices and computational ideas,
provides a consistent reference system for the evaluation of
computational thinking. There is no systematic assessment
of data collection, data analysis, system and problem
identification. System is to assess students' overall
knowledge of system architecture after integrating basic
computing concepts, and it is the basis for developing
students' problem solving and hands-on design and
development in computing practice.

Currently, research focuses on the assessment of
computational thinking at the cognitive level, such as
computational concepts and computational practice, while
less research has been conducted on non-cognitive
assessment, such as computational concepts. Although
computational thinking is primarily a cognitive-
psychological construct of problem-solving ability, it also
has complementary non-cognitive factors. The main reason
for the above problems is the incomplete understanding of
the concept of computational thinking, the omission of the
cultivation of some important dimensions and the neglect
of the linkage within the cultivation indicators, which only
focuses on partial information and cannot be systematised.
Therefore, the follow-up research should first focus on the
comprehensive interpretation of the theoretical framework,
on the basis of which it should supplement the cultivation
and assessment of the blank content indicators to achieve
the all-round development of students' computational
thinking and to promote the systematisation of the
computational thinking evaluation content system.

5.3. Evaluation: Learning outcome oriented,
reconstructing a multi-dimensional evaluation index
system
The evaluation of computational thinking should be
constructed in terms of both principle understanding and
project practice (Ren Youqun et al., 2016), reflecting both
an individual's mastery of the core concepts and methods of
the computing discipline and the ability to apply them to
solving generalised problems. The Overall Programme
anchors the fundamental purposes of accelerating the
modernisation of education, building a strong education
country and providing education to the satisfaction of the
people, and in the context of the reform of teaching
evaluation, the content of teaching evaluation has shifted to
a comprehensive evaluation that places equal emphasis on
knowledge, competence and literacy, and the subject of
evaluation has also shifted from a single-subject evaluation
to the diversification of the evaluation subject, and the
mode of evaluation has shifted from a summative
evaluation to a focus on formative evaluation, and the
means of evaluation have also been progressively
Evaluation methods are also gradually enriched from
traditional questions and test papers to the use of various
new-generation information technology to carry out
evaluation. Bloom divided learning evaluation into three
categories: summative evaluation, diagnostic evaluation
and formative evaluation, and the research of Bloom and
his team showed that: continuous formative testing,
feedback and correction in the learning process is an
effective strategy to promote students' knowledge mastery
(B.S. Bloom, & JF Maddox, 1987).
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Aiming at the complex composition of computational
thinking, theoretical research proposes a variety of
evaluation methods, and points out that it is necessary to
comprehensively understand the development of students'
computational thinking in the form of multiple
combinations of these methods. At present, China's
research on the evaluation of computational thinking is
mostly biased towards macro-theoretical exploration, and
the reform of educational evaluation promotes scholars to
reflect on the status quo of teaching evaluation. In
traditional teaching evaluation, there are problems such as
lopsided content of teaching evaluation, a single subject of
evaluation, and overly uniform standards. The follow-up
research should: (1) optimise the evaluation methods,
refine the implementation steps of each method and
improve the feasibility of operation; (2) combine with the
training content, combine appropriate evaluation methods,
and practice the multiple evaluation model; (3) pay
attention to the process and the results at the same time, let
the evaluation go through the whole process of teaching
and reduce the burden of the students while making the
evaluation results more comprehensive and reliable.

6. CONCLUSION
This paper adopts a systematic literature review method,
follows the PRISMA procedure to screen 27 domestic
computational thinking evaluation related literatures, uses
content analysis to integrate the data, and by summarising
the current status of research in the field of computational
thinking evaluation in China, the focus of research. And on
this basis, three reflections and insights are drawn. In
general, the current domestic computational thinking
evaluation field has stepped into a stable development
period, accumulated richer research results, and initially
formed its own research characteristics, but at the same
time, there are still some problems, with great development
potential. This paper calls for more researchers to join the
field and continue to promote the paradigm shift of the
field in the future, including expanding to a wider range of
research contexts and more balanced research questions at
the ontological and epistemological levels, expanding to a
more diverse range of research methods at the
methodological level, and expanding to a more humanistic
perspective at the value level, so as to better promote the
growth of the field. The limitation of this paper is that it
fails to compare the current development of the field of
computational thinking assessment in foreign countries. In
the future, we willfurther conduct a systematic review of
the newer achievements in foreign countries based on the
developed coding catalogue, in order to contrast and
synthesise with the conclusions of this paper.
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ABSTRACT
The purpose of this study was to investigate the effects of
scaffolding types and metacognitive level on students'
learning achievement and computational thinking. Eighty-
three fourth-grade students in an elementary school in
Wenzhou City participated in a six-week experiment and
were assigned to Experimental 1 (n = 41) and Experimental
2 (n = 42) classes. Students in Experiment 1 class were
intervened with the reflective scaffolding, while students in
Experiment 2 class were intervened with the supportive
scaffolding. The results of the experiment showed that the
type of scaffolding interacted with the level of
metacognition in terms of computational thinking and
metacognitive tendencies. For students with low
metacognitive levels, supportive scaffolding were more
beneficial than reflective scaffolding in enhancing their
computational thinking tendencies and metacognitive
tendencies. However, the interaction between type of
scaffolding and individual metacognitive level did not have
a significant effect on learning achievement.

KEYWORDS
computational thinking, scaffolding, metacognition

1. INTRODUCTION
With the advent of the digital age, computational thinking
is considered an important thinking skill for 21st century
adolescents (Bocconi & K., 2022). Computational thinking
refers to a set of thinking activities that utilize the
fundamental concepts of computer science to solve
problems, design systems, and understand human behavior
(Wing, 2006). Computational thinking emphasizes the
gradual automation of complex tasks by abstracting and
decomposing them. However, when actually performing a
task, students often struggle to break down large and
complex problems into smaller, more manageable
problems, a difficulty that affects their ability to
successfully solve problems (Perry et al, 2019). Research
has shown that without appropriate instruction, students
face significant challenges in developing computational
thinking skills (Denner et al., 2012). Therefore, researchers
believe that learners can be given scaffolding to help them
break down difficult tasks (Zhou et al., 2023).

Research has proved that different types of scaffolding
have different effects on students (Atman Uslu et al., 2022),
and more recent studies have compared the advantages of
different types of scaffolding (Kim et al., 2021). Supportive

scaffolding can guide learners on what to consider and how
to connect ideas, and reflective scaffolding help learners
clarify their reflective process through metacognitive
questions. (Kim & Lim, 2019). Many studies have reported
that scaffolding can improve learners' problem-solving
skills and positively affect academic achievement (Joo-
Yeun, 2015). However, they did not demonstrate which
type of scaffolding was most effective for different
students.,

In addition, research has shown that students' problem-
solving abilities vary due to their different levels of
metacognition, which can affect learning outcomes (Huang
& Zheng, 2021). Students with high levels of
metacognition will have higher problem-solving abilities,
while students with low levels of metacognition may need
more help in problem-solving activities. Therefore,
different scaffolding should be provided for students with
different metacognitive levels (Kim & Lim, 2019). In
summary, this study aimed to investigate the differences in
the effects of the types of scaffolding on students with
different levels of metacognition. The research questions
are as follows:

(1) Does the type of scaffolding affect the academic
performance of students with different metacognitive levels?

(2) Does the type of scaffolding affect the
computational thinking tendency of students with different
metacognitive levels?

(3) Do the types of scaffolding affect the
metacognitive tendencies of students with different
metacognitive levels?

2. METHODOLOGY
2.1. Participants
Eighty-three fourth-grade students in an elementary school
in Wenzhou City participated in a six-week experiment.
Their average age was 11-12 years old and they were
assigned to two classes. One class was Experiment 1 class
(n = 41) and the other was Experiment 2 class (n = 42).
Student information was anonymized.

Within the experimental classes, the experimental subjects
were divided into two groups each based on high and low
levels of metacognitive awareness by collecting data from
the experimental subjects' metacognitive awareness
tendency questionnaire. Both classes were taught by the
same teacher and had the same study time and course
content.
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2.2. Research Context
In this experiment, four lessons from the fourth-grade
information technology textbook of Zhejiang Province's
compulsory education textbook were selected as the main
learning content. During the experiment, the supportive
scaffolding was presented in the form of hints and visual
materials to provide classroom knowledge content and
instructions that learners needed to receive. The reflective
scaffolding consisted of exploratory questions, hints, and
summaries that provided learners with metacognitive
questions to help them review the content and reflect on the
learning process. The instructor provided no additional
support to control the experiment during the four-week
learning process. Each time the design of the scaffolding
was completed, it was submitted to a pilot school teacher
with four years of teaching experience for review and
revision.

2.3. Measurement Instruments
The measurement tools used in this study include the pre-
test and post-test of learning achievement, the
Computational Thinking Tendency Questionnaire and the
Metacognitive Tendency Questionnaire. The pre-test and
post-test of learning achievement were developed by the
authors in conjunction with what the students had learned,
and the papers were reviewed and approved by experts in
the field and experienced information technology teachers,
with a level of difficulty appropriate for fourth-grade
students. Both the pre-test and post-test contain 10
multiple-choice questions. Each set of questions contained
two reverse thinking questions of ten points each, totaling
100 points. The pre-test and post-test questions have
roughly the same compositional structure and are of similar
difficulty.
The instruments of the questionnaires of computational
thinking was adapted from a scale developed by Hwang
and Li (2020). It consists of 6 questions using a 5-point
Likert scale scoring scheme (i.e., strongly agree, agree,
generally, disagree, and strongly disagree). The Cronbach's
alpha of the questionnaire was 0.763.
The Metacognitive Dispositions Questionnaire was adapted
from the scale developed by Lai and Hwang (2014) and
contained 5 entries with a Cronbach's alpha value of
0.757.The questionnaire was scored on a 5-point Likert
scale with scores ranging from 1 to 5, representing in
descending order, "Completely Disagree", "Disagree",
"Neutral", "Agree" and "Completely agree".

2.4. Experimental Procedure
The experiment lasted for six weeks, with one class period
per week and 45 minutes per session. In the first week,
students need to complete the pre-test and pre-
questionnaire. During the second through fifth weeks, the
teachers taught the students, with the intervention using
reflective scaffolding in Experiment 1 class and supportive

scaffolding in Experiment 2 class. During the sixth week,
all the students completed the post-test and the post-
questionnaire. (shown in Figure 1).

2.5. Data Collection and Analysis
In this experimental study, the following types of data were 

collected: pre-test and post-test learning achievement, pre-
test and post-test computational thinking tendency, and pre-
test and post-test metacognitive awareness tendency.

In order to differentiate between students with different 

levels of metacognition, students were categorized into 

high and low metacognitive groups based on their 

metacognitive awareness tendency scores on the pre-test 

questionnaire. Experimental class 1 scored above the 

median (3.8) as high metacognitive level(HML) and below 

as low metacognitive level(LML); experimental class 2 

scored above the median (4.0) as high metacognitive level 

and below as low metacognitive level.

After removing the data from the anomalies, a sample size 

of 16 for the high metacognition level group and 14 for the 

low metacognition group in Experimental 1 was collected,
for a total sample size of 30 for Group 1; and a sample size 

of 15 for the high metacognition level group and 15 for the 

low metacognition group in Experimental 2 was collected,
for a total sample size of 30 for Group 2. The total sample 

size of the two groups was 60. The experimental subjects 

are shown in Table 1.

Table 1. Subject status questionnaire

Metacognition
groupingGroup 

Class1

Class2

Low 

High 

Total 

Low 

High 

Total

N 

14 

16 

30 

15 

15 

30

In order to understand the effect of the type of scaffolding and the
level of metacognition on students' learning achievement, a two-
factor covariate approach to data analysis was used. Students' pre-
test scores were used as covariates to eliminate differences in
learners' prior knowledge levels before the learning activity. The
independent variables were the type of scaffolding and the level
of metacognition, and the dependent variable was the students'
learning achievement.
The results of the two-factor analysis of covariance are shown in
Table 2, which shows that there is no significant interaction
between type of scaffolding and metacognitive level in terms of
learning achievement (F=.211, p>0.05), indicating that type of
scaffolding and metacognitive level do not jointly have a
significant effect on students' learning achievement. In addition,
scaffolding type (F=1.261, p>0.05) and metacognitive leve

3. RESULTS
3.1. Learning Achievement

l
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(F=0.061, p>0.05) did not have a significant effect on students'
learning achievement.

Table 2. Results of two-factor covariance analysis of
students' learning achievement

Variable SS df MS F P η²

Pre-test 1023.897 1 1023.8972.911 .094 .050

Metacognition
grouping

21.311 1 21.311 .061 .806 .001

Class 443.659 1 443.659 1.261 .266 .022

Metacognition
grouping * Class

314.317 1 314.317 .894 .349 .016

Error 19345.627 55 351.739

3.2. Computational Thinking Tendency
In order to understand the effect of scaffolding type and
metacognitive level on the development of students'
propensity to think computationally, a two-factor
covariance analysis was used in this study. The two-factor
covariance results were analyzed as shown in Table 3, and
there was a significant interaction between scaffolding type
and metacognitive level in terms of computational thinking
tendency (F=5.973, p<0.05), with an interaction effect size
of 0.098 between the two.

Table3. Results of a two-factor covariance analysis of
students' computational thinking tendency

The simple main effect of metacognitive level on students'
propensity to think computationally was further analyzed,
as shown in Table 4. The results showed that there was no
significant difference between the metacognitive levels of
the students in both Experimental 1 (F=3.658, p>0.05) and
Experimental 2 (F=2.783, p>0.05) in terms of their
propensity for computational thinking.

Table4 .Simple main effect analysis of metacognitive level
on students' computational thinking tendency

variable SS df MS F P η²

Class1 Between
groups

.819 1 .819 3.658 .064 .061

Within
groups

6.042 27 .224

Total 437.417 30

Class2 Between
groups

.588 1 .588 2.783 .129 .041

Within
groups

5.709 27 .211

Total 561.083 30

The results of the simple main effect analysis of the type of
scaffolding on students' propensity for computational
thinking are shown in Table 5. There was a significant
difference in the development of computational thinking
tendency among students with low metacognitive levels
using different scaffoldings in the learning process
(F=18.527, p<0.001, η²=0.259). There was no significant
difference in the development of computational thinking
tendency for students with high metacognitive level using
different scaffoldings during learning (F=0.744, p>0.05).
The results suggest that scaffoldings are more favorable to
students with low metacognitive levels compared to
students with high metacognitive levels.

Table5. Simple main effect analysis of scaffolding type on
students' computational thinking tendency

Variable SS df MS F P η²

LML Between
groups

4.247 1 4.247 18.527*** .000 .259

Within
groups

5.960 26 .229

Total 474.083 29

HML Between
groups

.151 1 .151 .744 .314 .018

Within
groups

5.687 28 .203

Total 524.417 31

***p < 0.001
Figure 2 shows the interaction plot between the type of
scaffolding and the effect of metacognitive level on
students' propensity to think computationally. The results
show that students using supportive scaffolding have a
higher propensity for computational thinking than students
using reflective scaffolding. In addition, when using
supportive scaffolding, students with low metacognitive
levels developed significantly higher computational
thinking tendencies than students with high metacognitive
levels.

variable SS df MS F P η²

Class 3.179 1 3.179 14.720** .000 .211

Metacogn
ition
grouping

.012 1 .012 .056 .814 .001

Class*
Metacogn
ition
grouping

1.290 1 1.290 5.973* .018 .098

Error 11.878 55 .216
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Figure 2. The Interaction of Scaffolding and Metacognitive
Levels in the computational thinking tendency

3.3. Metacognition Tendency
In order to understand the effect of type of scaffolding and
level of metacognition on the development of students'
metacognitive tendencies, a two-factor covariance analysis
was used in this study. The two-factor covariance results
were analyzed as shown in Table 6, the type of scaffolding
had a significant effect on students' metacognitive
tendencies (F=6.782, p<0.05), with an effect size of 0.11.
At the same time, the type of scaffolding and the level of
metacognition had a significant interaction effect on the
students' metacognitive tendencies (F=8.545, p<0.01), with
an interaction effect size of 0.134 between the two.

Table6 .Results of two-factor covariance analysis of
students' metacognition tendency

variable SS df MS F P η²
Class 2.020 1 2.020 6.782** .012 .110
Metacognitive
grouping

.335 1 .335 1.125 .293 .020

Class*
Metacognitive
grouping

2.545 1 2.545 8.545** .005 .134

Error 16.379 55 .298
**p < 0.01
The simple main effect of metacognitive level on students'
metacognitive tendencies was further analyzed, as shown in
Table 7. There was a significant difference in
metacognitive tendencies among students with different
metacognitive levels in Experimental 1 class (F=5.778,
p<0.05, η²=0.108). There was no significant difference in
metacognitive tendencies among students with different
metacognitive levels in Experimental Class 2 (F=0.57,
p>0.05). The results indicate that the metacognitive
tendencies of students with high metacognitive levels are
significantly higher than those of students with low
metacognitive levels when the reflective scaffolding is used.

Table7. Simple main effect analysis of metacognitive level
on metacognition tendency

variable SS df MS F P η²
Class1 Between

groups
1.624 1 1.624 5.778*.013 .108

Within
groups

7.588 27 .281

Total 467.400 30
Class2 Between

groups
.185 1 .185 .570 .449 .010

Within
groups

8.770 27 .325

Total 550.680 30

*p< 0.05
As shown in Table 8, there was no significant difference in
the metacognitive tendencies of students with high
metacognitive levels when using different scaffoldings
(F=0.11, p>0.05). However, there was a significant
difference in metacognitive tendencies for students with
low metacognitive levels when using different scaffoldings
(F=12.548, p<0.05, η²=0.213). The results suggest that
using supportive scaffolding is more effective than using
reflective scaffolding in improving metacognitive
tendencies for students with low metacognitive levels.

Table8. Simple main effect analysis of scaffolding type on
students' metacognition tendency

variable SS df MS F P η²
LML Between

groups
4.409 1 4.409 12.548** .000 .213

Within
groups

9.135 26 .351

Total 435.20029
HML Between

groups
.003 1 .003 .011 .822 .001

Within
groups

7.067 28 .252

Total 582.88031

**p < 0.01
Figure 3 shows the interaction between the type of
scaffolding and the effect of metacognitive level on
students' metacognitive tendencies. The results show that
students who used supportive scaffolding had higher
metacognitive tendencies than those who used reflective
scaffolding. In addition, supportive scaffolding are more
beneficial for students with low metacognitive levels to
improve their metacognitive tendencies.

Figure 3. The Interaction of Scaffolding and Metacognitive
Levels in the metacognition tendency
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4. DISCUSSION AND CONCLUSIONS
This study examined the effects of scaffolding type on
learning achievement, computational thinking tendency and
metacognitive tendency of students with different
metacognitive levels. The results showed that the type of
scaffolding interacted with metacognitive level in terms of
computational thinking tendency and metacognitive
tendency. For students with low metacognitive levels,
supportive scaffolding were more beneficial than reflective
scaffolding in enhancing their computational thinking
tendencies and metacognitive tendencies. However, the
interaction between the type of scaffolding and individual
metacognitive level did not have a significant effect on
learning achievement.

In terms of learning achievement, according to the results
of the study, learning achievement was not affected by the
type of scaffolding, the level of metacognition, and the
interaction between these two. This phenomenon may stem
from the short duration of the experiment and the lack of
instructional sessions, which limited the effect of
scaffolding on students' learning interventions.

In terms of the development of computational thinking
tendencies, the analyses revealed a significant interaction
between scaffolding type and metacognitive level.
Specifically, students who received supportive scaffolding
demonstrated stronger computational thinking tendencies
than those who used reflective scaffolding. Previous
research has found that supportive scaffolding are more
effective than reflective scaffolding in terms of spatial
ability self-efficacy, which echoes the findings of the
present study (Atman Uslu et al., 2022). Therefore, it can
be inferred that supportive scaffolding play a more critical
role in promoting the development of students'
computational thinking tendencies.

In terms of metacognitive tendencies, the findings reveal
that scaffolding type has a significant interaction with
metacognitive level. This suggests that students'
metacognitive thinking can be effectively promoted
through the use of scaffolding. Therefore, scaffolding can
be an effective strategy for students to promote
metacognitive activities by providing explanatory questions
that induce planning, monitoring, and assessment during
the learning process to help students learn about specific
domains (Lee, 2017). In addition, further comparative
analyses found that supportive scaffolding promote
students' metacognitive dispositions more than reflective
scaffolding, especially in the group of students with low
metacognitive levels.Jeon (2007) found in his study that
scaffolding promote metacognitive thinking by enabling
students to focus on important information, and that
students in the low metacognitive group who performed
better when receiving scaffolding about supportive types,
which is consistent with the findings of this study.

In addition, there are some limitations of this study. First,
the total sample size of this study is small, which may lead
to weak representativeness of the experimental results, and
it is recommended that the sample size can be enlarged in
subsequent studies. Second, the experimental period of this
experiment was short, and the intervention effect of the

scaffolding was not obvious for students who were used to
the traditional mode of teaching, making some aspects of
the experimental results not significant. It is recommended
that future researchers consider extending the experimental
period to enhance the intervention effect of scaffolding on
students' learning process.
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Assessing “Event” in Computational Thinking of Primary School Students: Design
Principles and Test Validation

ABSTRACT
Computational Thinking (CT) is a problem-solving skill
that is essential to everyone. With the momentum of
integrating CT into K–12 education, there is a growing
trend of introducing CT at early educational stages, which
necessitates more learning and assessment resources to
support CT instruction. This study presents a validated
assessment tool for measuring a CT construct, “event”, of
primary school students. A principled approach, evidence-
centered design, was adopted for test development, and six
items were developed, covering different focal knowledge,
skills, and abilities. To support students’ comprehension of
the test, detailed function descriptions and an anchor item
were provided. The test was then distributed to 639 primary
school students (Grades 2–4) for validation. Item Response
Theory was leveraged for psychometric analyses, and
results revealed proper parameters, indicating the
appropriateness of the test for the target group. Student
performance was further analyzed, where a linear growth
was identified along grade levels, and no gender difference
was examined within each grade. Implications for CT
primary education were discussed.
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item-response theory

1. INTRODUCTION
The development of technology has brought computing
skills into daily life (Bundy, 2007). Computational thinking
(CT) has been regarded as one of the 21st-century skills
that should be equipped by citizens (Voogt et al., 2015).
The origin of CT can be traced back to 1980, when
Seymour Papert introduced the idea of “algorithmic
thinking”, depicting it as “the art of deliberately thinking
like a computer, according, for example, to the stereotype
of a computer program that proceeds in a step-by-step,
literal, mechanical fashion” (Papert, 1980, p.27). The
concept became popularized after Jeanette Wing
reconceptualized it as “computational thinking” in 2006,
noting that it is a problem-solving skill based on the basic
concepts in computer science, which is essential for every
individual, not just computer professionals (Wing, 2006;
Wing, 2008).

CT is considered strongly associated with programming.
Programming is a cognitive activity that requires
understanding a problem as a computational task and
developing corresponding solutions through writing a
program (Pea & Kurland, 1984). Its association with CT
depicts that CT underpins the cognitive process of solving
problems whereas programming enlivens the process by
generating the solutions (Lye & Koh, 2014). As a result,
programming has become the main teaching tool for CT

instruction (Grover & Pea, 2013), and CT and
programming education has been incorporated into K–12
curriculum across the world (Bocconi et al., 2016).

With the growing momentum of CT education, students’
CT acquisition has gained intensive attention, which
necessitates proper resources for teaching and learning
practices. Assessment plays a central role in indicating
students’ knowledge acquisition and providing feedback
for further improvement. Thereby, there is a greater need
for well-designed CT assessment tools appropriate for the
target learners (Basu et al., 2021).

2. LITERATURE REVIEW
CT can be assessed with different approaches. Constructed
response tests were most widely used in the literature
(Tang et al., 2020). Based on well-defined items (e.g.,
multiple-choice questions), the approach allows large-scale
distribution and time-efficient collection of quantitative
data. Another measurement approach is performance-based
assessment, which indicates students’ performance by
analyzing their programming projects (e.g., codes)
(McMillan, 2014). To scaffold the evaluation of the
projects, a grading rubric is needed, where a checklist of
the measured skills is provided (Tang et al., 2020). This
approach is less applicable for novice learners, since
students’ experience in using the programming platform is
required (Chen et al., 2017).

Extensive attempts have been made in developing CT
assessment tools targeting different age groups across K–
12 education levels, encompassing secondary school
students (e.g., Bubica & Boljat, 2021; Román-González,
2015; Yağcı, 2018), upper primary school students (e.g.,
Basu et al., 2021; Kong & Wang, 2021; Rowe et al., 2021),
lower primary school students (e.g., de Ruiter & Bers, 2021;
Relkin et al., 2020; Zhang & Wong, 2023), and
preschoolers (e.g., Bers et al., 2014; Clarke-Midura et al.,
2021). These tools cover a broad range of CT concepts
(e.g., sequences, loops, conditionals) and CT practices (e.g.,
abstraction, debugging, algorithmic thinking), which could
gauge students’ CT competencies in different dimensions.

Despite the growing literature on CT assessment, the line
of research can be extended in three directions. First, as
there has been an emerging trend in integrating CT into
early childhood education (Bers, 2018), developing
appropriate instruments for this age group is needed.
Second, among the existing CT measurements, the
construct “event” was hardly investigated. This may be due
to the less application of the concept to daily problem-
solving contexts. However, “event” is a critical component
in CT conceptual frameworks, and a commonly used
construct in programming platforms (Brennan & Resnick,
2012). Meanwhile, according to the K–12 Computer
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Table 1. Requirements for the Test

3.1.2. Evidence Model
Evidence model aims to define how the constructs should 

be measured (Mislevy et al., 2003). Requirements for test 

development should be considered, in terms of the 

alignment with the measurement goal and the 

appropriateness for the target group. Table 1 displays the 

requirements drafted for the test, which covered test format,
measurement goal (i.e., FKSAs), and presentation of the 

tasks. For example, as the items are designed for primary-
aged children, the test should be independent of test-takers’
prior programming knowledge and should minimize 

potential challenges irrelevant to CT (e.g., reading skills,

Science Standards (CSTA, 2017), “event” is recognized as 

an essential concept that needs to be grasped by K–12 

students. Therefore, recourses in assessing “event” would 

be valuable for CT research and teaching practices. Third,
psychometric rigor of CT instruments should be improved 

(Grover & Pea, 2013). A tool with robust psychometric 

qualities should involve a systematic design model to 

clarify the rules and assumptions underlying the design,
and a field test to generate the quantitative parameters for 

validation (Kane, 2010). Both steps, involving a principled 

design approach and a large-scale test distribution, are 

necessary to ensure the psychometric rigor of the design.

To address these gaps, this study developed an instrument 

for assessing “event” of primary school students. A 

principled approach was leveraged for test design, and a 

systematic development process was illustrated. To 

validate the test, a field test was administered, where 

psychometric qualities of the test were examined and 

student performance was analyzed. The study is guided by 

the following research questions:

RQ1: How can we design a test for assessing “event” of 

primary school students?

RQ2: What are the psychometric qualities of the test?

RQ3: How is students’ performance on the test?

3. METHOD
3.1. Test Development
A principled approach, Evidence-Centered Design (ECD),
was leveraged for the test design. ECD is a framework that 

connects student capacities with tasks through evidentiary 

arguments (Mislevy, 2007). The framework is composed of 

three models to guide the test design, namely, student 

model, evidence model, and task model (Mislevy et al.,
2003). This section will elaborate on how the test was 

designed based on the three models.

3.1.1. Student Model
Student model defines what to measure (Mislevy et al.,
2003). As the test aims to assess “event”, the definition of 

the construct should be identified first. The definition 

proposed by Brennan & Resnick (2012) was referred to,
noting that an event is an activity in which one thing 

triggers another thing to happen. Then, the scope of the 

construct was specified, where a set of focal knowledge,
skills, and abilities (FKSAs) were proposed. According to 

the literature, multiple dimensions for evaluating 

programming performance can be identified, namely, the 

ability to identify the output of the given instructions, the 

ability to identify the instructions of the given output, and 

the ability to identify errors in the instructions to reach the 

given output (Zhang & Wong, 2023), which was 

incorporated into item development for the present study.
The FKSAs for the test include: (1) Ability to identify the 

output of a set of instructions with simple events; (2)
Ability to identify instructions with simple events to 

represent a given description; and (3) Ability to identify 

error(s) in a set of instructions that includes simple events.

writing skills).

.
Requirement

Test format  The test should be independent of test-
takers’ prior programming knowledge.

 The test should allow large-scale
administration.

 The tool should enable objective
evaluation of students’ performance.

FKSAs  The test items should differ in degrees of
difficulty to differentiate levels of
competencies related to FKSAs.

 Each FKSA should be able to be tested
separately, without nesting with others.

Task
presentation

 Text descriptions and icons/symbols
should be understandable to the test
takers.

 The test should minimize possible
challenges irrelevant to the measured CT
constructs (e.g., reading skills, writing
skills).

is commonly used in CT assessment tools (e.g., Román-
González, 2015; Zhang & Wong, 2023). “Event” was
introduced as a function in the scenario (see Figure 1).
In the function, when the character, Hungry Snake, eats
fruits, it triggers the Pen to draw letters, where different
fruits correspond to different letters.

 Representation for instructions: Visual alternative

3.1.3. Task Model
Task model depicts the presentation materials needed for 

accumulating the evidence defined in the evidence model 

(Mislevy et al., 2003). Based on the requirements from the 

evidence model, six items were initially designed. The task 

features are as follows.

 Item scenario: A drawing scenario was adopted, which

s
(e.g., arrows) were used to represent the instructions, as
it is easier to understand compared to programming
blocks, which are deemed suitable for young students
(Zhang et al., 2023).

 Task requirement: An anchor item was provided to
elaborate on how the instructions are executed by the
character (see Figure 2). The items are designed based
on sequencing the given instructions (inferring the
output by stating the instructions in an orderly manner)
to solve the problem.
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Figure 3-5 presents some example items. Figure 3
demonstrates a task designed for FKSA1 (Ability to
identify the output of a set of instructions with simple
events), where students were asked to identify what the Pen
would draw when Hungary Snake executed the given
instructions. Figure 4 is an example for assessing FKSA2
(Ability to identify instructions with simple events to
represent a given description), where students need to
identify the map where Hungary Snake carried out the
instructions, based on what the Pen had drawn. The item
displayed in Figure 5 aims to measure FKSA3 (Ability to
identify error(s) in a set of instructions that includes simple
events). In this task, students were required to detect the
error in the map that caused the malfunction of the Pen
when drawing the designated letters.

Figure 1. Description of Event Function.

Figure 2. Anchor Item

Table 2. Characteristics of the Sample

3.2. Test Validation
To validate the test, a field test was administered. This 

section will introduce the details of the field test.

3.2.1. Sample
Participants were recruited from a public primary school in 

China. Students from Grades 2–4 were invited, which 

aligns with the target group of the test. A total of 639 

students agreed to participate, and the characteristics of the 

sample are presented in Table 2.

.

Category N
Grade 2 210

3 212
4 217

Gender Male 323
Female 289
Not reported 28

Figure 3. Example Item-FKSA1.

Figure 4. Example Item-FKSA2

Figure 5. Example Item-FKSA3.
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4. RESULT
This section will present the results of the test validation.
Descriptive data on the score distribution and student
performance will be demonstrated, and the psychometric
evidence will be reported based on both CTT and IRT

3.2.2. Data Analysis
To investigate the psychometric qualities of the test (RQ2),
statistical analyses were carried out. Data analysis was 

performed regarding descriptive statistics, psychometric 

analyses based on Classical Test Theory (CTT), and 

psychometric analyses based on Item Response Theory 

(IRT). After confirming the psychometric qualities of the 

test, student performance across demographics was 

investigated (RQ3).

.

Table 3. Descriptive Statistics

4.1. Descriptive Statistics
Descriptive data is presented in Table 3. The mean was 

2.93 (out of 6), indicating that students performed 

moderately well. The skewness and kurtosis were within 

±2.0, suggesting a proper value for score distribution 

(George & Mallery, 2019).

.
Mean SD Median Skew Kurt

Event 2.93 3.76 3.00 -1.17 0.02

4.2. Psychometric Evidence Based on CTT
Internal consistency of the test was calculated. Cronbach’s 

α value for the six items was 0.735, above the cut-off point 

of 0.7 (Nunnally & Bernstein, 1994), suggesting that the 

test could provide consistent results.

4.3.1. Calibration
Prior to parameter analyses, calibration of the data was 

performed regarding dimensionality, local independence,
and model fit. First, for dimensionality, nonlinear 

confirmatory factor analysis was conducted in Mplus, and 

the root mean square error of approximation (RMSEA),
comparative fit index (CFI), and Tucker-Lewis index (TLI)
were examined. As all the items were designed to measure 

the same construct, a single-factor model was built. The 

results reveal RMSEA = 0.052, CFI = 0.976, and TLI =
0.960, which shows a proper fit (Hu & Bentler, 1999),
confirming the unidimensionality of the data. Then, model 

fit for the three basic IRT models, one-parameter logistic 

(1PL) model, two-parameter logistic (2PL) model, and 

three-parameter logistic (3PL) model, was checked. Item fit 

indices for each model were generated with mirt package in 

R. Results indicate that 2PL model had the best fit, with no 

misfitting items according to the value of χ²/df ratio 

(Aesaert et al., 2014). Therefore, 2PL model was applied 

for further analysis. Next, local independence of the items 

was viewed via Yen’s Q3 statistics. The results illustrate 

that three item pairs were slightly higher than 0.2,
indicating that local independence was not violated in 

4.3. Psychometric Evidence Based on IRT

general (Yen, 1993).

discrimination parameter should be higher than 0.5 (Reeve
& Fayers, 2005). Results from the field test show that the
average difficulty index was 0.074 (range = -0.289, 0.533),
indicating that the items had proper difficulty levels. The
mean for item discrimination was 1.757 (range = 1.316,
2.444), suggesting that the items could effectively
differentiate different levels of performers. The item
characteristic curve (ICC) is presented in Figure 6. For
each item, the graph displayed an S-shape curve,
illustrating that it can effectively discriminate students of
different levels. The x value was at a middle range when y
equals 0.5, indicating that the difficulty level is moderate.
In summary, each item generated proper parameters,
suggesting that the test is suitable for the target students

4.3.2. Item Parameters
The 2PL model generates two parameters for each item,
namely, item discrimination and item difficulty. The 

acceptable value for the difficulty parameter ranges from -4 

to 4 (Baker, 2001), and the desirable value for the

.

Figure 6. Item Characteristic Curve (ICC).

4.3.3. Test Information
Test information in IRT reveals the reliability of the test 

(Aesaert, 2014). Figure 7 presents the test information 

curve of the study. The information provided by the test 

was 4.82 when the ability of a test-taker was -0.1,
demonstrating that the test provided the most information 

about students with average levels. Overall, the test 

undertakes a broad coverage of ability levels.

Figure 7. Test Information Curve

Table 4. Student Performance by Grade

4.4. Analysis of Student Performance
Student performance was analyzed across grade levels and 

gender groups. Table 4 presents the performance across the 

three grades. An ANOVA test was conducted, and a 

significant difference was examined. The mean increased 

along with the grade level, ranging from 2.17 to 3.93,
indicating that the test was marginally challenging for 

Grade 2, balanced for Grade 3, and slightly easy for Grade 

4. Overall, the test was appropriate for the target age group.

.
N Mean SD F p
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Grade 2 210 2.17 1.70 54.263 <0.001
Grade 3 212 2.69 1.88
Grade 4 217 3.93 1.80

Further, student performance by gender was explored. T-
tests were conducted within each grade, and the results are
displayed in Table 5. It is suggested that there was no
significant statistical difference between male and female
students in each grade, indicating that boys and girls
performed equally in the test.

Table 5. Student Performance by Gender.
Gender N Mean SD t p

Grade 2 Male 105 2.17 1.78 -0.128 0.898
Female 99 2.20 1.62

Grade 3 Male 108 2.75 1.98 0.184 0.854
Female 87 2.70 1.72

Grade 4 Male 110 4.05 1.77 0.966 0.335
Female 103 3.82 1.85

5. DISCUSSION AND CONCLUSION
This study aims to develop and validate an instrument for
measuring the “event” construct in CT for primary school
students. A principle approach, ECD, was leveraged for
test development, and six items were originally designed.
The test was then distributed to 639 2nd–4th graders for
validation, and the results indicate proper psychometric
indicators based on both CTT and IRT. Student
performance was analyzed, where a linear growth by
grades was found and no gender gap was detected.

The study contributes to the field by providing a validated
assessment tool for the “event” construct, which enriches
the pool of CT measurements with a concept that is hardly
covered by other tools. The test is independent of any
programming context, making it appropriate for novices
and learners with different programming language
backgrounds and applicable as a diagnostic test for pre–
post conditions in educational programs. The instrument
has been rigorously validated, and robust psychometric
evidence was provided, which can be applied to future
research and teaching practices. In addition, the study
demonstrates a systematic design process of the
measurement, which is replicable for future practitioners to
develop their own CT instruments.

The test was easy to administer in primary school
classrooms, as reflected by the test invigilators. The format
of constructed response allows large-scale data collection
in a short period. Yet there are trade-offs to consider for CT
test design (Basu et al., 2021). While constructed-response
tests tend to be administration-friendly, they can hardly
gauge students’ practical skills in programming platforms.
Thereby, a combination of assessment tools is suggested,
where diagnostic tests can be used as summative
assessment to capture students’ conceptual understanding
and project-based measurements can be leveraged as
formative assessment to suggest further improvement in
programming practices.

Several limitations of the study need to be mentioned. First,
as participants were from similar cultural backgrounds,
caution is needed when generalizing the results to other

cultural contexts. Second, since the Chinese version of the
test was used for validation, the English version may need
to be piloted before adopting it in English contexts. We
welcome future studies to validate the test in different
contexts and languages.
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ABSTRACT
The primary English curriculum attaches importance to
learning and teaching mode changes, the quality of
thinking, and the development of problem-solving skills in
a modern information technology context in China.
Therefore, paying attention to the integration of
computational thinking (CT) with the primary English
curriculum in the design and implementation is an effective
way of creatively solving subject problems and promoting
curriculum development. This paper constructs a
pedagogical framework for the integration of CT with the
primary English curriculum from a disciplinary perspective,
exploring the principles, elements, and processes of
curriculum integration. In this study, CT is integrated into
the primary English curriculum through a task-driven
teaching and learning design in terms of knowledge and
skills, processes and strategies, attitudes, and values. It is
hoped that this paper will inspire discussion among
teachers about CT in the teaching of subject curricula,
particularly needed in language subjects. Moreover,
students are enabled to develop a systematic and scientific
mode of thinking and inquiry skills, with structured
knowledge and competence in English language disciplines
and interdisciplinary study in a digital society.

KEYWORDS
computational thinking, primary English curriculum,
pedagogical framework

1. INTRODUCTION
Since the 21st century, CT as a thinking skill has been
highly valued in the education reforms of many countries
to meet the current needs of society and individuals in the
information society, and they have also affected the
development of discipline curriculum design and
implementation. The integration of CT in lessons can be
effective in helping students and teachers improve their
knowledge, skills, and attitudes (Bocconi et al., 2016).
There are several initiatives to actively integrate CT into
the curriculum across different subject areas at
international, national, and school levels, especially in
primary grades (Israel et al., 2022; Voogt et al., 2015).
Research on CT in primary schools indicated that the best
pathway to provide CT to students at this age level may be
through its integration into core subjects (Duncan et al.,
2017; Yadav et al., 2016). In K-12 classrooms, researchers
argued that not only STEM classrooms but also language
arts can be integrated with CT skills through activities
(Barr & Stephenson, 2011). It is necessary to enhance more
opportunities for the CT integrated into the curriculums of

the language arts, social sciences, and art disciplines (Yeni
et al., 2024).

Digital education and curriculum reform in line with
national conditions are being actively explored in China, as
evidenced by the focus on CT in subjects. English as a
foreign language subject in compulsory education in China
aims to improve students’ language competence, cultural
awareness, quality of thinking, and learning competence
(Ministry of Education, 2022). The newly revised
curriculum standard focuses on the essence of education,
takes the core competences as the overarching principle,
and integrates all aspects including curriculum objectives,
curriculum content, teaching implementation, and teaching
evaluation to construct a panoramic blueprint for educating
people in the foreign language discipline in the new era
(Ministry of Education, 2022). To meet the needs for social
and personal development, English lessons emphasize the
changes in learning styles and teaching modes in the
context of modern information technology. It emphasizes
the enhancement of students' thinking skills in identifying,
analyzing, and solving problems through the teaching of
English lessons. Additionally, educators can improve
English subject lessons with CT, even in primary schools
without a related computational science subject, to achieve
relative equity in education (Jacob et al., 2022). Therefore,
it is significant to establish an understanding of what CT is
and how to integrate it into the classroom in different
educational contexts.
Based on the above analysis, the main problem addressed
in this study focuses on the effective construction of a
pedagogical framework for the integration of CT with the
primary English curriculum. To explore the application of a
pedagogical framework for CT integrated into primary
school English lessons in an attempt to improve English
language curriculum development. It aims to develop
knowledge, skills, and attitudes of students' subject
learning through CT, as well as their ability to use
computer science and technology to solve practical
problems.

2. BACKGROUND
The application and popularity of CT in curriculum
development provide researchers with opportunities to
define it at various stages and perspectives. Humans use
CT as a method to solve problems (Wing, 2006).
Previously, CT has been described as applying
computational methods to tackle daily and interdisciplinary
problems (CSTA & ISTE, 2011; Hsu et al., 2018). Wing
(2006) first emphasized that CT involves “solving
problems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental to
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computer science” (p. 33). CT involves a cohesive
combination of skills and methodologies aimed at solving
complex problems, serving as a way to learn topics across
various disciplines, and is imperative for complete
engagement in a computational world (Mills et al., 2021).
Besides, CT can be seen as the cognitive processes entailed
in the formulation of problems, enabling the representation
of their solutions through a structured sequence of
computational steps and algorithms (Grover & Pea, 2013).
CT is also considered from computational concepts
(sequences, loops, events, parallelism, conditionals,
operators, data), computational practices (problem-solving
practice through experimenting and iterating, testing and
debugging, reusing and remixing, abstracting and
modularizing), and computational perspectives (expressing,
connecting, questioning) (Brennan & Resnick, 2012).
Some researchers defined CT through its core components,
such as decomposition, abstraction, algorithm design,
evaluation, and generalization (Selby & Woollard, 2013).

Supporters of an integrated approach assert that integrating
CT into a core subject is essential for reaching all students
in instruction (Weintrop et al., 2016). Additionally, it
provides teachers with the opportunity to construct their
existing content and pedagogical knowledge when
introducing CT in their classrooms (Rich et al., 2019). In
addition to STEM subjects, CT can also be used to teach
students in fields such as social studies, art, music, English
(Garvin et al., 2019) and English as a second language
(Jacob et al., 2018). Teachers attempt to explore potential
teaching opportunities for integrating CT with the English
language curriculum. Researchers have initiated the design
and development of pedagogical frameworks aimed at
facilitating the implementation of CT within the English
language curriculum, such as the PRADA (Pattern
Recognition, Abstraction, Decomposition, Algorithms)
model (Dong et al., 2019) and CDIO (Conceive-Design-
Implement-Operate) framework (Hladik et al., 2017).
However, there is a notable lack of frameworks addressing
the connection of CT, language, and literacy learning to
guide instructional practices specifically tailored for
culturally and linguistically diverse learners (Jacob et al.,
2022). The previous pedagogical framework design
primarily focuses on integrating core components of CT
with the English language curriculum, lacking attention to
the integration of attitudes, culture, and value knowledge.
The research requires enhancing the systematic and
progressive nature of the curriculum design framework.
This study attempts to fill the gap in the design of primary
school English curriculum pedagogical frameworks based
on CT within the Chinese educational context. It aims to
deepen the understanding of the integration relationship
between CT and English language curriculum, assisting
teachers in effectively guiding students' learning through
instruction.

3. THE CONSTRUCTION OF A
PEDAGOGICAL FRAMEWORK
The construction of the pedagogical framework requires an
in-depth understanding of the principles and components of
the integration of English curriculum standards and CT. In
this study, CT is defined as a thought process for solving

problems with or without technology and can be
represented through knowledge and skills, process and
methods, attitudes and values. We also focus on the
corresponding relationship between CT and the primary
English curriculum standard (2022 version).

3.1. The Construction Principles of Pedagogical
Framework
The construction principles of the pedagogical framework
combine different subjects and their needs. The primary
English curriculum standards emphasize the goal-
orientation, problem-orientation, and innovation-
orientation of the curriculum design principles (Ministry of
Education, 2022). This study developed the following
principles in order to guide educators constructing
pedagogical frameworks that are effective, adaptable, and
responsive to the evolving needs of learners in diverse
educational settings.

1) Ensure that the pedagogical framework is consistent
with the overall educational goals.

2) Clearly define the purpose and expected outcomes of the
framework and provide a roadmap for educators and
learners.

3) Encourage an interdisciplinary content and approach that
strengthens the links between different disciplines and
promotes problem solving.

4) Utilize a variety of teaching and learning environments
(e.g. plugged and unplugged settings, etc.) to enhance and
support a framework that prepares students for the
innovative demands of life.

5) Ensure that the framework is culturally relevant,
recognizing and respecting the diversity of students'
backgrounds and experiences.

6) Incorporate regular reflection and evaluation processes
to assess the effectiveness of the framework, get feedback
from educators and students, and make continuous
improvements.

3.2. The Components of Pedagogical Framework
The TPACK framework could be a helpful model for
integrating CT within the subject matter and pedagogical
techniques that teachers would teach in their future
classrooms (Yadav et al., 2017). The concept of TPACK
can be found over time through the a series of publications
(Mishra & Koehler, 2006). The teacher's knowledge is
composed of three main parts: content, pedagogy, and
technology in this model. The interaction between these
components represents TCK (technological content
knowledge), TPK (technological pedagogical knowledge),
PCK (pedagogical content knowledge), and TPACK
(technological, pedagogical, and content knowledge) in this
model. Moreover, the term "TPACK" refers to the context-
based integration of technology, pedagogy, and content
knowledge for CT concepts, practices, and perspectives
(Kong & Lai, 2021). This research is based on the TPACK
model as an outline to identify that CT can be integrated
into the English language curriculum teaching and learning
in a digital environment. Therefore, the component of the
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pedagogical framework in this study focuses on CT,
English language, pedagogy, and technology resources.

3.3. The Overview of Pedagogical Framework
The construction of the pedagogical framework focuses on
the relationships among CT (knowledge and skills, process
and methods, attitudes and values), English language
curriculum (English language content and interdisciplinary
content), pedagogy (curriculum implementation design and
curriculum instructional strategies), technology and
resources (plugged resources, unplugged resources, internal
resources, and external resources) (see Figure 1). Within
the integrated context of diversity, the integration of these
four elements facilitates the attainment of curriculum
objectives and expected outcomes to assist teachers and
students in further reflecting upon and evaluating the
effectiveness of curriculum design and implementation.
Furthermore, the pedagogical framework considers
students' learning stages and proficiency, emphasizing the
continuity, sequence, and progression from low to high
levels.

Figure 1. The Overview of Pedagogical Framework

4. THE APPLICATION EXAMPLES OF A
PEDAGOGICAL FRAMEWORK
4.1. Objectives and Content Design of Primary English
Curriculum Based on CT
In this study, CT is integrated into the primary English
curriculum through a task-driven teaching and learning
design in terms of knowledge and skills, processes and
strategies, attitudes and values. The integration teaching
objectives focus on English language competence,
computational thinking, culture awareness, and learning
competence. This example described and developed how
CT integrated into primary English lessons with
interdisciplinary content in grade 5 in Beijing, China. The
course teaching content was designed based on two units
(Unit 2 What do Flowers do? & Unit 3 How do seeds
travel?) of the Beijing Publishing House's Primary English
Grade 5 textbook in which natural science is an
interdisciplinary topic. Among them, the interdisciplinary
theme content guides students to understand individuals,
society, and nature.

Firstly, teachers guided students to understand and apply
the basic knowledge and concepts of CT such as data
collection, data representation, decomposition, pattern
recognition, pattern generalization, abstraction, and
algorithm design. Through debugging, cooperation, and
innovative computational thinking-related methods,

students can effectively carry out learning activities.
Students can browse, search, filter, evaluate, and manage
data and digital content to solve problems in tasks. Through
the completion of task assignments, teachers guide students
to have confidence and persistence in solving complex
problems. They develop their ability to communicate and
cooperate with others to achieve common goals or
solutions in games and group work.

Secondly, teachers organize activities to help students learn
the English language and interdisciplinary content.
Students are able to recognize sentence patterns related to
the names of plant parts and vocabulary for plant functions
and be able to apply them in relevant situations. Students
can understand, comprehend, and read discourse. In the
activity, students saw the pictures of different plants and
objects appearing in the PPT, the teacher led the students to
observe and discover the similarities and differences
among objects. Based on the above observations and
findings, teachers let students learn new sentence patterns
to describe the similarities and differences between
different plants and objects: “What’s the English for the
different parts of a …? They are … .” “What do…do?
They… ”. Teachers guided students to identify problems in
plant science and attempt to solve them through
observation, hands-on practice, and independent inquiry.

Finally, students can understand the function of the role of
plants, growth processes, and other scientific knowledge
through English sentence patterns, algorithm design, and
story reading about plants in traditional Chinese culture.
For example, the teacher shows an animation of the plant
growth process and growing conditions and asks students
“What do the leaves do to make food?” And students try to
answer with “They need (sunlight, water, nutrients,
etc.) ….”. Based on the information in the animation, the
teacher summarizes the sequential process of plant growth
and allows students to sequence and design algorithms.
Students completed the following tasks to put the correct
order below and design the algorithm by themselves
through group work (see Figure 2). Students are able to
work through debugging, collaboration, and creative
approaches related to CT. Additionally, students can carry
out learning activities effectively through teachers’
instruction.

Figure 2. The Task of Activity

101



4.2. Implementation and Evaluation of Primary English
Curriculum Based on CT
The implementation strategies were unplugged and plugged
activities to enhance students' language and
interdisciplinary learning performance in terms of
knowledge and skills, processes and methods, and attitudes
and values. Students test their performance after lessons’
implementation by completing lessons’ exercises. A semi-
structured interview method was used for six of their
teachers in Beijing, China. This research carried out in-
depth interviews and text transcriptions, coding from
cognition and implementation status. Teachers’ interviews
mainly include conceptual understanding of CT,
implementation design, and strategies of primary school
English curriculum based on CT.

From a student learning perspective, there is a learning
challenge and an adaptation process when students do
activities integrated with CT that are different from those
previously conducted in school. In this lesson, students
used video, PowerPoint, electronic whiteboard, A4 paper,
pen, vocabulary card, and textbooks to learn. There is still a
lack of support from the technological environment for
students to use plugged CT activities in their everyday
classroom learning. Students with high levels of English
language learning are used to learning English in an
unplugged way and have a strong motivation and interest in
unplugged CT learning. Flowcharts, relational diagrams
and pictures help students to break down complex
problems and understand interdisciplinary and English
subjects very effectively and logically through results of
completion of classroom activity tasks. Students with high
scores are accustomed to using tools such as the Internet,
multimedia, and books to find information and solve
complex interdisciplinary and open-ended problems.
Students enjoy learning and engaging in fun and innovative
knowledge and activities.

After the classroom implementation, teachers found that
students have improved their understanding of CT and
English learning to a certain extent, and the teacher's
teaching effect has achieved the expected outcomes.
Teachers' awareness of CT concepts has deepened
following the curriculum implementation, and it is
necessary to integrate CT into primary English lessons. The
integration of CT into the primary English curriculum
needs to be supported by national policy, local government,
school leaders, experts for school hardware and facilities,
and computer science professionals. The primary school
English teachers who are interviewed believe that the
integration of CT and primary school English curriculum
needs to follow the principles of involvement and
effectiveness. Primary English teachers need to focus on
students' interest in learning, interdisciplinary knowledge,
and English language content in the process of curriculum
integration. Teachers' awareness of CT and teaching skills
still need to be strengthened and training is a current
challenge. Teachers urgently need the support of practical
cases, guide books, and resource packs, so that teachers can
operate more conveniently and effectively in the process of
teaching practice.

5. DISCUSSION AND CONCLUSIONS
This study inspires discussion among teachers about CT in
the teaching of subject curricula, particularly needed in
language subjects. The integration process should be
concerned not to increase the teachers' workload. It is only
necessary for teachers to make further improvements on the
original basis. There are challenges in terms of the
feasibility of implementing lessons in different schools, for
example, designing problem solve tasks and inquiry-based
classrooms, which often take longer time for collaborative
inquiry discussions. The pedagogical framework can help
teachers to design activities to achieve their objectives
more effectively and to solve real-life problems through
lesson activities. Existing research also shows that pattern
recognition is the most acceptable concept for students to
integrate into English language learning. The activities that
students found most difficult were those related to
abstraction and creativity, and students felt they faced
difficulties with both CT and the English language in this
study. The unplugged and plugged activities can both
support students in English and CT learning. The effective
connection between curriculum objectives and CT concepts
makes the implementation of learning activities effective
and feasible. Students have positive attitudes towards CT
for learning in the primary English curriculum and are
motivated by learning interest, peer communication,
learning styles, inquiry-based tasks, and interdisciplinary
knowledge. Teachers' CT awareness and teaching skills
need to be strengthened, trained, and practical support. Due
to time and conditions constraints, research needs to further
understand the construction of the pedagogical framework.
Therefore, future studies are encouraged to develop
creative ways for students and teachers to integrate CT into
primary English lessons. The limitation of this study was
that the participants were in fifth grade in elementary
schools, it is suggested that empirical studies involving
students of different ages be conducted in the future.
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ABSTRACT
Computational thinking (CT) is the most essential mind-set
for people to live in intelligent society which almost exists
in every fields, therefore, fostering the primary grades' CT
in schools is the most urgent matter. The literature on the
subject shows that programming is the key to develop
children's CT which essentially demonstrates how
computers process problems and is known as algorithms.
However, many schools in China even can not offer
programming education because of teaching facilities
limitations. In the background of above issues, the paper
took selection sort and binary search algorithms as
examples to design the learning subject named Looking for
Lucky Boy or Girl, which was aimed to explore not only
the effectiveness of interdisciplinary training low-grades'
CT in sports games but also low-cost programming
education for the primary grades in school. Besides, the
research was conducted by case study method whose steps
consisted of designing, implementation, assessment and
optimization. The study applied the pre-test and post-test in
the same group whose data was involved in paired samples
t-tests by SPSS. The statistics indicated that there was
extremely marked difference between pre test and post test
score, the student even behaved better in post-test. On the
basis of results, it found that integrating algorithms
learinng into sports games can effectively promote the
primary grades's CT in schools. In a word, it is feasible to
interdisciplinary develop students' CT by sports games in
early primary schools.

KEYWORDS
algorithms, computational thinking, early primary schools,
interdisciplinary, sports games

1. INTRODUCTION
Computational thinking is used to refer to not only a series
of tasks which computers executes to solve the problems,
but also several steps which people integrating information
technology into problem-solving process. Nowadays,
computational thinking is as important as reading and
writing skills for people which has outstanding
interdisciplinary characteristics. Excluding computer
science, computational thinking is embedded in lots of
subject fields such as mathematics, physics, Chemistry, etc.
However, there were few researches indicated how to
foster students' computational thinking across disciplines.
Besides, many schools in China can not offer computer
education. Therefore, it's more and more urgent to explore
the cheap, simple, general ways to improve students'
computational thinking level.
Based on above issues, the study took selection sort and
binary search algorithms as examples to design learning
activities and applied case study method to explore whether
integrating sorting algorithms principles to sports games in

lower primary school can effectively promote students'
computational thinking level.

2. LITERATURE REVIEW
2.1. Computational Thinking
Computational thinking emerged with the birth of
computers. At that time, people knew little about what
computational thinking was. It was not until 2006 that
Jeannette M. Wing defined computational thinking as how
computers address problems, design systems and
understand human with fundamental concepts about
computer science. In addition, Professor Chou pointed out
that computational thinking was extremely related to
mathematical thinking and engineering thinking. With the
development of information technology, almost all subjects
are challenged by computerization which means there are
distinctive computational models in different subject fields
and they rely on computers to simulate and solve research
problems. In summary, computational thinking refers to the
problem-solving strategic mechanism which are formed as
follow: decomposition, abstraction, modelization and
automation.

2.2. Learners' Features
According to Piaget's cognitive-developmental theory,
students in primary grades are in the key period which turn
pre-operation to practical operation stage. In other words,
students' image thinking is evolving to conceptual thinking
which refers to students should understand and experience
computational thinking in terms of concrete entities. GUI
programming, such as scratch, mBlock, Arduino and so on,
is becoming more and more popular which make
computational thinking learning tangible, visual and easy to
mastery. Moreover, lower grades in primary schools is the
crucial period for students to develop sports skills and
interests, so making full use of the period to train the
physical abilities is an urgent matter.

2.3. Programming Education
Programming skills is the most indispensable part of
information literacy and artificial intelligence literacy,
which manifests computer coding is the crucial carrier for
computational thinking learning. From 19th century on,
many countries around the world put the programming
education on the front burner, which included coding in
curricula for primary schools and even kindergarten.
However, computer screen is harmful for students' eyesight.
As a result, screen-free programming education was
proposed which indicates students learning how to code
with devices, toys and games. There are two kinds of
screen-free programming education devices. One kind is
programming robots such as Bee-Bot, Turtles, Cubetto, etc.
The other is mechanical devices namely Code Monkey
Island, Mindware Code Hopper, etc. Generally, the

104



physical devices are expensive, thus many researches turn
to design computational thinking learning games with
stickers, cards and blocks and so on instead of expensive
devices.

The computers execute a sequence of instructions to solve
problems which are known as algorithms. Therefore,
understand and experience algorithms is the primary issue
comparing with programming. The world is totally
unordered and everything could be digitalized and
symbolized, thus, computers should put data in specific
order before solving problem which is also represented as
sorting algorithms. In addition, query is also a critical part
of computational thinking which is represented as query
algorithms. Based on learners' feature of lower grades in
primary school, the binary search algorithm would be
incorporated in the research.

2.4. Interdisciplinary Learning
Chinese Information Technology Curriculum Standards for
Compulsory Education claimed that interdisciplinary
learning should be incorporated into the course. In sports
games, students imitate computers to interact with the
world in their body language, which is a low even zero cost
way to develop computational thinking. It's really an
excited news for the school which can not offer
programming education.

In sports games, students move their body to simulate
algorithms which is as same as entities such as stickers,
cards, and wooden blocks in physical programming devices.
For example, there is a sport game combining sports skills
such as walking, running, jumping, etc with cycle structure
in programming. The game asks students to follow the
teacher's instructions and take corresponding accordingly.
If the instruction is given as Jumping Until Reaching Red
Flag or Stopping Walking When Meeting Yellow Flag,
they correspond with the repeat-until loop and do-while
loop in programming education respectively.

3. METHODOLOGY
3.1. Participants
Students of first grade is in bad class discipline and even
could not understand algorithms, therefore, the study took
students in first class, second grade of F Primary School in
Shantou city as research subjects, 30 participants in total. F
Primary School could not offer any computational thinking
learning activities for the lower grades. In the view of
present issues, sports games are simple, economical and
practical carriers for programming education.

3.2. Research Methods
The research adopted case study method to explore whether
developing low-grade students' computational thinking
through sports games is feasible. The method consists of
four parts that are as follows by designing, implementing,
accessing and optimizing classroom activities.

3.3. Teaching Activities Design
The learning theme is named as Looking for the Lucky Boy
or Girl, which students will experience and ponder over
how selection sort algorithms work through queue

formation sport game and how binary search algorithms
work through the sport game named Looking for the Lucky
Boy or Girl.
It will take three classes to complete the learning subjects,
one class is for pre-tests and sports games preparations,
then the second class is for queue formation sport game,
finally, the last class is for Looking for the Lucky Boy or
Girl and post-tests.
The specific teaching steps are showed in Table 1 which
contains four parts, namely, beginning, preparing, main and
ending parts.

Table 1. Teaching Activities Design
Teaching Steps Teaching Activities

Beginning part Greeting
Roll-Call

Preparing part Warm-up Exercises

Main part

(Case 1)Firstly, the students (30 in
total) should be divided into six
groups, each group are numbered off
one by one from the left to the right.
Secondly, each group will be
reshuffled and make students each
group in a different order.
Thirdly, the teacher give the
instruction such as From Biggest to
Smallest, each group finally shape
the new ordered queue.

(Case 2)Firstly, the students will be
divided into three groups, students of
each group are numbered.
Secondly, after teacher offers the
lucky number, students will be in
continuous divided into two equal
group until the lucky boy or girl is
found.
Last but not least, if odd number is
existed, add a student to the group.

Ending part Relaxation Exercises
Summary

3.4. Evaluation Design
The research set answer at three stages which contains
answers, reasons and confidence according to findings of
misconceptions and certainty of response index.
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Besides, it’ s also shown in table 2 that the scores are
classified into into four categories, namely, having solid
knowledge, self-doubt, having weak knowledge, having
poor knowledge.

Table 2. Evaluation Criterion
reasons confidence scores

solid knowledge √ √ 3
self-doubt √ × 2

weak knowledge

× × 1
√ × 1
× √ 1
√ √ 1

poor knowledge × √ 0
× × 0

The assessment instruments was made on the base of
evaluation criterion above and would be used in pre-test
and post-test. As table 3 shown, question 1 is used to test
whether students have limited knowledge about ordinal and
sorting, 2 and 3 are used to assessed students’ selection sort
algorithms level, 4 and 5 are for binary search algorithms
measurement .

Table 3. Assessment Instruments
Assessment Items

Ordinal and Sorting
1.1 The students lined up in a column according to
their height. There were 5 students in front of Max.
Where did Max rank?
A. Fourth B.Fifth C.Sixth D.Seventh
1.2 Why did you choose the answer？
A. Five minus one is four.
B. Five and zero makes five.
C. Five and one makes six.
D. Five and two makes seven.
E. The other reason.
1.3 Is you answer true？ A.true B.False
Selection Sort Algorithms
2.1 Please rank the numbers from biggest to smallest.

3 1 4 2
2.2 Why made you do that？
2.3 Is you answer true？A.true B.False
3.1 How many times did you make the selection？
A. 1 B. 2 C. 3 D. 4
3.2 Why did you choose the answer？
A. I make once selection.
B. I make twice selections.
C. I make three times selections.
D. I make four times selections.
E. The other reason.
3.3 Is you answer true？ A.true B.False
Binary Search Algorithms
4.1 Please divide the row below into two parts evenly.

4.2 Why made you do that？
A. Dividing 3 into 6 equals 2.
B. Dividing 2 into 6 equals 3.
C. Dividing 1 into 6 equals 6.
D. Dividing 6 into 6 equals 1.

E. The other reason.
4.3 Is you answer true？ A.true B.False
5.1 Cut the numbers in half each time, how many
times did you cut the numbers from 1 to 100 can
exactly meet the number of 25.
A. 1 B. 2 C. 3 D. 4
5.2 Why did you choose the answer？
A. Dividing the numbers in half once can meet the
number of 25.
B. Dividing the numbers in half twice can meet the
number of 25.
C. Dividing the numbers in half three times can meet
the number of 25.
D. Dividing the numbers in half four times can meet
the number of 25.
E. The other reason.
5.3 Is you answer true？ A.true B.False

4. RESULTS AND CONCLUSIONS
4.1. Mean
The study distributed 30 tests and received 30 both of pre-
test and post-test, response rate of our test is 100%.

According to table 2 and table 4, the students behaved
better in post-test. On the dimension of Ordinal and Sorting,
students get the mean of 2.83 after sports games learning
which manifests that they almost have solid knowledge
about ordinal and sorting. The children also make obvious
progress in comprehending algorithms of selection sort and
binary search. They get mean of 2.57 on the dimension of

Table 4.Mean Scores
selection sort algorithms, and get mean of 2.03 on the
dimension of binary search algorithms which is far greater
than 1(Having weak knowledge) .

4.2. Normality Test
Normality test should be taken before adopting paired
samples test, the results is shown below.

Table 5. Normality Test
Shapiro–Wilk Test

Statistic df Sig.

Pre-Test 0.981 30 0.132

Post-Test 0.953 30 0.198
As table 5 shown, the research do normality test both pre
test and post test, whose results were Sig.>0.05, it indicated
the data corresponded to normal distribution.

4.3. Paired Samples Test
The data from pre-test and post-test was involved in paired
samples t-tests by SPSS whose statistics is shown as table 6.

Pre-Test Post-test

Q1 1.70 2.83

(Q2+Q3)/2 0.35 2.57

(Q4+Q5)/2 0.52 2.03

Mean(Q1-Q5) 0.69 2.41
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Table 6. Paired Samples Test

According to table 6, there was extremely significant
difference between the pre-test and post-test data, moreover,
students got greater scores in post-test.

4.4. Conclusions
Nowadays, computational thinking is the most critical
mind-set for people which almost exists in every subject
fields. It is also well-known as algorithms which essentially
demonstrates how computers process problems. The
literature on the subject shows that programming is crucial
carrier for cultivating children's computational thinking.
However, many schools in China even can not offer
programming education because of economic constraints.
In the background of above issues, the paper took selection
sort and binary search algorithms as examples to design
learning subject, which was aimed to explore not only the
effectiveness of interdisciplinary training low-grades'
computational thinking in sports games but also low-cost
programming education.
Statistics above indicated that there was extremely marked
difference between pre test and post test, and students even
behaved better after learning activities. On the basis of
statistical analysis, it found that integrating algorithms
principles into sports games can effectively promote the
development of children's computational thinking in
schools. Therefore, it is feasible to interdisciplinary foster
students' computational thinking by sports games in early
primary schools. Besides, sports games is a simple,
economical and practical way to train computational
thinking.
The follow-up studies will be conducted by designing more
and more teaching cases corresponding to students’
learning features in the hope of incorporating more kinds of
algorithms into sports games.
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ABSTRACT
This study measured the level of development of
computational thinking in 130 students through a
computational thinking assessment tool developed by the
research team. The results show that the five dimensions of
computational thinking -- modularity, formalization,
modeling, automation and systematization -- are
significantly positively correlated. Currently, high school
students' modular thinking level is higher, and systematic
thinking level is lower. Teachers should guide students to
lay a good foundation of modular thinking, strengthen the
training of systematic thinking, synthesize multi-
dimensional thinking training and provide personalized
guidance and incentives. This paper aims to grasp the
development status of high school students' computational
thinking, explore the reasons behind it and provide targeted
and operational guidance for teaching practice.

KEYWORDS
computational thinking, evaluation of computational
thinking, development status, problem solving

1. INTRODUCTION
Computational thinking refers to a series of thinking
activities generated by an individual in the process of
forming a solution to a problem by applying the thought
methods in the field of computer science (Ministry of
Education of the People's Republic of China, 2020). For
high school students, the development of computational
thinking can not only make their way of thinking more
logical, enhance their ability to solve problems, but also
prepare them for future college study and real life.
Evaluation of computational thinking has always been an
important issue in the training of computational thinking.
Reasonable evaluation of computational thinking can help
teachers understand the real level of students' development
of computational thinking, so as to make targeted
improvements in teaching practice and enhance students'
computational thinking and problem-solving ability.

At present, scholars have carried out some researches on the
ways, methods and strategies of computational thinking
evaluation in high school students. Bai and Gu developed an
evaluation tool suitable for measuring the computational
thinking ability of Chinese middle school students in five
dimensions, including creativity, algorithmic thinking,
cooperative ability, critical thinking and problem solving
(Bai & Gu, 2019). Hui, Lan and Qian found that evaluation
tools of computational thinking can be divided into four
types: based on test questions, based on scales, based on
programming tasks and based on system environment (Hui,

Lan, & Qian, 2020). Li and Xie built a computational
thinking evaluation framework based on the SOLO theory,
and divided students' computational thinking level into five
levels (Li, & Xie, 2023). The above evaluation tools or
frameworks have different orientations, or they are divided
into dimensions from the perspective of conceptual
interpretation of computational thinking, or they focus on
evaluation through student performance. However, the
research team of the author has developed a computational
thinking evaluation tool for high school students based on
curriculum standards, which focuses on practicability and
problem solving. Through this tool, the paper analyzes the
current situation of students' computational thinking and
puts forward some suggestions. The study aims to construct
a scientific evaluation framework, develop effective
evaluation tools, enrich the theoretical system of
computational thinking assessment and guide teaching
practices.

2. RESEARCHMETHODS AND TOOLS
2.1. Questionnaire Survey
In this study, the research team developed a computational
thinking evaluation tool for high school students based on
curriculum standards. First of all, based on the existing
research and combining with the characteristics of
information technology in high school, the research team
constructed a computational thinking evaluation model
suitable for high school students. Then, combined with the
curriculum standards, the use of questionnaire survey to
collect expert opinions to modify and improve the indicators,
the use of content analysis method to allocate the weight of
indicators, forming an evaluation index system. Finally, the
cognitive characteristics and current situation of Chinese
high school students are analyzed. The test questions are
designed and trial tested, and the evaluation tools of
computational thinking are modified and improved based on
the test results. The design of the evaluation tool drew upon
classic example problems from high school mathematics,
classic cases from information technology courses, and
computational thinking assessment tasks from Bebras Tasks.
The questionnaire contains a total of 15 questions, which
are divided into five dimensions according to the index
system: modularization, formalization, modeling,
automation and systematization. There are 3 test questions
in each dimension, among which the difficulty of the
questions is 1 question each of high difficulty, medium
difficulty and low difficulty. The questions are objective,
and each choice is assigned a score from 1 to 4 based on the
student's computational thinking level.

2.2. Trial Test
The research team selected two classes of freshman of a
senior high school in H City (52 students in total) to test the

Research on Computational Thinking Assessment Tools Oriented
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evaluation tool. The evaluation tool of the test consisted of
15 questions, which were set to be submitted within 40
minutes, and 52 questionnaires were finally collected. The
test results show that most of the students completed and
submitted the test questions within the prescribed time,
indicating that the setting of the number of questions is
relatively scientific. The research team identified the high
and low groups by 27% of the total number of people,
calculated the difficulty coefficient and discrimination of
each question according to the average score of the high and
low groups, and finally replaced the four questions with low
discrimination. Due to the good teaching staff, environment,
and the students’ high level of receptiveness to learning at
this high school, they attach a high degree of importance to
the subject of information technology, and the development
of computational thinking is closely related to the subject
knowledge of information technology in grade 1 of high
school, so the test results have a certain accuracy.

2.3. Reliability
The commonly used reliability test method is Cronbach’s
Alpha(α) coefficient. It is generally considered that α>0.90
is the best, 0.80 is very good, 0.70 is moderate, and 0.60 is
the minimum acceptable range. The results are shown in
Table 1. The α coefficient of the computational thinking
evaluation tool in this study is 0.709, so the internal
consistency among the items of the tool is acceptable.

Table 1. Reliability.
Cronbach’s Alpha Item

.709 15

2.4. Validity
Validity analysis is to test whether the questionnaire
questions are consistent with the research purpose. As
shown in Table 2, KMO=0.739>0.6 and P <0.05, indicating
that this data is suitable for factor analysis.

Table 2. Validity.
KMO .739

Bartlett Test of
Sphericity

Approximate Chi-
square 240.912

df 105
P .000

3. RESULTS
3.1. Basic Respondent Information
The research team sent questionnaires to 5 high schools,
including 4 high schools in H city and 1 high school in S
city. Each school selected 20-30 students, a total of 130
people, and the survey objects were all senior grade one
students. Among them, there were 73 boys, accounting for
56.2%, and 57 girls, accounting for 43.8%. The students are
mainly distributed in 4 regions: 78 in region A, accounting
for 60%; 44 in region B, accounting for 33.9%; 5 in region
C, accounting for 3.8%; and 3 in region D, accounting for
2.3%.

3.2. Correlation Analysis
As shown in Table 3, the correlation analysis results among
variables show that there are all significant positive
correlations between each pair of the five dimensions of the

evaluation tool – modularity, formalization, modeling,
automation and systematization.

Table 3. Correlation Analysis among The Dimensions of
Computational Thinking in High School Students

Note. **p<0.01; 1: modularization; 2: formalization; 3:
modeling; 4: automation; 5: systematization.

3.3. Difference Analysis
As shown in Table 4, the F value between the groups was
8.970, and the significance was <0.01, indicating that high
school students’ computational thinking level had
significant differences in different dimensions. The LSD
(minimum significant difference) method was used to
compare the difference between the mean values of
different dimensions of computational thinking of high
school students. It was found that the difference between the
formalization, modeling and systematization levels of high
school students was not significant. The modularization
level was significantly higher than the three, while the
systematization level was significantly lower than the three.

Table 4. Difference Analysis among the Dimensions
of Computational Thinking in High School Students

(M±SD).

Note. **p<0.01; 1: modularization; 2: formalization; 3:
modeling; 4: automation; 5: systematization.

4. CONCLUSION
4.1. Different Dimensions of Computational Thinking
Mutually Support Each Other

The five dimensions of computational thinking are not
completely separated, but are interrelated and mutually
reinforcing, and belong to the entire problem-solving
process. Among them, modularity reflects the learner’s
understanding of the problem, and understanding the
problem is the starting point of problem solving. Modularity
can be regarded as the premise and basis of solving
problems using computational thinking. Formal description
of problems is the basis of algorithms (Ministry of
Education of the People’s Republic of China, 2020). The
formalization ability lays the foundation for establishing
accurate calculation models, selecting algorithms and using
computing tools to process calculation results, making
subsequent modeling and automation possible. In addition,
after learners establish models and select algorithms, they
can apply intelligent tools such as computers to process
them. In turn, computers can also optimize and iterate
models in the process of automatic problem processing.
Therefore, learners’ modeling level is significantly

Dimension 1 2 3 4 5
Modularity
Formalization .236**
Modeling .395** .298**
Automation .403** .480** .443**
Systematization .239** .389** .288** .374**

Dimension Score F LSD
Modularity 3.06±0.64

8.970** 5<2,3,4<1
Formalization 2.86±0.65
Modeling 2.89±0.65
Automation 3.01±0.66
Systematization 2.89±0.70
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positively correlated with their automation level. Finally,
systematization reflects learners’ ability to summarize and
transfer after solving problems, the improvement of high
school students’ level of other dimensions of computational
thinking can promote their final systematization ability. On
the whole, the five dimensions of computational thinking
are in a sequential relationship, reflecting the steps of
solving problems with computational thinking. The former
dimension is the basis of the latter dimension, and some of
the latter dimension can also react on the former dimension.
Therefore, each dimension is mutually complementary and
interdependent.

4.2. High School Students Lack in Systematic Thinking
Compared with other dimensions of computational

thinking such as modularity, the systematization level of
high school students is low, which reflects the lack of
summary and transfer ability of high school students. Huang
et al. believe that systematic thinking is a thinking method
that regards cognitive objects as a system and
comprehensively thinks about and understands cognitive
objects by comprehensively considering the relationship and
interaction between internal elements of the system and the
interaction between the system and the external
environment (Huang, Yang, Wang, Huang & Yang, 2014).
In teaching practice, especially in the case of exam-oriented
education, students tend to focus on whether a specific topic
is correct or not, but do not pay attention to the summary,
reflection and transfer after solving the problem, and can
not draw inferential examples. From the perspective of
teachers, some teachers study too much the teaching
methods of specific knowledge points, but neglect to guide
students to build the knowledge system of the whole subject.
At the end of the class, there is often a lack of summary and
sorting, which leads to the low level of students’
systemization.

5. SUGGESTIONS
5.1. Lay a Good Foundation of Modular Thinking

High school students perform better in modularity.
Educators should continue to carry forward this advantage,
and modularity can be used as the basis for cultivating
other dimensions of thinking. In terms of teaching content,
teachers can gradually guide students to expand their
thinking scope through modular training, and extend this
ability to decompose problems to a wider range of fields.
Learning programming languages is an effective way to
cultivate modular thinking, which involves decomposing
problems into modular code segments and helping students
understand how to decompose complex problems into
manageable parts.

5.2. Strengthen the Training of Systematic Thinking
The level of systematic thinking in high school

students’ computational thinking is relatively low, so we
should strengthen the training of systematic thinking in
high school students. Cultivating systematic thinking can
be achieved by solving intricate problems and exploring
concepts with strong correlations, as well as connections
between different disciplines. Teachers can introduce the
teaching mode of project-based learning to drive students
to cooperate, communicate and explore actively in real

problems, and improve their comprehensive problem-
solving ability. At the same time, it can guide students to
conduct interdisciplinary learning, help students break
knowledge barriers, better understand knowledge in
different fields, understand the links between knowledge
and the overall framework, and cultivate comprehensive
thinking.

5.3. Synthesize Multi-dimensional Thinking Training
It is suggested that teachers should adopt a multi-

dimensional combination method when designing tasks or
projects, and cover the application of multiple dimensions
of computational thinking at the same time, so that students
can comprehensively use various modes of thinking to
solve problems, and avoid the situation that the deficiency
of one ability will cause the level of other dimensions to
decline. In addition to the improvement of teaching, we
should also pay attention to the training of teachers
themselves and enhance the level of professional
development of teachers. Primary and secondary school
teachers can cooperate with college teachers to develop
teaching activities of computational thinking, learn
teaching methods of computational thinking, and improve
teachers’ computational thinking ability and teaching level.
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ABSTRACT
The newly revised Information Technology Curriculum
Standard for Compulsory Education (2022 Edition) by the
Ministry of Education emphasizes the significance of core
literacy courses, positioning them as foundational
components of the discipline. Computational thinking
emerges as a key skill among the four proposed core
literacies, crucial for tackling complex challenges in today's
rapidly evolving digital landscape. This paper proposes a
curriculum design paradigm centered on big ideas and
KUD learning objectives, aiming to deepen students'
understanding of IT concepts and enhance their problem-
solving abilities. By integrating big ideas into the
curriculum, teachers can plan more effectively, aligning
with students' core literacy development. The design
encourages real-world problem-solving, fostering
analytical and algorithmic skills for practical application.

KEYWORDS
Big ideas, KUD learning goals, Computational thinking,
core literacy

1. INTRODUCTION
The rapid pace of technological advancement has
integrated transformative technologies such as Artificial
Intelligence, the Internet of Things, and Big Data into our
daily lives. The 2022 revision of the Information
Technology Curriculum Standard for Compulsory
Education by the Ministry of Education highlights the
critical need to cultivate core competencies in students,
encompassing information literacy, computational thinking,
digital innovation, and social responsibility in the digital
age. Computational thinking, recognized as a vital
cognitive process for problem-solving and system design
(Wing, 2006), is universally valued by educators but
presents challenges in effective curriculum design and
implementation (Yadav, 2014; Kalelioglu, 2016; Heintz,
2016). Traditional education models often focus on
transferring knowledge and assessing student
understanding through exams, neglecting the development
of innovation and practical problem-solving skills (Smith,
2005). The misconception that programming education is
synonymous with computational thinking limits the scope
of the latter, which should transcend specific technologies
and encompass broader problem abstraction, systematic
problem-solving, and solution dissemination.

This study aims to propose a curriculum design paradigm
for computational thinking, grounded in big ideas and
KUD (Know, Understand, Do) learning objectives, offering
a theoretical and practical framework to navigate these
complexities. By engaging with real-world issues, students
are expected to develop a deeper, foundational
understanding of computational thinking and information
technology, enhancing their skills and abilities.

2. CORE CONCEPTS OF BIG IDEAS AND
KUD LEARNING GOALS
2.1. Big Ideas
Big ideas are the essential and unifying concepts that
define a discipline, forming the basis for understanding its
scope and depth. In the context of computational thinking
education, these concepts integrate a range of ideas,
providing students with a comprehensive view of the field
and deepening their grasp of fundamental principles. For
instance, the concept of "algorithm" is a big idea that
bridges simple sorting processes to complex machine
learning algorithms, allowing students to recognize the
shared characteristics and broad applicability of various
algorithms (Wiggins & McTighe, 2005).

2.2. KUD Learning Objectives
The KUD framework— standing for "Know, Understand,
Do"—offers a structured approach to educational planning,
recognized for its precision in guiding teachers to plan
course content, instructional strategies, and assessment
methods more effectively. This model categorizes learning
objectives into three distinct types: 'Know' objectives
involve acquiring essential facts and concepts; 'Understand'
objectives develop higher-order thinking skills such as
analysis, synthesis, and evaluation; and 'Do' objectives
emphasize the application of knowledge in various contexts,
fostering problem-solving and decision-making abilities.
By integrating the KUD model into curriculum design,
educators can create learning experiences that promote
deep understanding and the ability to apply learning in
meaningful ways (Wiggins & McTighe, 2005).

3. MODEL OF CURRICULUM DESIGN
INFORMED BY BIG IDEAS AND KUD
LEARNING GOALS
The following sections detail the essential components of a
curriculum design model grounded in big ideas and KUD
learning objectives. The discussion will cover the
formulation of engaging questions, the construction of
knowledge maps, the design of challenge tasks, the
development of problem-solving strategies, and the
multidimensional assessment and visualization of learning
outcomes. These elements collectively form a
comprehensive instructional strategy aimed at fostering
deep understanding and application skills in students.

3.1. Identifying Core Questions
Course design initiates with defining open-ended "big
questions" that integrate key concepts, prompting students
to draw from diverse knowledge and engage in thorough
inquiry. These questions are designed to spark curiosity
and steer students towards an integrated learning journey
with an emphasis on critical thinking.
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3.2. Building Knowledge Maps
Big ideas form the core of instruction, connecting key
concepts to KUD objectives through knowledge maps that
structure teaching. These maps direct teaching plans,
focusing learning segments on essential concepts.

3.3. Designing Challenge Tasks
Challenge tasks, aligned with KUD objectives, facilitate
students' deeper understanding and application of key
concepts through varied assessments, enhancing
comprehension and skill mastery.

3.4. Developing Problem-Solving Maps
Problem-solving maps, based on KUD objectives, provide
a structured approach to learning, helping students master
problem-solving strategies and achieve the progression
from knowledge to understanding to practice.

3.5. Designing Learning Activities and Resources
Instructional design revolves around KUD objectives, with
all learning activities and resources aimed at supporting
student achievement of these goals, thus promoting a deep
understanding of key concepts.

3.6. Assessing and Visualizing Learning Outcomes
Multidimensional assessment and visualization of student
learning outcomes, such as project presentations and
professional challenges, not only motivate students but also
provide feedback on teaching effectiveness for instructors.

3.7. Setting Assessment Criteria
Assessment criteria should measure the degree of
achievement of KUD objectives and reflect how students
understand and apply key concepts. The assessment
process is closely integrated with learning, with practice
and feedback enhancing learning effectiveness.

Figure 1. The Curriculum Design Model Based on Big Ideas and
KUD Learning Goals

4. COMPUTATIONAL THINKING
CURRICULUM DESIGN INFORMED BY
BIG IDEAS AND KUD LEARNING GOALS
4.1. Integration of Big Ideas of Computational Thinking
Computational thinking is a series of complex thinking
processes during problem-solving, such as problem

decomposition, algorithm design, problem-solving, pattern
recognition, abstract thinking, etc. In curriculum design,
integrating big ideas of computational thinking, such as
problem decomposition and algorithm design, into a
tangible teaching case, facilitates students' comprehensive
understanding of computational thinking.

For instance, in the "My Campus Map" project, students
will explore key concepts of computational thinking
through unplugged activities. For example, students can
work in groups to create a paper map of the campus,
marking multiple routes from the classroom to the
playground. Through this activity, students learn how to
decompose problems (problem decomposition), find the
best route (algorithm design), and recognize which routes
are more efficient under certain conditions (pattern
recognition).

4.2. Establishing KUD Learning Goals
KUD learning objectives for the "My Campus Map"
project should be crafted to facilitate a gradual learning
process that starts with acquiring basic knowledge, moves
on to deepening understanding, and culminates in applying
this knowledge in a practical context. These objectives are
tailored to the project's big idea of navigating and mapping
a familiar environment, making them accessible and
engaging for young learners.

Know: Students will acquire fundamental knowledge about
map symbols, directions, and the layout of their school
campus. They will learn to identify key locations and
represent them on a map.

Understand: Students will gain an understanding of how
different paths can be chosen based on various criteria,
such as the shortest route, the most scenic route, or the
safest path for different weather conditions. They will
discuss the rationale behind choosing one path over another.

Do: Students will apply their knowledge by creating a
detailed map of their school, selecting the best routes for
different scenarios, and explaining their choices. They
might also design a simple game or activity that involves
navigating the campus using their maps.

This approach ensures that the KUD objectives are aligned
with the project's educational goals and are age-appropriate,
encouraging students to actively engage with the concepts
of computational thinking through hands-on, unplugged
activities.

5. CONCLUSION AND PROSPECTS
The study has comprehensively examined a computational
thinking curriculum design paradigm grounded in big ideas
and KUD learning objectives. The results suggest that this
approach effectively integrates and deepens students'
learning experiences, offering a practical framework for
curriculum planning and assessment. This design pattern
allows for the intentional construction and execution of
curricula, with a focus on enhancing core literacies and
stimulating innovative thinking and curiosity. By applying
knowledge and skills to real-world challenges, students
develop a nuanced understanding and problem-solving
abilities, building confidence and autonomous learning
capacity. This curriculum design is well-aligned with the
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evolving demands of the digital age, fostering students'
preparedness for active and responsible participation in the
information society. The research advocates for broader
engagement with computational thinking curriculum design,
aiming to validate and expand its application in diverse
educational settings, and envisions a new educational era
that enables each student to fully realize their potential and
intellect.
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ABSTRACT
The research revealed significant behavioral sequences in
the application of computational practices to problem
solving through LSA of course high-performers.The
research found that the high-performers’ behavior sequence
has the following three characteristics:1)Students’ using
computational practices to solve problems can be divided
into three stages;2)Significant behavioral sequences exist
between the three stages of computational
practice;3)Various interactive behaviors aid computational
practice for high-performers.Based on this,the research
gave three recommendations:1)Designing curriculum
content that accurately understands the meaning of
computational thinking;2)Designing project-based learning
activities based on the process of computational
practice;3)Providing rich scaffolds for students'
computational practice.

KEYWORDS
Computational Practice;LSA;High-Performers;Behavioral
Sequences

1. INTRODUCTION
With the advent of the information age, computational
thinking is regarded as an increasingly essential skill for
learner in the twenty-first century(Grover & Pea, 2013; Sun
et al., 2021) .Wing defined computational thinking as
“taking an approach to solving problems, designing
systems and understanding human behaviour that draws on
concepts fundamental to computing”(Wing,2008) .Then,
she defined it as “the thought processes involved in
formulating a problem and expressing its solution(s) in
such a way that a computer—human or machine—can
effectively carry out”(Wing 2014).Computational thinking
has become increasingly important for all generations as
digital assets and computation are increasingly embedded
into the processes and tools we use as a society, at work,
and in everyday activities.

Recent years, it is indicative that a large number of studies
focusing on computational thinking have been
published(T.C. Hsu, Chang, & Hung, 2018).
Computational thinking’s large body of literature
including(a)assessment methods and frameworks that
encompass the complexity of computational
thinking,(b)approaches that align learning strategies with
computational thinking and (c)knowledge needed to teach
computational thinking and methods which support to
teachers(Christina, T & Efthimios,T,2021).

Project based learning engaging students into authentic
project around real challenges and problems, encouraging
students using computational thinking process to solves the

challenges and problems, has been proved as one of the
most useful strategies for computational thinking learning.

As an important research area, researchers in the examined
studies develop and validate assessment methods, propose
framework or measure students’ computational thinking in
order to achieve deep understanding of students’
learning(Fronza et al., 2017) by different assessment
methods. According to existing studies, assessment area
can be divided into five sub-area:Self-report methods; Text
or Scale; Artifact Analysis; Observations; and Frameworks.
By using observations of students’ actions, screen
recording, learning analytic, camera recordings,
researchers’ notes, structure-based observations, studies
gain a complete picture of students’ understanding((Da
Cruz Alves et al.,2019). It should be noted that, as a
process of solving problem, few studies focus on how
people using computational thinking to solve problem so
called computational thinking behavior pattern in problem-
solving.

In this paper, we use project based learning as the strategy
and reveal students’ behavior pattern in problem solving by
using computational thinking.

2. LITERATURE REVIEW
Lag Sequential Analysis(LSA) which was introduced by
American scholar Gene P.(Sackett,G.P.,1978) in 1978 for
testing the probability of people engeging in a particular
behaviour followed by another and their
significance(Bakemen,R.,1997).Recent years, LSA has
been increasingly noticed by educational researches and
used in the study of learning behaviour analysis.

With the growing interest in programming education, LSA
has been widely applied in relevant research.Starting from
learning analytic, Wu Linjing et al. explored the difference
in behaviour patterns during programming among different
types of learners by analyzing the learners' behaviors in
programming process by coding as well as LSA, and
proposed targeted suggestions for improving the efficiency
of programming learning(Wu Linjing et al.,2020). Akrolu
N et al. used LSA to analyse the programming behaviors of
15 sixth-grade primary school students in a graphical
programming environment and developed a pattern of
focusing, gaming, and determining behaviors in
programming problem solving(Akrolu,N. &
Mumcu,S.,2020).Sevda K et al. Analyzed the sequence of
interactive behaviours of 18 students aged 8 to 11 years and
their teachers in one-to-one robotics sessions by using
lagged behaviours, finding that students assembled blocks,
shared ideas, and teachers provided guidance and asked
questions were the most frequent behaviors, and discussed
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the teacher-student interactions in details(Sevda,K. &
Burak,S.,2017).

The aim of this study is to use LSA to reveal the behaviour
patterns of the course learning achievers applying
computational thinking to problem solving.

3. METHOD
3.1. Context
This study was conducted in an educational technology
course offered for junior students in an public, normal
university in west China. The course which named
Intelligent Innovation and Maker Education in Primary and
Secondary Schools which under the guidance of project
based learning theory by using open-source hardware.
During the course, students are divided into groups
randomly and each group should finish 9 projects.

3.2. Participants and Research Question
Twenty-five junior educational technology students,
including 7 males and 18 females, aged between 20-22
years old participated in the course.During the assessment
period of the course, students were randomly divided into
five groups to carry out a three-week, six-hour project
production based on the theme of "Smart Dormitory".
Upon completion of the assessment project, the groups
were required to present their project works and submit
design proposals, programme codes and introduction
videos. Five professional instructors assessed the projects
in five dimensions, including innovation, technicality,
artistic quality, specifications, as well as team presentation
and collaboration, through the report and the review of the
materials.

This research focuses on the sequence of behaviors of high-
performing groups after project assessment.

RQ1 ： Does the group develop a significant behaviour
sequence while completing the project？

RQ2：If so, what particular behaviors are included in the
behaviour sequence?

3.3. Data Collection
Brennan K et al. define computational thinking as three
dimensions: computational concepts, computational
practices, and computational perspectives(Brennan K &
Resnick M,2012). Computing practice includes the range
of behaviours in problem solving, and project
development.Pinkard N et al. proposed an operational
definition of computational practice, defining it as three
components: decomposition and abstraction, collaborative
coding, and testing and debugging(Pinkard N et
al.,2019).Research adopted Pinkard N et al.'s findings and
incorporated the practicalities of open source hardware
project production to develop the computational practice
coding schemes for this research.Meanwhile, research
incorporated the learning behaviours of discussing in
groups, referring to materials and questioning teachers into
the coding scheme as well, finally forming the coding
scheme of this study.

Table 1. Coding Scheme

Domains Sub-categories Details

Computa
tional Pr
actice

Decomposition
and Abstraction
(DA)

Decompose the complex
problem into solvable sub-
problems based on the
project theme and choose
suitable algorithmic models,
equipment originals for
description.

Collaborative C
oding(CC)

Using the programming
platform to collaboratively
code problem-solving
programmes.

Testing and Deb
ugging(TD)

After programming
completed and clicked
"Upload
Program",debugging the
program to find out the
problems of hardware and
software.Solving them by
modifying the program
module, adjusting the
program parameters and
replacing the equipment
components.

Learning
Behavio
ur

Discussing in G
roups（DG)

Group discussion centred on
project completion.

Referring to Ma
terials(RM)

During the completion
process, refer to related
materials through the
Internet or review
information about programs
that have been written in
previous lessons.

Questioning Te
achers(QT)

Questioning teachers and
seeking help when problems
arise.

The study recorded the entire process of all 5 groups
participating in the course final assessment, and recorded
the screen on the computers they used to assist in the
analysis of the relevant behaviors.Following the final
assessment, video files of the top scoring performance
group were chosen to be analyzed.The video files were
over 6 hours, and the research took 3 seconds as the
sampling time and coded the student behaviour , resulting
in approximately 6,300 behaviour codes.The coding was
carried out independently by the two coders and the
resulting coding results were tested for consistency with the
coefficient of 0.887, indicating the consistency between the
two coders.The research used GSEQ software to process
and analyse the behaviour data to form the frequency tables
of the behaviour transitions and the adjusted residual
table.Based on the LSA theory, if the residual table has a
Z-value greater than 1.96 then it indicates that the
behavioral path is significant(Bakeman R,1997).Research
mapped the behavioral sequence transitions of high-
performers according to the behavioral sequences with Z-
values.
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Fig.1. The behavioral transition diagram of high-
performing groups

4. FINDS AND DICUSSION
4.1. Students ’ using computational practices to
solve problems can be divided into three stages
The first stage named decomposition and abstraction(DA→
DA).During this stage,students begin with the theme of the
assessment project, focusing on the key issues of the
project as well as decomposing and abstracting them into
specific problems that they can solve.Based on their own
experience, students focused on the project theme,
identified the problems that needed to be solved, and
proposed a variety of solutions to the problems.
Subsequently, students identified and abstracted the best
solutions for these problems in terms of problem-solving
principles and the practicalities of open-source hardware
and equipment, forming specific solutions that could be
achieved by using open-source hardware as well as
algorithms and programs.The second stage named
collaborative coding(CC → CC).In this stage,students
design algorithms and solve them one by one by coding
programs mainly for the specific issues from the previous
stage.The third stage named testing and debugging(TD→

TD).Students debugged and tested the programme in terms
of smoothness of operation, stability and suitability for the
problem solutions. Based on the analysis of the computer
recording files, it was found that students debugged the
written programs from the dimensions of adding,
subtracting and replacing program modules, adjusting the
program modules' parameters, and testing and replacing the
hardware devices.

4.2. Significant behavioral sequences exist between the
three stages of computational practice
The behavioral sequences DA→CC shows that for high-
performers, students' starting point for achieving the
solution of the projects is to decompose and abstract the
problem, based on which they enter the coding phase to
achieve the solution of the problem.

For the designers of problem solving, testing and dealing
with the problems which arise is a vital behaviour in
computational practice.Research found that students
significantly transferred to the decomposition and
abstraction stage after the testing and debugging stage, as
well as significantly transferred to the coding stage through
the decomposition and abstraction stage.This significant
behavioral sequence indicates that after testing the project
problem, high-performers did not hastily adjust the

program, but returned more to the decomposition and
abstraction of the problem, to analyse the root cause of why
the program errors occurred, and then to correct the errors
by coding the program to achieve better solution for the
problem.

4.3. Various interactive behavior aid computational
practice for high-performers
Research found that students produced numerous
significant interactive behavioral sequences besides
behaviors associated with computational practice.During
the decomposition and abstraction stage, the significant
behavioral sequences were DA↔DG,DA↔QT,DA↔RM.

Research found that the students did not work alone in
decomposing and abstracting the problems, and showed
significant behavioral sequences of teamwork as well as
discussion.In the decomposition and abstraction of the
problem, students first brainstorm the set of proposed
problems for the project based on the theme of the
project.Having formed the set of problems, students first
discussed around the reasonableness of the problems, and
the team worked together to analyses whether the problems
formed were appropriate to the project context and
authentic experience.Next, through team discussion,
students describe the problem solution in their own words,
abstract the problem, select equipment and procedures, and
set the foundation for coding programs to implement
automatic problem solving.Besides group discussions, the
behavioral sequences of DA interacting with QT were
equally significant.In the decomposition and abstraction of
the problem, students question their teachers to gain
answers to the identified key issues of the project, the
rationality and availability of the chosen hardware
equipment.In terms of the significant interactive behavioral
sequence of DA and RM, students search the internet and
books to determine whether the selected hardware
equipment and the programs can solve the problem.In
summary, the three significant behavioral sequences of DA
and GD, QT and RM can indicate that students' interactions
with peers, teachers, and materials make the abstract
decomposed project problem more clear, and lay a solid
foundation for the stage of coding.

During the coding stage, students' significant learning
behavioral sequences were the interaction between CC and
RM.Students need to select appropriate sensors and
actuators according to the problem that the project intends
to solve, and implement the solution of the problem
through connections and programming.During this process,
students need to both apply relevant knowledge learnt in
previous courses and choose new equipment or develop
new features to meet new requirements.Thus, the
interaction between students and the search for materials in
coding is mainly expressed by viewing the information
about the equipment and procedures that they have learnt
and applying them to the project problem solving.Students
also need to select new sensors and actuators to achieve
new functions when facing new problems in new projects,
which require students to keep searching for
materials.Research found that students' search for
information often came from two sources. The first is a
"library" of previously done projects and tasks that students
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can use when they need to complete a similar problem. The
other is through the Internet, especially forums, to find
information on new problems and new equipment, and to
do it by imitation.

During the testing and debugging stage,the significant
behavioral sequences were
TD↔DG,TD↔RM,TD↔QT.From the behavioral
sequences, the research found that students continuously
identified problems in the solution of the project and
explored modifications to the solution through discussions
with the teacher, peers, and the community formed by the
materials.

5. RECOMMENDATION
5.1. Designing curriculum content that accurately
understands the meaning of computational thinking
As we all know, computational thinking requires students
can combine their own life, learning practice, using
computer-related knowledge to solve problems, complete
projects and draw conclusions.Therefore, in the cultivation
of computational thinking, it is necessary to focus on its
problem-solving thinking process as a major line, to drive
the curriculum with problems, and to cultivate students'
awareness of problems and their ability to solve problems
using computational thinking.Focusing on the role of real-
life problems around students in driving their learning,
enabling students to try out different approaches to solving
problems so as to gain relevant knowledge, enhance their
computational thinking and improve their problem-solving
skills.

5.2. Designing project-based learning activities based on
the process of computational practice
As a practical process of problem solving using computer-
related knowledge or methods, the research found that the
behavioral sequences of computing practices are not
random.We should orientate students' behavioral sequences
through the design of learning activities and help them to
learn along the pathway of computational practice in
problem solving, so as to achieve the development of their
computational thinking.

5.3. Providing rich scaffolds for students' computational
practice
During the three stages of students' computational practice,
the research found that all of them required teachers, peers,
and resources as scaffolds to support students in the
appropriate behaviors.Meanwhile, students often use the
problem solutions they have already completed in previous
courses as scaffolds for solving new problems.For this
reason, the research recommends that in the practice of
developing computational thinking, it is important to pay
attention to the role of traditional resource-based scaffolds
as well as the provision of intellectual scaffolds through the
formation of teacher-student learning communities.
Furthermore, a mechanism needs to be established to guide
students to keep the generated problem solutions in a
proper and categorized manner, so as to continuously
supplement the scaffold content.
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ABSTRACT
In the era of intelligence, educational reform faces the
challenge of world uncertainty, and the cultivation of core
literacy is the most important issue. This article explores
the theoretical value of the "new three-dimensional goal" of
knowledge, problem-solving, and value, studies how to
make computational thinking a key driving force for
transitions between different levels, and attempts to provide
direction for the practical implementation of core literacy
cultivation through path description and case analysis.

KEYWORDS

1. INTRODUCTION

2. THEORETICAL VALU

Driven by globalization and technological innovation, China has 

actively promoted educational innovation to cultivate talents in 

the new era. The "Three-dimensional Goals" cover three 

dimensions: knowledge and skills, process and method, emotional 
attitude and values. Although it promotes the transformation of 

basic education, it focuses too much on exam-oriented learning 

and ignores practical operation and innovative thinking. Therefore,
China has entered the era of "core literacy" since 2014,
emphasizing the cultivation of essential character and ability to 

adapt to lifelong development and social needs. Compared with 

the "Three-dimensional Goals", core literacy pays more attention 

to knowledge application, multi-faceted ability cultivation and 

social adaptability, and focuses on individual differences and 

innovation. From the "Three-dimensional Goals" to core literacy,
it shows the exploration and progress of China's educational 
reform, and how to deepen the cultivation of core literacy is one 

of the most important issues at present.

E
The "new three-dimensional goal" is a brand-new solution to
address the challenges of this topic. Rooted in the concept of
educational democratization, it integrates humanism,

3. DYNAMIC MECHANIS

understanding orientation, and practical approach, emphasizing
problem-solving and moral cultivation in real-life situations. It
encourages students to gain deep understanding and learning
through practical experiences [1]. Drawing on modern theories
such as multiple intelligences and constructivism, it demonstrates
strong inclusiveness and adaptability. This goal system is a
concise summary of the cultivation of students' core literacy,
centrally reflecting the core pursuit of education and
demonstrating profound insights into educational objectives. By
providing a practical guidance framework for educators, it
promotes student subjectivity, autonomous learning, and
comprehensive development, enabling the true implementation of
core literacy cultivation.

M

3.1. Explanation of ArchitectureSub-sections Guidelines
The "new three-dimensional goal" consists of the knowledge layer,
problem layer, and value layer, which together support a
comprehensive educational framework (as shown in Figure 1).

The knowledge layer serves as the foundation, focusing on the
question of "what to learn" and emphasizing students' mastery and
application of basic knowledge and skills. Through deep guidance
by teachers, students engage in "progressive learning" and
"immersive learning" of structured, logical, and systematic
knowledge, building a solid knowledge structure.[2]

Core literacy can only be formed through continuous
problem-solving processes [3], thus the problem layer serves as the
core, focusing on the question of "how to learn". It aims to
cultivate students' thinking and problem-solving abilities to adapt
to changing social environments. Through the design of
real-world problem scenarios, students are able to exercise
their advanced and humanistic abilities while solving
problems.[4]

The value layer, as the highest level, delves deeply into the
question of "why to learn", guiding students to understand the
meaning of learning and stimulating their intrinsic motivation. It
emphasizes the role of core literacy in individuals' lifelong
sustainable development, focusing on shaping students' moral
character, values, and life perspectives. By implementing the goal
of cultivating moral integrity, it becomes a highlight and symbol
of educational work.

3.2.The dynamic mechanism of transitionxplanation of
ArchitectureSub-sections Guidelines
Computational thinking, as a new way of thinking for
problem-solving [5], serves as the critical driving force for the
upward transition of each level within the "new three-dimensional
goal". It achieves the transition from the knowledge layer to the
problem layer by connecting cognitive materials, decomposing,
and abstracting operations [6], deepening students' understanding
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of the essence of problems and laying the foundation for the
cultivation of core literacy. It encourages students to challenge
traditions, stimulate innovative consciousness and critical
thinking, and achieve the transition from the problem layer to the
value layer. At the same time, computational thinking emphasizes
dynamically responding to challenges, helping students learn
efficiently, adapting to the demands of the digital era, and
preparing them for future life and careers.

4. IMPLEMENTATION PATH

4.1.Vertically - anchoring the educational value through
the "focus effect"
The implementation of the educational goals ensures the
coherence and staged achievement of literacy improvement [7],
serving as the cornerstone of the teaching design for the "new
three-dimensional goal". Given the limited cognitive resources of
humans, teachers need to employ the "focus effect" strategy to
select key teaching content, allowing students to access the most
valuable learning resources within a limited time. The operational
steps are as follows:

Enhancing Curriculum Thinking
Systematically construct and orderly advance teaching/learning
objectives, including analyzing teaching materials, clarifying
academic requirements, connecting with core literacy, and
evaluating the evaluability of objectives based on SMART criteria
[8].

4.1.2.Focus on the value of educating people
By meticulously decomposing and screening, teachers can focus
the teaching on the content that best reflects the value of
educating people, reducing students' cognitive pressure,
promoting deep learning, and achieving vertical connectivity of
the educational value of courses across different educational
stages [9].

4.1.3.Clarify teaching objectives
Ensure that the objectives cover multiple dimensions including
knowledge, methods, thinking, and literacy, addressing questions
such as the purpose, content, and methods of teaching, while
avoiding overly complicated objectives.

4.1.4.Drafting Learning Objectives
Integrate action methods, learning content, standards, and subject
literacy from the perspective of thinking literacy, transforming
teaching objectives into specific, measurable, and hierarchical
learning objectives, and guiding students to clarify the meaning,
content, and methods of learning.

When teaching the course "Password Security, I Will Guard It,"
the author reprocessed the fifth-grade information technology
textbook published by Tsinghua University based on the "new
three-dimensional goal," focusing on password security and
aiming to cultivate logical thinking and innovative ability. Using
Scratch as the carrier, the course integrated algorithms with
students' daily lives, guiding them to understand the principles of
decryption and encryption and achieving content upgrading.
Through rich teaching activities, students gained knowledge and
skills, core concepts, computational thinking, and other
dimensions. The constructed "new three-dimensional goal"
included: the knowledge layer - mastering enumeration

algorithms and linked list applications; the problem layer -
applying computational thinking to solve decryption and
encryption problems; and the value layer - cultivating the habit of
analyzing problems, experiencing the joy of learning, and
establishing awareness of information security. This goal system
provided clear navigation for students' deep learning, enabling
them to master programming skills while deeply understanding
the value of information security and achieving the overall goal of
educating people.

4.2.Horizontally - Expanding Point-Chain-Network
through "Cumulative Effect"
Within the framework of constructivism, the "cumulative effect"
manifests in three dimensions: knowledge accumulation deepens
understanding, the development of cognitive structure enhances
adaptability, and social interaction promotes knowledge sharing
and improves learning outcomes. Based on this, a clear expansion
path for the point-chain-network can be formed.

4.2.1.The Chain of Questions Runs Through
Based on the "new three-dimensional goal" and in combination
with students' experiences and confusions, teachers design a
hierarchical and systematic chain of teaching questions [10]. These
questions revolve around a central theme, form a sequence, and
are interrelated, aiming to guide students to deeply understand the
learning content and train their thinking in terms of rigor,
divergence, criticism, and profundity.

In the lesson of "Cryptography," by designing core questions and
tasks, a dual-line drive of problem chain and task chain is formed,
guiding students to gradually explore the principles of decryption
and encryption, deepen their understanding of "big concepts" such
as algorithms, and enhance learning outcomes. (As shown in
Figure 2)

Figure 2: “Three questions, three tasks” schematic

4.2.2.Interdisciplinary Learning
Interdisciplinary learning is a deep learning approach that
integrates knowledge synthesis and problem-solving, serving as
an important implementation path for curriculum integration in
the era of literacy development [11]. By combining concepts and
methods from different disciplines, it can optimize
problem-solving solutions and promote the integrity and
rationality of students' high-level thinking. In the lesson of
"Cryptography," to illustrate the enumeration algorithm, the
problem of "chickens and rabbits in the same cage" from primary
school mathematics was introduced, enabling students to
understand that the characteristic of this algorithm is to exhaust all
possibilities to solve the problem. Although it is not efficient, it is
suitable for scenarios where there is no pattern to follow, such as
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password decryption. This cross-disciplinary transfer enhances
the stickiness of knowledge and the activity of thinking.

To help students understand that the core of "programming" is
algorithms rather than syntax, this lesson broke through the
limitations of programming software. After experiencing
decryption and encryption in Scratch, the observation and
experimental methods from science class were introduced to
demonstrate the process of breaking passwords with Python
programs. This allowed students to experience the differences in
time efficiency between different languages and focus on
comprehending the computational thinking behind them.

4.2.3.Enhancing the Sense of Value
To enhance a sense of identity requires a comprehensive
evaluation, such as the "new three-dimensional goal" framework,
which recognizes knowledge, abilities, and moral character,
enabling students to understand themselves more objectively. In
the teaching of "Cryptography," immediate teacher evaluation is
paralleled with student self-evaluation, making the evaluation
more three-dimensional and objective. At the same time, to
deepen the educational value, it is necessary to broaden the
learning areas, such as increasing reading, participating in social
practices, exploring interdisciplinary fields, cultivating critical
thinking, and setting examples to form positive values. Activities
like watching videos of academicians and making collective
commitments to safeguarding password security not only enhance
students' awareness of information security but also demonstrate
the deep integration of the "new three-dimensional goal" with
computational thinking, serving as a typical model for cultivating
core literacy.

5. SUMMARY AND PROSPECT
Education in the age of intelligence is undergoing profound
changes, demanding higher core literacy from individuals.
Computational thinking, as a key mode of thinking, injects new
vitality into the "new three-dimensional goal." It deepens students'
understanding of knowledge, guides them to solve practical
problems, and cultivates their innovative consciousness and sense
of responsibility.

Looking ahead, we should delve deeper into the integration of
computational thinking and educational innovation, integrating it
into curriculum design, teaching methods, and evaluation systems.
We should also expand its applications through AI, blended
learning, and personalized learning. Only with the joint efforts,
attention, and support of all parties for the application of
computational thinking in education can we cultivate talents of
the new era who possess high-level knowledge literacy,
problem-solving abilities, and correct values, and jointly build a
better future!
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ABSTRACT
Under the development wave of Artificial Intelligence
Generative Content (AIGC), China has entered the
Education 4.0 era, which urgently requires digital
transformation and the high-quality development of
education. Furthermore, there is a growing demand for
higher standards in talent cultivation, with computational
thinking emerging as an essential foundational skill for
individuals. This study adopts a systematic literature
review method to explore the potential and feasibility of
leveraging AIGC in fostering computational thinking at the
K-12 level. Through a comprehensive review of existing
research in this field, our aim is to uncover what is possible
and achievable for AIGC to contribute to the development
of computational thinking. The findings of this study
indicate that applying AIGC in programming education,
particularly in providing personalized instruction and
conducting whole-process computational thinking level
assessments, can significantly enhance students' problem-
solving skills and foster their computational thinking
abilities.

KEYWORDS
AIGC Computational thinking K-12

1. INTRODUCTION
With the rising wave of computational thinking, AI
education is rapidly emerging. The development and
popularization of AIGC tools such as ChatGPT, and
Midjourney have contributed to the transformation of
education in China by providing students with a more
hands-on learning experience, helping them to better
understand and master computational thinking. Schools
mainly develop learners' CT by introducing programs such
as programming, robotics, etc.

Our study investigates the impact of AIGC on the
development of computational thinking in K-12 students,
helping teachers and researchers to fully understand the
importance of integrating generative AI into education.
Instead, our study focuses on outcomes and analyzes the
possibilities of AIGC's impact on the field of education and
on the development of computational thinking in learners.
Feasible recommendations are made for AIGC to promote
computational thinking development at the K-12 level.

The following research questions are trying to be proposed:

RQ1:What are the trends in computational thinking
development from 2015 to 2023?

RQ2:What are the possibilities and value of AIGC in
developing computational thinking in students?

RQ3:What are some instructional strategies for developing
computational thinking using the AIGC?

2. METHODOLOGY
This study adopts the systematic literature review method.
The steps of literature search and evaluation are shown in
Figure 1. CNKI Academic Journals Full Text Database was
used as the data source, and "Generative Artificial
Intelligence" & "Education" and "Computational Thinking
Cultivation" as the search topics. "Education" and
"Computational Thinking Cultivation", select the domestic
academic literature published in CSSCI source journals,
and set the time from January 2015 to December 2023. The
time period is set from January 2015 to December 2023,
because after 2015, the research is gradually expanding
from university to K12 level. A total of 232 articles of
domestic literature were screened; the keywords "Artificial
Intelligence Generated Content" and "Training of
computational thinking" were used as the research terms.
The keywords "Artificial Intelligence Generated Content"
and "Training of computational thinking" are used, and 66
articles of foreign literatures are obtained from the core
database of Web of Science. The total number of foreign
literature is 66.

Figure1 Literature Screening Procedure

To ensure the reliability and consistency of the literature,
the search results had to be verified individually, and the
initially acquired literature was selected through three
filtering conditions.
Reading the titles and abstracts according to the screening
criteria and eliminating the literature that is not highly
relevant to the research topic of this paper, we finally got
28 valid literature.

3. RESULTS OF THE REVIEW
Based on the research questions, our analysis yielded the
following results:

3.1. What are the trends in computational thinking
development from 2015 to 2023?
Exploring the content of K-12 Computational Thinking
development is essentially a deeper reading of its concepts.
China's general high school information technology
curriculum standard states that students with computational
thinking, construct solutions to problems by integrating
resources and applying reasonable algorithms; summarize
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the process and method of computerized problem solving
and transfer it to related problem solving (MOE,2018). In
the era of artificial intelligence, human intelligence should
be iterated forward with the help of intelligent tools that are
fundamentally different from human beings, horizontally
breaking through human knowledge barriers and
downwardly compatible with human foundations and
differences, with a view to realizing human intelligence
(Yang, 2023).

3.2. Possibilities and value of AIGC in developing
students' computational thinking?
Computational thinking, which is inseparable from
programming teaching. On the one hand, programming
teaching is an effective way to cultivate computational
thinking; on the other hand, the cultivation of
computational thinking is an important goal of
programming teaching. Relevant literature suggests that
programming is an effective framework for developing CT
skills (Sun, Hu,& Zhou, 2022; Angeli & Giannakos, 2020).
The AIGC tool can help students develop computational
thinking by providing resources and guidance for
programming learning and realize the enhancement from
the skill manipulation level to the innovation and creativity
level.
Computational thinking is a generic skill that is not only
relevant to computing but crosses disciplinary boundaries
(Teaching London Computing, 2017). However, when
combined with other disciplines, the goals of developing
computational thinking need to be coordinated with the
curriculum goals and carried out in a way that is specific to
the discipline. This is often a challenging task. AIGC can
provide a variety of innovative teaching methods according
to the course objectives and the characteristics of the
discipline.
Educators need to take appropriate steps to verify that
students are actually mastering what they are learning. The
AIGC tool can not only assess according to the existing
assessment methods, but also collect the process data of
learning based on the digital mobile devices, realizing the
transition from outcome-based assessment to process-based
assessment, and from selective assessment to
developmental assessment.

3.3. What are some instructional strategies for
developing computational thinking using AIGC?

3.3.1. Innovative applications in programming education
AIGC can help students understand programming concepts,
master programming languages and tools, etc., which are
all important components of computational thinking, by
providing programming-related knowledge, skills and
examples. Meanwhile, the age and gender of students will
affect the effect of programming. AIGC can carry out
programming teaching according to the age and gender
characteristics of students, provide personalized
programming learning plans and recommend relevant
learning resources according to students' learning needs
and interests, provide real-time feedback to help students
carry out individual exercises, and help students complete
individual programming ability level testing to help them

learn and practice programming better, thus Help learners'
computational thinking development.

3.3.2. New Approaches to Personalized Instruction and
Higher Order Thinking Development
AIGC tools such as ChatGPT can be used as easy-to-use
chatbots to generate customized and personalized content
to a certain extent for students of different age groups and
learning levels by conversing with users. , which carries
out personalized teaching and precise instruction. In terms
of teaching, it can provide many auxiliary functions such as
learning situation analysis, homework correction and
feedback, learning data monitoring and evaluation, etc.,
changing the traditional education's excessive focus on
knowledge transfer to the cultivation of higher-order
thinking such as computational thinking. In addition, since
the content generated by generative AI such as ChatGPT is
uncertain, students first need to understand this uncertainty
and think about and determine the authenticity, and this
process is essentially the process of judgmental thinking
formation.

3.3.3. A new engine for personalized assessment
In terms of evaluation, AIGC tools can evaluate learners'
learning effectiveness by collecting, organizing and
analyzing learners' whole process learning data. In addition,
AIGC-supported learning evaluation will realize the
evaluation of learners' higher-order abilities, such as critical
thinking, problem solving ability, reasoning and reflection
ability, etc., by visually presenting the learners' thinking
trajectory, problem solving process, etc., and shifting from
the traditional test evaluation to personalized evaluation.

4. CONCLUSIONS
AIGC has great potential and value in developing students'
computational thinking. Applying AIGC to education
allows students to experience AI technology, stimulate
interest in exploration, and enhance their thinking skills. By
providing programming learning resources, AIGC can help
students advance from the skill operation level to the
innovation and creation level. AIGC provides innovative
teaching methods such as accurate assessment and resource
pushing to promote the personalized development of
learners' higher-order thinking. Its assessment methods
better reflect students' computational thinking level and
provide feedback for educators to optimize teaching
strategies.
To further explore how the AIGC tool can be utilized to
more effectively develop students' computational thinking,
future research could develop targeted instructional
programs and assessment methods. It is also necessary to
focus on students of different ages and learning levels to
develop personalized instruction and precise guidance to
better promote the development of students' computational
thinking.
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ABSTRACT
STEAM education involves science, technology,
engineering, arts and mathematics disciplines, emphasizing
that students pose practical problems and apply
interdisciplinary knowledge to solve problems, and develop
students' problem-solving and innovation skills. This study
attempts to explore the integration of STEAM education
concepts into English courses in order to promote the
development of English teaching. By means of literature
research, this study conducted relevant research on the
connotation and characteristics of STEAM education
concept at home and abroad, the integration of STEAM and
language subjects, and analyzed the appropriateness of
STEAM education concept based on project-based learning
in English teaching and the design of teaching mode. With
the teaching form of four links: theme selection, task
assignment, project exploration and achievement display,
this study takes Computer English as the course carrier, and
the instruction implementation is carried out for freshmen
students, forming a typical case of the application of
STEAM teaching concept based on project-based learning
in English teaching.

KEYWORDS
project-based learning, STEAM education, English
teaching

1. INTRODUCTION
STEAM education originated in the United States in the
1990s, the concept of STEM was originally proposed by
the American Science Board in the report, STEM means
the integration of Science, Technology, Engineering and
Mathematics. It originally implemented in undergraduate
education, and it aims to cultivate the practical ability of
science and engineering students. In response to the lack of
creativity in its implementation, Virginia University of
Science and Technology scholar G.Yakman also proposed
to add "A" (Art) to STEM, and proposed STEAM
education, which means that the art and humanities and
social sciences and other disciplines are integrated into
STEM to provide creative sources for science and
engineering practice. STEAM education is an educational
concept and practice that integrates liberal arts, science and
engineering. STEAM education supports students to
understand the world in an integrated way and transform
the world in the form of comprehensive innovation, so that
students can learn integrated knowledge in the process of
solving real problems, and at the same time, gain the
inherent ability to design problems, solve complex
problems, cooperate, make decisions and innovate and
create, rather than only accept the knowledge content of a
single discipline. STEAM education is a project-based

learning (PBL) or task-based learning (TBL) way of
learning. It emphasizes the study and application of
interdisciplinary knowledge to solve problems in life.
STEAM education focuses on knowledge learning and
ability cultivation, a "learning" approach based on "doing",
and focuses on the application of multidisciplinary
knowledge and the relationship between students. As an
instrumental language discipline, English is a good carrier
to take the project-based STEAM teaching into
implementation. However, how to apply the STEAM
teaching concept based on project-based learning to train
students' comprehensive ability in English teaching is the
highlight of this study.

2. LITERATURE REVIEW
2.1. Research on Educational Applications of STEAM
In the research field of STEAM education, Chinese
scholars mainly analyze the connotation, characteristics
and implementation strategies of STEAM education. (Yang
Mingquan, 2024) analyzed the concept of STEM, and he
believed that the term "STEM education" has multiple
connotations that are interrelated and have different
directions: it is not only a research field, a concept of
education, but also a curriculum form and a teaching
method. He believes that the current STEM education is
facing practical problems such as the solidification of
teaching methods, unclear education goals, and insufficient
teachers' ability. Only by integrating STEM education
research and its localization transformation and innovation
into the internal composition of China's education reform
can STEM education develop sustainably. Based on the
analysis of domestic STEAM education research hotspots,
combined with China's national conditions and education
status, (Dong Hongjian & Hu Xianyu, 2020) placed
expectations on the development of "STEAM+" in STEAM
education to improve the STEAM teacher training system
and establish a diversified evaluation system. In a word,
research on STEAM education are various in a variety of
disciplines. In recent years, more scholars tend to study
STEAM education from application mode, specific
teaching, curriculum design and other dimensions, and try
to innovate the development path of STEAM education
based on the actual situation of the country and the actual
needs of students.

2.2. Research on the Application of STEAM in English
Teaching
The research on the application of STEAM education
concept in English teaching mainly focuses on the
application of the interdisciplinary concept of STEAM
education and the project-based learning method, which
contributes to the innovation and upgrading of English
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teaching. It summarizes and refines the STEAM
competence of teachers, STEAM education system,
STEAM curriculum resources development and other new
research areas. Based on the project-based teaching and
interdisciplinary concept under the STEM concept, (Xu
Shengnan, 2020) designs English activities, handicraft
making, scientific experiments and other learning projects
in the English learning of science and engineering students.
Focusing on the innovation and upgrading of English
teaching for engineering students, (Li Yongmei, Zhang
Dongxia & Tan Xin,2019) tried to introduce the
interdisciplinary concept of STEAM education, project
Language teaching model (PBLL) and English teaching
methods based on information technology in English
teaching, so as to promote the innovation of college
English teaching model. All in all, under the guidance of
STEAM, English teaching has gradually shifted from
focusing on the mastery of English knowledge points to
focusing on the input, output and application of English
knowledge in real situations, which requires more scholars
to study the application of STRAM education in English
subjects.

3. RESEARCH ON STEAM ENGLISH
TEACHINGMODEL BASED ON
PROJECT-BASED LEARNING
Project-based learning is a teaching process guided by
constructivism, which promotes the development of
students' comprehensive ability through high-investment
inquiry learning in real situations. The selection of project
themes, project division, project exploration, project output
and presentation of diverse evaluation and reflection
require the participation of students. Students are always
the main body of learning in project-based learning, and
teachers play the role of mentors, collaborators and helpers.
The STEAM English teaching mode based on project-
based learning is divided into thematic selection, task
assignment, project exploration and group presentation.
The realization of the project is an important support for
English learning knowledge points and language skills
learning, and it is also the guarantee of the successful
completion of project-based learning. When selecting
project topics, it is necessary to consider that the selected
topics should not be closely related to students' personal
life, professional and textbook content, reflecting the
practical significance of project-based learning inquiry. In
addition, the determination of the project theme should also
consider the regularity of students' physical and mental
development, and should fit in with their cognitive
characteristics and interests. Project tasks should also be
realized by students through group cooperation. Secondly,
students should be guided to divide the work among group
members and arrange the exact task progress for the task of
the group cooperation project. After fully and deeply
understanding students' learning characteristics and
strengths, teachers guide students to voluntarily assign
groups according to their own interests and needs, ensuring
that each member of the group can fully participate in class
activities and show their strengths in project-based learners.
Project inquiry is the core link in the process of project-
based learning. In the process of interactive inquiry,

students participate in classroom learning by actively
experiencing and exploring knowledge, and fully highlight
their subject status. In the process of interactive inquiry,
students participate in classroom learning by actively
experiencing and exploring knowledge, and fully highlight
their subject status.

4. A PRACTIAL CASE OF STEAM
ENGLISH TEACHING BASED ON
PROJECT-BASED LEARNING
Taking the computer English course as an example, the
teaching object is computer major college students, and the
project theme is Design Proposal. This project aims to go
through the process of selecting an ISP (Internet Service
Provider). The whole task is divided into three steps. Step
One is about an overview of all ISPs. Step Two focuses on
information collection. Step Three rests on making
comparisons and presentations. The project follow three
steps, which is Step One: Organize a small group with 4–
6 people in the class; Share the work of researching online
resources for information about ISP companies in China;
Summarize what students have found and just select one of
them to research in depth. Step Two: Find information
about the selected ISP company as much as possible,
including its cost, service types, fees, etc.; Interview some
clients of the ISP company, and summarize the different
clients’ comments on the company; Illustrate what students
have found about the company in the form of a table. Step
Three: Compare what students have found with another
group, and find out your ISP company’ s strong points and
weak ones; Make a presentation about your ISP company
in front of the whole class; Select the best ISP in your mind.
Finally, students present their research results in the form
of PPT, and discuss in the class to make formative
evaluation, as shown in Figure 1.

Figure 1. Presentation of the project

5. CONCLUSION
This research is based on constructivism theory, humanism
theory and cognitivism theory through the literature study
and research of STEAM education concept and STEAM
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integration with disciplines. An English themed activity
teaching design scheme based on STEAM concept is
designed to enhance class participation, stimulate students'
learning interest and improve students' confidence in
English learning, and the teaching practice has proved that
the teaching design has achieved the expected results. In
the future teaching process, it is necessary to continue to
learn knowledge related to STEAM education and conduct
in-depth research, to explore the interdisciplinary linkage
mechanism and teaching incentives between STEAM and
English teaching, and to continuously promote English
theme-based project-based activity teaching based on
STEAM education concept in teaching practice to improve
students' classroom participation.

Funding: This research was funded by Guangxi
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Innovation of Teaching Mode under the Background of
Digital Transformation" (Project No.: 2023YB013).
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ABSTRACT
Computational thinking is solving problems by abstracting,
decomposing and modeling the problem into forms that
could be simulated and validated by computer. To do so,
the key is the algorithm we use. When teaching Algorithm
to students in primary school, or students of any other age,
mathematical knowledge is an inevitable part of the course.
However, due to the cognition of the students in primary
school, they are easily confused by whether they are
learning math or computer science. This should raise
attention to algorithm teaching in primary school, how to
put prominence to the features of algorithm teaching and
help the students understand why we should study
algorithm. This paper gives out suggestions by the writer’s
own teaching experience to algorithm teaching in primary
school according to the matters that might occur in present
teaching situations and the characteristics of the students,
for which put prominence to the features of algorithm
teaching by comparing to mathematical teaching.

KEYWORDS
algorithm teaching, primary school, teaching suggestions

1. INTRODUCTION
The objective in the computer classes which is now called
“information science & technology” in primary school has
raised from certain skills and the use of certain software to
a more sophisticated level since the issue of the
“compulsory education curriculum plan and standards” at
march 25th, 2022. In which it lines out four major qualities
students should acquire through the information science &
technology course, information awareness, computational
thinking, digital learning and innovation, information
responsibility.

The description of “computational thinking” is the
thinking activities involved in problem-solving, such as
abstraction, decomposition, modeling and algorithm
design, that individuals use in the field of computer science.
Students with computational thinking are able to abstract,
decompose, model problems and form solutions through
designing algorithms. They are able to simulate process
and verifying problem-solving solutions, reflect on and
optimize these problem-solving solutions, and apply them
to other situations. (China Compulsory Education
Curriculum Plan and Standards for Information Science
&Technology, 2022, p.5)

Obviously, we ought to focus on developing the students’
thinking mind during classes. But how do we know what is
going on in their mind? We used to rely the answers

students brought up and the works they done to estimate
the level of comprehension. When it comes to
“computational thinking”, there are no straight answers in
problem-solving, only solutions that are formed by a series
of steps which makes up an algorithm. How students use
algorithms to solve certain problem shows the
development of their “computational thinking”.

2. LITERATURE REVIEW
This literature review will show the studies of algorithm
teaching and the challenge within.

When teaching algorithm teachers trends to pass on the
formula of an algorithm to the student as in math class, as
a result, students memorize the formula instead of forming
it with their own intellectual work, this type of teaching
method is ineffective. (Mathematics, 2022, p. 3857). In
middle school and high school teaching algorithm is
usually combined with programming, which concretize the
abstract theory and helps students understand. But is
algorithm only used for programming? If we give students
this impression when teaching algorithm, it might limit the
use of algorithm outside of class. Research shows that
postsecondary students are largely unaware of the impact
of algorithms on their everyday lives. The teaching content
for “information science & technology” in primary school
is mostly presented in the form of text, charts, and images,
which is highly theoretical. Algorithm as an even more
abstract concept, will be harder for primary school students
to understand. There are teaching tools and methods that
are already in use in teaching math and programming
which are also useful in teaching algorithm, but what is the
particular feature in algorithm class that distinguish it from
math and programming class is what I have been thinking
and working on while teaching algorithm.

3. PRESENT SITUATION
I teach over 300 students in 8 classes of 18 in 5th grade, 1
class hour each week for every class, 18 weeks each
semester. It has been nearly 3 semesters now, led the
students into 6th grade, there are 3 major issues that
students are confused with:

3.1.Why should we study algorithm?

The math foundation students built will help them
understand algorithm, but sometimes it helps a little too
much. Algorithm in Chinese translation is “Suan Fa”, it is
easily misinterpreted as “ways to calculate”, students are
familiar with this concept in math class, such as:

Table 1. Example of Ways to calculate in math class.
associative law A x B x C = A x (B x C)
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commutative law A x B = B x A
distributive law (A + B) x C = A x C + B x C.

These methods can easy the calculation which brings the
result faster. But when it comes to a real-world problem
rather than problems on paper, it takes logical steps which
forms an algorithm rather than just calculation. If students
can’t to realize the value of algorithm in solving real-world
problems, it could be the gap for them when it comes to
bringing solutions to a more complexed problem.

3.2.We already know!

Based on the cognition of the students, we teach the classic
algorithms such as, enumeration, recurrence, divide and
conquer. However, some of the ideology has already been
shown in their math class, such as “find the flawed(lighter)
product using a scale”.

Figure 1. “Find the flawed(lighter) product using a scale”

Although algorithm is a new subject in primary school, if
we can’t acknowledge the fact that some of its ideology
has already been taught in math class, there are chances
that students have already solved the problem you brought
up, this it will weaken the interest in learning algorithm.

3.3.Am I in a math class?

When we explain the principle of an algorithm it is very
common to use math formula, equations, symbols etc.,
students are confused with the question, “am I in a math
class?”, even teachers have the same question, “what is the
feature of algorithm class that differs it from math?”.

When it comes to solving password problems, which is
classic in teaching enumeration, you need to calculate the
range of the enumeration to show the difficulty in breaking
the password:

Table 2. Calculate the Range of the Enumeration.
Combination Numbers Numbers &

Letters
Numbers &
Letters with

case
sensitivity

Enumeration
range

10 x 10 x
10

(10+26)3 (10+26 x
2)3

When it comes to teaching recurrence, the classic come to
the Fibonacci sequence also known as the rabbit sequence,
we also need to summarize the formula:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89……
f(n) = f(n-1) + f(n-2)

The formula helps students understand the algorithm, but
differ from math class the results of the calculation it is not
the solution, it might be the answer to one of the steps in
an algorithm. Thus, in algorithm class calculation and
formula has its own use, but paying too much attention to
it might end up failing to come up with the full solution.

4. SUGGESTIONS
To clear the confused minds for both teacher and students
in teaching and studying algorithm we can try these
strategy:

4.1.Answer “why should we study algorithm?”

It has come to peoples’ senses that computer is a powerful
tool in any field of work, the questions is can it help you
solve particular problems. The key is to understand how its
functioned, we can compare it to how the human brain
solves an equation, such as “X + 3 = 7”, it is so easy that
students can give out the right answer in an instant, but
computer solves it in a different way, by putting numbers
into “X” until the equation stands.

Figure 2. Process of Solving “X+3=7” with Computer

Describing the algorithm can help you understand how the
problem is solved and shows how the computer is
functioned. With algorithm you have the help of the
computer, it brings advantages when facing complex
problems. Once the students understand “why should we
study algorithm?”, it will bring up their interest and
motivation in class.

4.2.Challenging tasks shows advantage of algorithm

According to “Zone of Proximal Development”, the task in
class should be in reach of students’ abilities. With the use
of algorithm, the tasks should be beyond the reach of just
using math methods.

There is an old Chinese question from “Zhang Qiu Jian
Suan Jing”, “$5 for a rooster, $3 for a hen, 3 chicks for $1,
can you buy 100 chicken with $100?”, although students
can come up with the equation group easily, but solving it
is beyond primary school math:

a + b + c =100
5a + 3b + c/3 = 100

The method to solving this equation group is in 7th grade
math, but using algorithm students can solve it in 5th grade:
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Figure 3. Process of Solving “buy 100 chicken with $100”

Trying every possible number to find values that fits the
equation group seems like an impossible mission, but
using algorithm and run it through the computer results
will come out in minutes.

4.3.Focus on the process

When we got a wrong answer in math it’s a calculation
error, but when we run an algorithm with the computer and
failed, it’s the steps in the process that has gone wrong. So
teaching algorithm we must focus more on the process
rather than the answer. To do so, the description of the
algorithm must be accurate.

Sometimes we can even try just using descriptions to break
down complexed problem into smaller problems, repeat
this process, which is divide and conquer algorithm, until
the problem is small and simple enough for us to solve.

The story of “The Martian” a great example for students
understand the importance of dividing the problem.

Figure 4. Dividing the Problem

Clips from a movie can light up the algorithm class, draw
the students’ attentions and led the students realize the use
of algorithm is beyond programming. Although the story is
based on Mars, but some of the problem, such as
communication, travelling etc., can also happen in real life
on Earth.

4.4.More than just programming

We can find the use of algorithm in various games
strategies. The rules for “The Tower of Hanoi” are simple,
move the tower by layer, each layer can only land on a
bigger layer. This game is a classic use of the recursive
algorithm.

Figure 5. Model of “The Tower of Hanoi” Game

Class are carried on through these sections:

Figure 6. Activities in Class

The achievement gathered by playing games will drive the
student to keep on trying, thinking, and finally understand
the theory of recursive algorithm. This will lead students to
realize the use of algorithm is not just about programming.

5. CONCLUSION
Algorithm is a new subject in primary school, students
need certain math knowledge and programming skills to
start, but it is neither math nor programming. Math is used
to analyze the efficiency of an algorithm while
programming is used to simulate and verify an algorithm
in the computer. The essence of algorithm is the clear
description of each step in the solution, by understanding
every step in an algorithm and the logic between, we can
adjust it to our own need, optimize it to increase efficiency,
apply it to other cases.

It is important to show the advantage of using algorithm in
class, it will enhance the students’ ability to solve problems,
when they realize the power of algorithm, it will increase
their interest and motivation in class. The feature of
teaching algorithm is that we should focus on the process,
the right process is the reflection of a deliberated mind.
Leave the calculation to the computer since it is more
efficient and accurate.

The classic problems of algorithm were brought up far
before computer was invented, I would like to think that
the use of algorithm comes from math, and now it is
widely used in the field of computer science and
technology, but is doesn’t stop here. We can’t give students
the impression that algorithm is only used in programming.
Thus, we should bring more elements other than computer
into the classroom, games, movies etc., hopefully we can
create a more productivity, interesting and fun algorithm
class.
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ABSTRACT
With the advent of the digital era, nations around the world
are actively exploring and implementing contemporary
approaches to information technology education that align
with current needs, thereby driving the continuous
evolution of educational systems. This study conducts a
comprehensive analysis of the current state of information
technology education in the United States, the United
Kingdom, and Japan, focusing on curriculum standards,
policy environments, and instructional content. By delving
into these aspects, the research aims to identify common
trends. The primary objective is to provide valuable
insights and references for the future development of
information technology education in our country. This
includes aspects such as computational thinking education
and STEM education related to computation. The findings
aspire to serve as a crucial reference point, laying a solid
foundation for the cultivation of a new generation of talent
equipped with advanced digital literacy.

KEYWORDS
Information technology, curriculum standards, policy
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1. INTRODUCTION
As human society enters the digital age, the significance of
information technology education becomes increasingly
prominent. Countries worldwide are actively exploring
international perspectives on information technology
education that align with contemporary needs, thereby
propelling the continuous development of educational
systems. Considering to the global influence and
advancement of the United States, the United Kingdom and
Japan in the field of information technology education.
This report provides an in-depth study of the current status
of their information technology education. It investigates
their curriculum standards, policy environments, and
instructional content with the aim of providing valuable
insights and inspiration for the development of information
technology education in our country. Ask the following
research questions:

1. What is the current status of information technology
education in the US, UK and Japan?

2. What is the development trend of information
technology education?

3. How to promote the vigorous development of
information technology education?

2. Current Status of International
Information Technology Education
Development
2.1. Policies Related to Information Technology
Educatioon
The United States has consistently led the world in
information technology education. In the 1990s, there was
a significant emphasis on computer education in primary
and secondary schools. In 2011, the revised "CSTA K–12
Computer Science Standards" (CSTA & ACM, 2011) was
launched, providing comprehensive standards for K-12
computer science education. The "CSTA K–12 Computer
Science Standards" (CSTA, 2017) were further revised in
2017, emphasizing the introduction of basic computer
science concepts to all students from elementary school
onwards. It encourages schools to offer additional high
school computer science courses, allowing interested
students to delve deeper into various aspects of computer
science.

The United Kingdom is among the earliest countries
globally to incorporate information technology into its
national curriculum, with the subject originating from the
field of computer science. In 1987, the Department for
Education and Science/Welsh Office in London (1987)
released "The National Curriculum 5– 16," stating that
information technology should be included in the
foundational curriculum for primary and secondary schools.
In a new round of reforms in 2013, the ICT curriculum was
transformed into the "computing" curriculum, accompanied
by the successive release of drafts for computing programs
of study (Department for Education,2013).

Japan began developing information technology education
in the 1980s, with the government implementing a series of
measures to advance information technology education,
subsequently issuing curriculum standards and guidelines.
In 2018, Japan revised the high school learning guidelines,
introducing a new compulsory subject to strengthen the
teaching content, and the revision was formally
implemented in 2022(Ministry of Education, 2018).. In
November 2019, the Central Education Council of Japan
released a five-year timetable for campus ICT environment
construction, planning to promote the development of
school information and communication technology
environments through a series of reforms. In September
2020, the "Information Education Curriculum Design
Guidelines" were successively introduced, systematically
planning both internal and external information education,
achieving an integrated and coherent design of the
information education curriculum system.

132

mailto:fredqian@bnu.edu.cn


2.2. Objectives and Contents of Information Technology
Education Curriculum
The United States lacks a uniform set of information
technology curriculum standards, each state refers to the
education plans issued and formulates its own course
standards. In this context, the analysis focuses on the
"CSTA K-12 Computer Science Standards" promulgated in
2017 (CSTA, 2017),which outlines five core concepts and
seven core practices. It explicitly states that the curriculum
objectives for computer science courses aim to enable all
students to understand the concepts of computer science
and engage in practical applications. Students are expected
to grasp the essence of computer science, apply computer
science skills, especially computational thinking, to
problem-solving. The concepts section of curriculum
contents includes "sub-concepts" and "interdisciplinary
concepts," reflecting both the essential requirements of the
discipline itself and the trend of interdisciplinary
integration. From the proportion of core concepts, it is
evident that "Algorithms and Programming" constitute a
focal point of the computer science curriculum.
Additionally, as students progress through grades, both the
proportion and complexity of algorithms and programming
gradually increase, intersecting with multiple points in the
"Creating Computational Artifacts" core practice.

In February 2013, the United Kingdom announced a new
national curriculum draft, including a computer curriculum,
marking the replacement of the former Information and
Communication Technology curriculum with a computer
curriculum (Department for Education, 2013). The
curriculum objectives aim to enable students, after
completing the study of computer science principles and
basic concepts, to apply computational thinking to analyze
and solve problems, ultimately becoming creators of
technology. It also seeks to cultivate students' digital
literacy, transforming them into adept and responsible
technology users in the information age. The "Computing"
curriculum in the United Kingdom encompasses three
domains: Digital Literacy, Information Technology, and
Computer Science. Each module is divided into four key
stages based on age, with detailed learning content
specified. (Simon Peyton-Jones, 2014).

The newly revised "High School Learning Guidelines" in
Japan established the course objectives for high school
students: acquiring knowledge of information technology,
developing skills in using information, understanding the
role and impact of information technology in society,
fostering information-oriented thinking, and cultivating the
ability and attitude to adapt to the development of
informatization.In the high school stage in Japan, the
compulsory subject "Information I" and the elective subject
"Information II" are offered. In the "Technology and Home
Economics" subject in junior high school, the information
technology component is comprehensively integrated.
There is no separate course in elementary school; instead,
the content related to information education is incorporated
into comprehensive learning practices, mathematics,
science, and other subjects. Simultaneously, information
technology is widely and effectively applied in the teaching
of various subjects . Japan plans for all elementary school
students to study computer programming, equip all junior

high school students with a terminal for learning, and have
all students learn fundamental knowledge such as
programming, networks, and databases.

The examination of curriculum objectives and contents in
the aforementioned countries reveals distinctive approaches.
The United States places greater emphasis on K-12 system
design, the United Kingdom prioritizes phased education,
while Japan focuses on establishing connections between
information and society.(Refer to Table 1.) Computer
science is universally recognized as a crucial knowledge
domain across all nations, with a common focus on
fundamentals such as data, programming, and algorithms.

Table 1. Curriculum objectives and content in each country

3. Common Trends in International
Information Technology Education
From the development processes and achievements in
information technology education across various countries,
a synthesis of international trends in information
technology education can be deduced, categorized into two
main aspects: enhance external support and internal
curriculum-level reform.(Refer to Table 2.)

Table 2. Enhanced external support and curriculum-level reform

3.1. Enhanced External Support
In the realm of information technology education, countries
worldwide are bolstering their efforts through enhanced
external support mechanisms. This involves the
formulation of comprehensive policies to provide clear
directives for the development of computer science courses.
Additionally, there is a concerted focus on promoting the
construction of robust educational infrastructure,
facilitating the seamless integration of computer
technology into learning environments. Furthermore,
collaborative endeavors led by government bodies,
businesses, academic institutions, and civil organizations
are driving the development of specialized software and
hardware tailored for educational purposes. Simultaneously,
considerable attention is directed towards the professional
growth of educators, with an emphasis on equipping them
with modern educational technology and information
technology training. These multifaceted initiatives reflect a
collective commitment to nurturing a technologically adept
generation capable of thriving in the digital age.
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3.2. Curriculum-level Reform
In striving for progress in information technology
education, nations are undertaking comprehensive reforms
at the curriculum level. This entails the widespread
integration of computer teaching throughout all educational
stages, underpinned by curricula that are both standardized
and adaptable. Each country tailors its curriculum to its
unique national context, fostering not only the acquisition
of knowledge and skills but also the cultivation of critical
thinking, practical abilities, and a sense of social
responsibility. Moreover, there is a deliberate emphasis on
instilling computational thinking skills, empowering
students to approach complex challenges with systematic
and abstract problem-solving techniques. Concurrently,
there is a concerted push towards fostering technological
innovation and practical application, involving the
development of versatile software and hardware tools
aligned with global standards and practical educational
needs.

4. Insights and Suggestions
Through an analysis of the current status and common
trends in information technology education in the United
States, the United Kingdom, and Japan, there are insights
for the development of information technology education
in China.(Refer to Table 3.)

Table 3. Insights and Suggestions

4.1. Curriculum Development and Integration
It is vital to organize the curriculum according to the
students' stage of learning. Emphasis is placed on layering
knowledge progressively according to the IT curriculum
standards to ensure a systematic and coherent
understanding of the subject. Emphasis is placed on
progressively layering knowledge according to the IT
curriculum standards to ensure a systematic and coherent
understanding of the subject.

4.2. Pedagogical Innovations for High-Order Thinking
Localization of international curriculum standards plays an
important role in developing higher-order thinking skills. In
addition, programming logic training should be emphasized
as an important means of improving students' critical
thinking skills, creative problem-solving skills, logical
analysis and synthesis skills.

4.3. Localized Professional Development for Teacher
Drawing on international experiences and models, we will
formulate targeted policy support in the light of local
realities. We advocate sustained professional growth,
which requires collaboration among government,
universities and educational research institutions, as well as
the active participation of teachers themselves.

4.4. Strengthening integration with Other Educational
Content
Encourage multidisciplinary integration and the use of
multimedia to create personalized learning environments.
The focus is not only on the learning of technological tools,
but also emphasizes the development of teaching content
based on real-life scenarios, problems or projects, thus
enhancing students' overall literacy and understanding of
IT applications.

4.5. Establishing a Social Participation Model
There is a need to create an integrated educational
environment that spans the home, school and community.
Collaboration between business, academia and civil society
organizations is essential to provide resources, support and
ensure that students adapt effectively to evolving
technologies.
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ABSTRACT
This article explores the application of computational
thinking in the teaching of information technology. The
example discussed in this article is the use of data
visualization to assist in teaching logic gate circuits and
binary half-adders. The focus is on using data visualization
to reveal the operational units of computers, thereby
constructing a clearer learning path for computational
thinking. The article analyzes key elements of
computational thinking, such as problem decomposition,
pattern recognition, and abstract thinking, and discusses
their specific applications in understanding circuits. By
integrating theory with practice, this article demonstrates
how abstract computational concepts can be transformed
into intuitive visual forms, thereby enhancing students'
learning efficiency and deep understanding. The
innovation of this article lies in using data visualization as
a bridge to connect the underlying logic of computers with
computational thinking, providing a new perspective and
method for information technology education.

KEYWORDS
Computational Thinking, Data Visualization, Information
Technology Education

1. INTRODUCTION
While computational thinking originates from computer
science and represents the evolution of thought processes
in human-computer interaction, this article focuses more
on exploring the connection between computational
thinking and the underlying logic of computers. This
exploration not only prompts us to deeply consider the
definitions and relationships between the underlying logic
of computers and computational thinking, but also guides
us in understanding how these two interact with each other.

Computational thinking is considered a key skill for
solving complex problems, encompassing creative thinking,
problem decomposition, pattern recognition, conceptual
abstraction, and effective algorithm design. However, these
abstract descriptions of computational thinking have not
yet provided a clear learning path. To explore a definitive
learning path, this study introduces data visualization as a
tool, exploring how computational thinking aids in
teaching students to understand the role of logic gates in
computer chips. Presenting a specific case, we use
graphical methods to understand logic gate circuits. By
utilizing data visualization to delve into the underlying
logic of computers, our aim is to use computational
thinking to solve and understand deep-seated problems.

2. COMPUTATIONAL THINKING FOR
BINARY CIRCUITS
In this article, we will discuss the application of
computational thinking in information technology
education, particularly in understanding binary half-adder
design in logic gate circuits. The core of computational
thinking is to provide a novel perspective for
problem-solving. In understanding logic gate circuits, we
focus not only on the solution itself but more importantly
on understanding the process and methodology of
problem-solving.

Firstly, computational thinking emphasizes decomposing
complex problems into smaller parts for better
management and resolution. This approach is akin to
constructing the most basic foundation of a computer,
where the construction of complex computer systems also
utilizes this method of breaking down into smaller
problems. This way of thinking helps us deeply understand
the working principles of logic gate circuit systems,
making them more controllable.

Secondly, the pattern recognition capability in
computational thinking enables us to identify key elements
in logic gate circuit design, thus constructing complex
electronic systems more efficiently. Human learning is
based on pattern recognition, which gives us the ability to
generalize learning, the ability to apply a principle in
various contexts. Abstraction is another key element of
computational thinking, allowing us to simplify and
symbolize the physical connections and specific circuits of
the real world, focusing on function and design at a higher
level, reducing information overload. The abstraction and
pattern recognition capabilities of computational thinking
enable us to understand complex systems from a macro
perspective, not constrained by the details of specific
implementations.

Finally, algorithm design holds a central place in
computational thinking, guiding us to deeply understand
the working principles of circuits and translate these
principles into practical, operable design solutions.
Computational thinking provides us with powerful tools
for understanding and optimizing electronic circuits. It is
foreseeable that computational thinking, as a tool, is not
only applicable to the understanding of logic gates and
binary adders but also helps in solving practical technical
problems, enhancing innovation, and systemic thinking
abilities.

3. DATA VISUALIZATION FOR
GRASPING CIRCUIT DESIGN CONCEPTS
Data visualization plays a crucial role in computational
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thinking. Integrating it with information technology
education, particularly in logic gates and half-adders,
facilitates students' understanding of complex electronic
engineering concepts. This tool can transform abstract
concepts into intuitive, easy-to-understand visual forms,
thereby promoting deeper understanding and learning. In
the process of learning circuit design, textual and oral
descriptions often fail to fully convey complex structures,
whereas data visualization, through simplified graphics
and charts, makes elusive circuit designs clear. It not only
enhances understanding through visual transformation and
pattern replacement but also presents circuit knowledge in
multi-angle and multi-dimensional ways, helping students
and engineers grasp the core elements of design, leading to
precise and efficient decision-making.

Data visualization also promotes key computational
thinking skills, such as pattern recognition and abstract
thinking. Through graphical representation, designers can
more easily identify repetitive patterns and key
connections in circuits, which is crucial for constructing
and optimizing complex circuits. Abstraction skills are also
enhanced, as visual tools provide different levels of circuit
presentation, from flat to three-dimensional, helping
students understand circuit layouts from a macro
perspective. This complex form of data visualization not
only makes information hierarchical but also closer to the
essence of the real world.

In education or research, data visualization makes the
teaching of computational thinking more efficient and
interactive. It not only enhances students' learning interest
but also provides a platform for exploration and
experimentation. In practical engineering projects, data
visualization is crucial for communication and
collaboration among student team members, especially in
complex projects requiring interdisciplinary cooperation.
Overall, data visualization is key in connecting theory with
practice, simplifying complex concepts, and promoting
in-depth understanding. It not only enhances the
application of computational thinking but also brings
revolutionary changes to electronic engineering education
and practice. By combining computational thinking and
data visualization, we can more effectively understand and
innovate in electronic engineering design, preparing for
future technological challenges.

4. VISUALIZING LOGIC GATES
THROUGH COMPUTATIONAL
THINKING
In the field of information technology education, applying
computational thinking to the illustrative teaching of logic
gate circuits and binary half-adders is an effective method
to enhance students' understanding and application of
digital logic. Logic gates are the foundation of digital
circuit design, controlling signal flow through the
execution of basic Boolean operations. The binary
half-adder, as a basic arithmetic circuit used for adding
binary numbers, serves as the starting point for
understanding more complex operations.

In the teaching of these circuits, using computational
thinking to decipher their working principles is crucial. For

instance, when explaining the design of a half-adder, it's
possible to show how the addition of binary numbers can
be achieved through the combination of logic gates. This
involves not only understanding the function of each logic
gate but also how they can be combined to construct
complex circuit systems.

Particularly in the process of translating the physical
implementation of circuits into theoretical models, the
pattern recognition and abstraction abilities of
computational thinking become especially important. Data
visualization technology plays a key role in this process, as
it can transform abstract circuit concepts into intuitive
graphics, making complex circuit designs more accessible
and analyzable for students. Such visualization tools not
only help students clearly see each part of the circuit and
their interrelationships but also assist them in identifying
potential problems in the design before actual
implementation.

4.1. Logical Thinking
Utilizing the mindset of computational thinking, we will
now adopt an illustrative approach to explain the working
principles of the logic gate half-adder. Guided by this way
of thinking, the first thing we need to apply is abstract
thinking. In computational thinking, abstract thinking
requires us to first abstract specific objects. In the case of
the relay, the basic building unit of logic gates, its image is
the component that needs to be abstracted. We can use
simple sketching to abstract it. This prompts our thinking
to move away from specific physical objects and familiar
scenarios, identifying the general characteristics of things.
The most important feature of a relay is that it generates a
magnetic field when activated by a switch. This diagram
can effectively illustrate this phenomenon. Such
abstraction of real-world objects compresses information,
allowing us to think more swiftly. The relay's ability to use
electromagnetic fields to control switches at a distance
creates incredibly versatile operational methods.

Figure 1. Relay magnetic field control switch

Under the general principles of the relay, we have
abstracted it into graphic symbols. This further leads us to
consider the different outcomes brought about by the
differences in connection states, specifically the upper and
lower states.
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Figure 2. Relay combination abstracted as a buffer

4.2. Pattern Recognition
In the process of abstracting and extracting features from
real things, which is actually the main way that artificial
intelligence learns today, we can explore it from a different
perspective, that is, pattern recognition. In our relay circuit
switch, we actually generalize and extend the switching
pattern, in which we can find the pattern is the magnetic
field generated by the relay has a remote control effect on
the switch, which is what we further think and learn. This
is the basis of logic gate circuits, and a very important way
of thinking for IT to teach students.

4.3. Problem Breakdown
Problem decomposition as a way of thinking plays an
important role in understanding and constructing logic
gates and half adder circuits. First, we need to understand
the basic circuit components, such as the and gate (AND),
the or gate (OR), the not gate (NOT), and the and non gate
(NAND). By combining these basic components, we can
build more complex circuit functions. For example, when
building a half adder, we typically use a combination of an
AND gate and a different-or gate (XOR). The different-or
gate is used to generate the sum bit of the addition result,
while the and gate is used to generate the rounding signal.
By understanding and applying these components, we can
gradually build complex circuit systems. Each component
carries out a specific logic function and in their interaction
they produce the desired end result. Therefore, breaking
down a complex circuit design into smaller,
easy-to-understand parts is a critical step in understanding
and realizing a circuit design.

Figure 3. Half adder logic gate circuit

4.4. Algorithmic Thinking

In teaching information technology, by visualizing data for
basic Boolean logic operations such as and, or, and not, we
provide students with a clear path to understanding the
fundamentals of designing logic gates. When teaching how
to design half-adders, the application of algorithmic
thinking can help students to systematically understand
how different logic gates are combined and their role in
implementing binary addition. The way computational
thinking visualizes knowledge not only improves students'
problem-solving skills, but also enhances their deeper
understanding of circuit design. By teaching students how
to improve circuits using an iterative approach, we can
further develop their critical thinking and innovation skills.
The concept or modular design enables students to
understand the construction and function of complex
circuits more effectively. Breaking down complex circuits
into modular parts and then integrating these modules to
achieve more complex functionality not only simplifies the
learning process, but also helps students construct an
understanding of the whole and the details

5. SUMMARIZE
In computational thinking, the use of graphical for
visualization actually reflects the ability to think abstractly
about realistic scenarios and concrete objects. By applying
this kind of thinking to the design of logic gate circuits, we
not only explain computational thinking more deeply, but
also provide clearer guidelines for learning paths. As an
important part of computational thinking, thinking about
the underlying logic of computers deepens our
understanding of the nature of computational thinking. The
innovation of this paper is that it attempts to explore the
connection between underlying computer logic and
computational thinking through data visualization.
Modularization and in-depth teaching of computational
thinking are crucial for information technology teachers
when building the foundational elements of complex
systems, which helps students develop a solid mindset for
the subject.
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ABSTRACT
It is widely accepted that primary education is aimed to
help children learn basic skills and build a solid foundation
for their lifelong learning. Computational Thinking (CT) is
a problem-solving approach that serves as a bridge between
the creativity of the human brain and the efficiency of
computational power. However, it can often be difficult for
teachers to lead classes on computing science topics
because they lack knowledge or experience of coding and
the cognitive learning styles of young learners differ from
those of adults. Project-based learning(PBL) methods have
been proved to be effective in fostering students'
computational thinking. In this paper, we propose a three-
stage framework based on PBL methods: 1)pre-class
preparation. We conduct a comprehensive assessment of
students' learning styles and interests so as to group them
accordingly. 2)in-class implementation. We encourage
students to explore the driving question by engaging in
scientific practices that intersect with CT by project
selecting, decomposition, algorithm design, program
debugging and evaluation. 3)post-class evaluation. we use
cognitive tools to assist teacher and students in reviewing
their learning process. We test our framework in the
programming class of sixth-grade students and the results
clearly demonstrate the effectiveness of our model on CT
skills teaching.

KEYWORDS
computational thinking, project-based learning, primary
school students, teaching mode

1. INTRODUCTION
The emerging technologies have a significant impact on
our lives, presenting them with challenges and uncertainties.
However, one thing remains certain: students must learn to
think critically and resolve complex, ill-defined problems
(Wing, 2006). Computational thinking (CT) is a core
competency that assists young students in developing such
problem-solving skills. The skills, attitudes, and
approaches comprising CT are fundamental, universal, and
transferable, leading to its inclusion in primary school
information technology courses.

However, pupils can often be too young to understand
abstract concepts and engage in reasoning in formal
educational settings. Like any skill, CT is best taught and
learned in context, and integrated into class subjects.
Project-based learning (PBL) is an effective method that
allows students to work on meaningful projects and
develop advanced thinking skills.

In this paper, we integrate PBL into hybrid learning and
propose a three-stage framework for IT course teaching:

1. Pre-class preparation: We use computer adaptive tests to
assess children's learning styles, interests, and knowledge
levels. Students are grouped into different teams based on
their backgrounds.

2. In-class implementation: We encourage students to
engage with various practices and big ideas around them.
They are required to select a project based on their
observation, decompose it into manageable parts, design
algorithms for solving similar problems, find and fix error,
and test their final solution for effectiveness.

3. Post-class reviewing: We use thinking tools to review
the learning process so teachers can refine their teaching
and students can find creative inspiration for next time.

Our framework was carried out by 99 sixth-grade students
from two classes of the IT course. We conducted three
experiments and demonstrated that our framework can
deepen students' understanding of coding.

2. MODEL CONSTRUCTION
As Figure 1 shown, our framework consists four core
elements: content, activities, context, and outcomes, and
three stages: pre-class preparation, in-class project
implementation and post-class reviewing. It integrates the
cultivation objectives across the five dimensions of
computational thinking abilities.

2.1. Pre-class Project Preparation Stage:
Before class, teachers upload micro-lessons and syllabus to
the learning platform for students to assess themselves.
Based on the test results, teachers can identify students’
learning style and skill gaps, therefore grouping them into
different teams.

2.2. In-class Project Implementation Stage:

2.2.1. Project selection
It is necessary to consider the pupils’ cognitive levels,
design project related to real life, and help students achieve
knowledge transfer.

2.2.2. Project decomposition
Teachers guide students to decompose complex projects
into smaller tasks, reducing project difficulty. By applying
recent acquired knowledge to solve real-world problems,
students gradually develop computational thinking.

2.2.3. Algorithm design
Group collaboration exploration involves drawing
flowcharts to guide students in presenting problem-solving
steps graphically. By illustrating the logical structure of
algorithms through flowchart diagrams, it enhances
students' comprehension and application of learned
knowledge.

2.2.4. Programming debugging
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Students use Scratch programming software for practical
operations. Based on the drawn flowcharts, they complete
coding and, through debugging and modification, achieve
the goal of optimizing the program.

2.2.5. Summative evaluation
Students present their group projects works to their peers
and received constructive feedbacks. Teachers summarize
and evaluate, proposing optimal solutions.

2.3. Post-class Project Reviewing Stage:
Students continue to refine and innovate based on the
teacher's feedback and upload their work to the learning
platform. Teachers assess and grade the work uploaded by
students, while also analyzing the data from the entire
teaching process. Based on the results of the data analysis,
teachers adjust and optimize the teaching design.

Figure 1. Project-Based Teaching Model for Fostering
Computational Thinking in Primary Schools

3. MEASUREMENT TOOL
The study employs a computational thinking scale
developed by Zhang Yi et al. (2020) to assess changes in
students' computational thinking pre- and post-project-
based learning. The scale, validated through small-sample
testing with a reliability coefficient of 0.9 and a validity
coefficient of 0.72, is deemed suitable for elementary
school research. To enhance measurement accuracy and
mitigate potential subjectivity inherent in the scale,
supplementary measures in the form of Bebras test
questions are integrated. Furthermore, process data
pertaining to students' utilization of computational thinking
in problem-solving are assessed through both flowchart
evaluations and project evaluation, leveraging a
combination of quantitative and qualitative evaluation
techniques. Flowchart assessments focus on the dimensions
of completeness, rationality, and innovation, guided by
scoring criteria established in Dr. Su Qing's (2022) thesis.
Project evaluation criteria are drawn from Dr. Scratch's
recommendations, encompassing abstract problem-solving,

parallelism, synchronization, sequence, logical thinking,
user interaction, and data representation.

4. MODEL EFFECTIVENESS TEST
4.1. Experimental Subjects and design
The quasi-experimental study was conducted from October
to December in the first semester of the 2023-2024
academic year. Two sixth-grade classes from a primary
school in Fuzhou City, Fujian Province, were selected for
the experiment. A pre-test was administered using the
Computational Thinking Scale, and the results indicated
homogeneity of variance across all five
dimensions(sig>0.05), suggesting the two classes formed a
homogeneous sample.

The project conducted in this study was based on three
main themes of self-designed projects focusing on Scratch
knowledge points from the first unit of the sixth-grade
information technology textbook in Fujian. These projects
were closely related to real-life situations. In the control
group, traditional teaching methods involving teacher
demonstrations and student imitation were employed, while
the experimental group utilized a project-based teaching
model designed to cultivate computational thinking skills.

4.2. Experimental Data and Analysis

4.2.1. Computational Thinking Scale
The data from the Computational Thinking Scale for the
experimental and control groups were subjected to
independent samples t-tests using SPSS 27.0 software
(refer to Table 1). The research findings indicate that
students in the experimental group demonstrated
improvements across all five dimensions of computational
thinking compared to the control group. Particularly
noteworthy are the significant differences observed in
critical thinking, collaborative ability, and algorithmic
thinking.

Table 1. Comparative Analysis of Differences in Five
Dimensions of Computational Thinking Scale

Dimension

Experimental Control

t p(n=48) (n=51)

M±SD M±SD

Creativity 3.86±0.40 3.68±0.41 2.174 .032*

Critical
thinking 4.21±0.56 3.66±0.69 4.290 <.001***

Problem
solving 3.68±0.49 3.45±0.48 2.319 .022*

Algoritmic
thinking 3.44±0.52 3.02±0.80 3.001 .003**

Cooperativity 3.43±0.57 3.36±0.82 6.742 <.001***
*p<0.05，**p<0.01，***p<0.001

4.2.2. Bebras Test Questions
Before the experiment, the experimental group scored
33.229, and after the experiment, the score increased to
36.875. A paired-sample t-test was conducted on the five
dimensions of the test before and after the experiment,
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revealing statistically significant changes in three
dimensions (Refer to Table 2). Specifically, these
dimensions include analytical thinking, algorithmic
thinking, and evaluative thinking, with particularly
significant differences observed in algorithmic thinking.

Table 2. Pre-and Post-Test Comparison of the Five
Dimensions in the Experimental Class

Dimension

Pre-test Post-test

t p(n=48) (n=48)

M±SD M±SD

Abstract 3.59±1.35 3.28±1.37 1.000 .322

Analytical 3.12±1.74 3.80±1.45 2.223 .031*

Algoritmic 2.29±1.77 3.75±1.63 4.639 <.001***

Synthetic 3.69±1.26 3.85±1.45 .535 .595

Evaluative 3.38±1.58 3.90±1.35 2.114 .040*
*p<0.05，**p<0.01，***p<0.001

4.2.3. Flowchart Assessments
The average scores for three project program flowcharts in
the experimental group were 6.33, 7.29, and 8.67, while the
control group scored 6.21, 6.66, and 7.04 for the same three
projects. It can be concluded that the performance of the
experimental group students in utilizing program
flowcharts to express their computational thinking
gradually improved. A paired-sample t-test was conducted
on the program flowchart scores before and after the
experiment, resulting in p<0.001. This indicates a
significant statistical difference in the improvement of
program flowchart drawing scores for the experimental
group students, suggesting that these students are proficient
in using flowcharts as a tool for expressing their problem-
solving strategies.

4.2.4. Project evaluation
The experimental group achieved average scores of 9.3,
12.58, and 15.33, whereas the control group scored 8.92,
10.13, and 11.94 for the same projects. The scores of the
experimental group's works exhibited a significant
improvement compared to those of the control group. A
paired-sample t-test conducted on the scores of the works
before and after the experiment yielded a result of p <
0.001, indicating that the students in the experimental
group are able to integrate previously learned instructions,
flexibly apply them to new projects, and refine and
optimize their projects.

5. CONCLUSION
5.1. The research conclusion
We utilized various methods, including the Computational
Thinking Scale, Bebras Test Questions, flowchart, and

work analysis, to assess how our framework impact on
elementary students' computational thinking. Results show
there is a significant improvement in not only overall
computational thinking. Detailed examination of flowcharts
and works reveals clearer logical reasoning and richer,
more complex outputs.

5.2. Practical recommendations
1. Conduct detailed data analysis before and after class.
Before class, utilize the online learning platform to assess
students, and lay the foundation for following project
implementation. After class, analyze students' works and
process data to conduct treflections.

2. Design projects with authentic real-world relevance.
Craft teaching scenarios that align project contexts with
students' practical experiences, fostering engagement and
resonance with real-life contexts. This approach stimulates
interest, facilitates connections with practical experiences,
and encourages active cognitive engagement and
exploration.

3. Leverage visual thinking tools to facilitate cognitive
organization. Flowcharts, as visual representations, aid in
comprehension of abstract algorithms, streamlining the
learning process for students and providing educators with
valuable insights for targeted instruction.
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ABSTRACT
Emerging as a critical skill in contemporary society,
computational thinking represents a product of the new era.
Its gradual integration into K-12 education necessitates a
transformation of traditional teaching methods. This paper
deviates from the conventional classroom teaching model
by amalgamating theoretical learning with hands-on
practice and formulating an innovative lesson plan. The
plan comprises two sessions: cs unplugged activities
designed to teach students basic concepts, and plugged
activities using "Use-Modify-Create" learning progression
in a micro: bit device. The aim is to enhance students'
computational thinking skills and serve as a reference for
educators in fostering computational thinking development
among their students.

KEYWORDS
Computational thinking, CS Unplugged, Micro: bit, Use-
Modify-Create, Instructional Design

1. INTRODUCTION
Wing (2006) defined computational thinking as the skill of
solving problems, designing systems, and understanding
human behavior based on the concepts fundamental to
computer science. Computational thinking (CT) is an
important set of skills that human beings utilized for
problem-solving despite the rapid changes in technology
(Denning, 2016). While a unified definition of
computational thinking has not yet been established within
the academic community, different definitions for
computational thinking often include concepts and
practices such as abstraction, decomposition, automation,
algorithmic thinking, and modeling and simulation.
In recent years, some research on CT has mostly focused
on integrating CT into mathematics (Ye et al., 2023) and
the K-12 curriculum (e.g., Sengupta et al., 2013; Yadav et
al., 2016), and developing programming environments and
tools to promote CT skills (e.g., Grover & Pea, 2013; Lye
& Koh, 2014). To reach all students, it is necessary to
integrate CT into the required k-12 education setting.
However, traditional teaching mainly focuses on theoretical
explanations and lacks practical application. This approach
is not conducive to students fully mastering computational
thinking. To address this issue, alternative teaching
methods should be explored.
Thus, This paper breaks through the traditional teaching
methods and designs a lesson design based on the
combination of theoretical learning and practical
application. The lesson plan is designed in two sessions and
employs two strategies to teach students computational
thinking. Begin with an unplugged learning activity that

introduces the basic concepts. Continue with computational
activities using the Makecode editor and Micro: bit devices
following the steps of Use-Modify-Create. It is hoped that
this can provide reference for teachers to carry out
calculation activities in the future.

2. THEORETICAL FRAMEWORK
2.1. CS Unplugged Activities
Unplugged Activities (UA) is a set of learning activities
designed to explain CS concepts without needing a
computer device. Unplugged is particularly aimed at
developing a fundamental understanding of concepts about
algorithm design, and to change conceptions about the
nature of computer science (Caeli & Yadav, 2020). The
main characteristics of the Unplugged activities
are(Nishida, 2009): (1) No programming ability or
computer is required as a prerequisite for studying
computer science. (2) Students actively engage in various
activities, fostering peer cooperation and promoting
collaboration and communication among their peers. (3)
These activities are easily prepared with low-cost
implications.

In addition, the integration of computational thinking into
the K-12 curricula, especially in economically
underdeveloped developing countries, often poses
challenges for schools and students in accessing
information and communications technologies. In our
country, many rural areas lack facilities and have not yet
popularized computer education, unplugged learning
activities can address this challenge and scaffold student
learning.

2.2. Micro: bit
The BBC micro: bit was developed in 2015 as part of the
BBC's Make it Digital Initiative.

Figure 1. The MakeCode editor for the micro: bit
(https://makecode.microbit.org).

It aims to encourage digital literacy and core skills in
STEM subjects among young people. The micro: bit is a
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32-bit ARM microcomputer that includes a built-in display,
buttons, motion detection, temperature and light sensors,
and supports Bluetooth low-power wireless communication
(Ball et al., 2016). The graphical programming interface is
user-friendly, particularly for younger students. The project
supports both online and local integrated development
environment programming for mainstream languages such
as Python and Javascript.

2.3. Use-Modify-Create
The Use-Modify-Create progression has been widely
advocated as a strategy to facilitate student engagement in
CT. It has been utilized to provide learners with a
comprehensive and progressive experience in
computational thinking within an immersive computing
environment. The instructor provides a pre-designed
program for students to explore (Use), and students then
modify programs developed by others (such as teachers),
personalizing the code to their needs (Modify). Finally,
students generate(Create)their programs independently
through a series of rigorous testing procedures, careful
analysis, and repeated improvement (Figure 2). In this
process, it is important to maintain a level of challenge and
difficulty to support growth while limiting frustration and
anxiety, considering that the approach is not completely
linear, switching back and forth from use to modification to
creation (Lee et al., 2011).

Figure 2. Use-Modify-Create model

(adapted from Lee et al., 2011).

3. INSTRUCTIONAL DESIGN
3.1. Program Design
The instructional design comprises two sessions (Figure 3).
The first session of the unplugged learning activity
involves the teacher discussing the learning objectives and
the prior knowledge required to complete the activity. This
section enables students to manage their expectations,
make connections with previous knowledge, and reflect on
it at the end to facilitate the metacognitive process. The
second session involves plugged activities where students
develop their program using a 'use-modify-create' strategy
on micro: bit. Initially, students explore a sample program
that predicts the outcome of the lesson or explains it to a
partner (i.e., Use). They then make specific modifications
to the example program and participate in scaffolding
problem-solving activities (i.e., Modify). Finally, students
will apply what they have learned from the example by

using the Micro: bit to create a solution from scratch to
solve the the problem (i.e., Create).

Figure 3. Structure of the Program design.

3.2. Example Module: Autopilot Simulation in Caves

Table 1. Key Contents of the Task in Session 1.
Learning Task Learning Goals Computational

Thinking Goals
Autopilot
simulation in caves

Use boolean input
variables, logical
operations, and loop
structure to finish
the task

Understanding of
abstraction,
decomposition,
and algorithms

This paper presents a pedagogical example of a course that
simulates an autonomous vehicle exploring a cavern
scientifically. Table 1 illustrates the pedagogical and
computational thinking objectives to be achieved in the
first session of the activity. Through the unplugged activity,
students will acquire fundamental programming concepts
and methods, providing them with the necessary previous
knowledge for the second session of the practical exercise.
Later, students will need to program using Micro: bit input
variables such as buttons and LED displays.problem (i.e.,
Create).

Figure 4. Sample task of the Use-Modify-Create
progression in Session 2.

Figure 4 illustrates the process of Use-Modify-Create in the
second session of the teaching case, which uses a plugged
activity in which the students use the micro: bit with two
buttons to simulate proximity sensors and a micro: bit
display that will show the vehicle's route. Students first
need to predict what the example program is doing and run
the program to verify the prediction (i.e., Use). The
program recognizes a pressed button and displays an arrow
pointing north. The next step is to modify the program so
that it shows all directions on the display based on the

142



button pressed (i.e., Modify). Finally, the student uses the
compass sensor to create a program that guides the vehicle
in one direction (e.g., North) (i.e., Create). Both the
"Modify" and "Create" steps in the process require students
to perform, test, reflect, and improve repeatedly, often in
discussion with their peers.
Unplugged activities and the Use-Modify-Create
progression can help students form early schemas about
problems and algorithms, which in turn can help them
improve their computational thinking skills and reframe
their internal thinking. At the end of the second session, the
lesson plan includes an additional element: reflection -
linked to the learning objectives. Sequencing activities in a
learning design may help students achieve self-
accomplishment (Katai, 2020) and motivation to learn, as
they can see their progress through the outputs of each
activity.

4. CONCLUSION
This study presents a lesson plan designed to enhance
students' computational thinking skills in K-12 education.
This lesson plan comprises two sessions. The first session
includes a series of unplugged learning activities to prepare
students for the second part. In the second session, students
follow a step-by-step process of 'Use-Modify-Create' on a
Micro: bit board to facilitate their learning.
This instructional design combines theoretical learning
with practical application, breaking away from the
traditional single-teaching mode. It makes learning more
interesting for students and provides teachers with a
reference for carrying out Micro: bit teaching practice.
Additionally, this study offers new ideas for cultivating
computational thinking, which can aid in the innovation of
classroom teaching in the K-12 stage. It has become an
unstoppable trend to cultivate computational thinking skills
in K-12. Computational thinking is not only traditional
programming thinking but also literacy and ability that all
people need to have in the future. As research continues, it
is hoped that new methods and technologies will be
developed to foster computational thinking.

5. REFERENCES
Ball, T., Protzenko, J., Bishop, J., Moskal, M., De Halleux,
J., Braun, M., ... & Riley, C. (2016, May). Microsoft
touch develop and the BBC micro: bit. In Proceedings of
the 38th International Conference on Software
Engineering Companion (pp. 637-640).

Bodin, Ö., Alexander, S. M., Baggio, J., Barnes, M. L.,
Berardo, R., Cumming, G. S., ... & Sayles, J. S. (2019).

Improving network approaches to the study of complex
social–ecological interdependencies. Nature
sustainability, 2(7), 551-559.

Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to
computational thinking: A historical
perspective. TechTrends, 64(1), 29-36.

Grover, S., & Pea, R. (2013). Computational thinking in
K–12: A review of the state of the field. Educational
researcher, 42(1), 38-43.

Katai, Z. (2020). Promoting computational thinking of both
sciences-and humanities-oriented students: an
instructional and motivational design
perspective. Educational Technology Research and
Development, 68, 2239-2261.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., ... & Werner, L. (2011). Computational
thinking for youth in practice. Acm Inroads, 2(1), 32-37.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through programming:
What is next for K-12?. Computers in human
behavior, 41, 51-61.

Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell,
T., & Kuno, Y. (2009). A CS unplugged design
pattern. ACM Sigcse Bulletin, 41(1), 231-235.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., &
Clark, D. (2013). Integrating computational thinking with
K-12 science education using agent-based computation:
A theoretical framework. Education and Information
Technologies, 18, 351-380.

Tedre, M., & Denning, P. J. (2016, November). The long
quest for computational thinking. In Proceedings of the
16th Koli Calling international conference on computing
education research (pp. 120-129).

Wing, J. M. (2006). Computational
thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2016). Computational thinking, 10 years
later.http://www.microsoft.com/enus/research/blog/comp
utational-thinking-10-years-later.

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016).
Expanding computer science education in schools:
understanding teacher experiences and
challenges. Computer science education, 26(4), 235-254.

Ye, H., Liang, B., Ng, O. L., & Chai, C. S. (2023).
Integration of computational thinking in K-12
mathematics education: a systematic review on CT-based
mathematics instruction and student
learning. International Journal of STEM Education, 10(1),

143

http://www.microsoft.com/enus/research/blog/computational-thinking-10-years-later
http://www.microsoft.com/enus/research/blog/computational-thinking-10-years-later


Zhenhai He1, Shaoming Chai2*, Fuying Zhou3, Han Wu4, Nannan Lai5, Tongwu jiang6
1,3,4,5,6School of Information Technology in Education, South China Normal University, China

2*Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Chin

Enhancing Computational Thinking in Knowledge Building Community:
Analyzing ChatGPT's Role and Impact Among Undergraduates

a
zhenhai@m.scnu.edu.cn, charmingchai@m.scnu.edu.cn, 2022020961@m.scnu.edu.cn, 2022020938@m.scnu.edu.cn,

2023020849@m.scnu.edu.cn, 2023020848@m.scnu.edu.cn

ABSTRACT
The swift advancement of generative AI, notably ChatGPT,
has markedly influenced education. Despite initial studies
into its educational applications, the capacity of ChatGPT
to boost computational thinking (CT) in undergraduates
remains an area for further investigation. Therefore, this
study investigates how undergraduates in CT courses
utilize ChatGPT and its effects on their skill development.
We employed text analysis and social network analysis
methods to investigate the discourses among 48 sophomore
and junior students from various disciplines, who were
enrolled in a Computational Thinking and Problem-Solving
course conducted within the Knowledge Forum. These
students were organized into seven distinct groups for this
course. Results indicate that students frequently engaged
with ChatGPT, critically evaluating its responses with
teacher-provided cognitive scaffolds instead of merely
copying them. Groups that utilized ChatGPT more
extensively improved CT skills, evidenced by their focus
on critical CT terms and tighter linkage between discussion
content and these terms. This study demonstrates that
judicious ChatGPT use in higher education can effectively
enhance CT skills, offering insightful case studies for
generative AI's educational applications and providing
effective guidance for improving students' CT with
ChatGPT in higher education.

KEYWORDS
Computational Thinking, Knowledge Forum, ChatGPT,
Higher education

1. INTRODUCTION
The rapid advancement of generative artificial intelligence,
with large language models like OpenAI's ChatGPT and
Anthropic's Claude at the forefront, is reshaping
educational methodologies. These tools offer novel
conveniences and support for both students and teachers,
facilitating the creation of tailored teaching materials and
interactive learning experiences (Kasneci et al., 2023; Lee,
2023). Ethically employed, ChatGPT can foster a
conducive learning environment, enhancing deep learning
and outcomes. Effective integration of ChatGPT into
education requires consideration of leadership, personality
development, and authenticity assessments (Crawford et al.,
2023). In academic settings, such as anatomy courses,
ChatGPT shows promise as both a teaching and assessment
tool (Talan & Kalinkara, 2023). However, its widespread
use poses challenges to traditional educational
methodologies, historically validated for their effectiveness
(U.S. Department of Education, 2023).

In the digital era, Computational Thinking (CT) is crucial
for solving problems across disciplines, enabling
individuals to analyze challenges with the precision of
computer scientists (Wing, 2006; Güven & Gulbahar, 2020;
Tekdal, 2021). Despite the interest in weaving CT into
higher education, its definitions and application strategies
still demand further exploration (Lyon & J. Magana, 2020).
CT's importance transcends STEM, underscoring the
necessity for its widespread adoption across all academic
fields (Czerkawski & Lyman, 2015). Studies using the
knowledge-building approach to foster CT skills in higher
education have shown promising results, offering educators
valuable strategies for curriculum design that enhance
students' CT abilities and identify areas for improvement
(Zhu et al., 2023). Celik (2023) posits that CT proficiency
can improve individuals' comprehension and recognition of
AI systems. Although the contribution of AI to CT
enhancement is recognized, there is a significant gap in
research regarding ChatGPT's role in nurturing CT skills in
undergraduate education. Therefore, this study primarily
investigates the following questions: (1) To what extent do
students use ChatGPT in CT courses? (2) What is the
relationship between the extent of ChatGPT use by
different groups and the development of CT among group
members?

2. METHODOLOGY
In this study, we employed text and social network analysis
methods to code students' Notes to explore the extent of
ChatGPT usage among students. We used KBDeX to
analyze the degree of centrality of discourse and keywords
in the knowledge forum to assess the development of
students' CT.

2.1. Participant
The participants of this study were 48 undergraduate
students (17 females) enrolled in a course named
Computational Thinking and Problem Solving during the
fall semester of 2023 at a public university in China. This
14-week general education course aimed to develop
students understanding of the concept, nature, and essential
elements of CT, enhancing their ability to solve complex
problems in their professional and interdisciplinary fields
through exploring algorithms, constructing models, and
designing programs. The students had diverse program
backgrounds, including software engineering, artificial
intelligence, electronic information engineering, cultural
industry management, and financial management, covering
science and liberal arts disciplines. An instructor with a
background in educational technology and rich teaching
experience taught the course.
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2.2. Course design and implementation
Our course adopted constructivism and situated learning
theories to cultivate CT in a context-rich setting. Utilizing
knowledge-building pedagogy and cognitive scaffolds
within the Knowledge Forum, we aimed to advance
students' higher-order thinking and analytical interaction
with ChatGPT. This strategy intends to transcribe simple
query resolution, promoting critical scrutiny and profound
engagement with CT.

Guided by these pedagogical frameworks, the curriculum
was designed in four evolutionary stages to foster CT by
profoundly engaging with ChatGPT and applying critical
course theories. Initially, students were organized into
seven cross-disciplinary teams, engaging in forum
discussions to build a basic comprehension of CT. The
following stages involved team-based problem-solving,
starting from algorithmic exercises like the shortest path
problem and advancing to complex AI case analyses,
where ChatGPT served as both a tool and a virtual team
member. The final stage required students to apply CT
principles to real-world challenges, leading to the
development of tangible projects. Assessment across these
stages was conducted through peer and instructor reviews,
emphasizing the extent of CT application in the teams'
deliverables.

2.3. Data collection and analysis
Data for this study was obtained from 415 notes collated
from group activities on the Knowledge Forum platform. In
evaluating ChatGPT's utilization by students, two
researchers initially reviewed the notes for content
categorization, subsequently dividing them into five
distinct types, as depicted in Table 1. This categorization
facilitated the assessment of ChatGPT's role in the
collaborative learning process. To ensure reliability, the
researchers independently coded a notes sample, achieving
an intercoder agreement of 96%. The proportion of
ChatGPT-related notes to the total was a quantitative
measure of the tool's use. Additionally, we applied KBDeX
social network analysis to examine the centrality of
discourse and CT keywords within the discussions,
underpinning our analysis with established CT frameworks.
This method quantified the prominence of CT concepts in
dialogues and their correlation with group engagement with
ChatGPT.

Table 1. Coding framework for student ChatGPT usage
Code Targets

SI Students share ideas without turning to ChatGPT
PC Copy and paste ChatGPT's outputs without

citations

SC Share ChatGPT's ideas directly by cognitive
scaffolding

RC Critique ChatGPT's responses

IC Improve ChatGPT's responses

3. RSEULT AND DISCUSSION
3.1. The use of ChatGPT by students
After coding, we obtained results as shown in Table 2. To
quantify the degree of ChatGPT engagement across
different groups, we computed the ratio of ChatGPT-
related notes to the total number of notes within each group.
This ratio was then expressed as a percentage, serving as an
indicator of the relative extent to which each group utilized
ChatGPT in their collaborative activities. The results
illustrate a discernible variance in the utilization of
ChatGPT among the groups. Group 6 emerged as the most
engaged, with ChatGPT-related discourse constituting 57%
of their total notes, while Group 3 followed closely with
48%. Further analysis revealed that Groups 7 and 1
exhibited substantial interaction, with ChatGPT-themed
contributions making up 24% and 23% of their notes,
respectively. Conversely, Group 5 displayed a lower degree
of engagement at 18%. It is noteworthy that Groups 4 and 2
utilized ChatGPT the least, each incorporating it into
merely 12% of their overall communications.

Table 2. The use of ChatGPT by different groups in the
course

Notes_Tota
l PC SC RC IC

Group1 113 3 4 10 9

Group2 42 0 2 0 3

Group3 42 2 12 2 4

Group4 51 0 0 0 6

Group5 60 3 6 2 0

Group6 56 6 4 8 16

Group7 51 0 2 1 9

3.2. The impact of groups’ usage extent of ChatGPT in
their development of CT
We conduct social network analyses on the discourse and
keywords, obtaining the degree of centrality for each group
at both the discourse and keyword levels. Degree centrality
measures an individual's importance in the collaborative
learning discussion network. In social network analysis of
discussions or learning, a highly centralized network
indicates that a few nodes (possibly individual students or
specific keywords) occupy central positions with numerous
direct connections, suggesting their significant importance
or influence in the discussion or learning process (Oshima
et al., 2012). Thus, a relatively high degree of centrality
indicates the importance of relevant keywords or discourse
in the collaborative learning process. As shown in Figure 1,
it is observed that Groups 1, 3, 6, and 7 have a higher level
of ChatGPT use, and correspondingly, the degree of
centrality of their discourse and keywords is also relatively
high. In contrast, Groups 2, 4, and 5 have a lower level of
ChatGPT use, and accordingly, their discourse and
keyword centrality is also relatively low. This indicates that
the extent of ChatGPT use is directly proportional to the
development of CT. The groups with higher usage of
ChatGPT are more likely to engage in discussions that
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closely revolve around the core keywords of CT, with
tighter connections.

Figure 1. The relationship between the extent of ChatGPT
use by groups and the degree centrality of discourse and

keywords

4. CONCLUSION
This study investigates the extent to which undergraduates
use ChatGPT in CT courses and the impact of this usage on
the development of CT within groups. Study shows that: (1)
In the CT courses, students exhibited a high level of
engagement with ChatGPT, with significant variations in
usage across different groups. Students do not merely copy
and paste answers from ChatGPT but more frequently
utilize the cognitive scaffolding provided by teachers for
ChatGPT use to distinguish their ideas from ChatGPT's
responses and evaluate ChatGPT's answers based on this
distinction. (2) Groups with higher usage of ChatGPT
perform better in developing CT. These groups tend to
engage in discussions centered around the core keywords
of CT, with tighter connections between the discussions
and keywords.

This research illustrates the logical and feasible integration
of ChatGPT in higher education, showing its potential to
elevate students' engagement with ChatGPT and, in turn,
enhance their CT abilities. The results provide actionable
insights for embedding ChatGPT into academic settings
and shed light on the broader implications of AI tools in
education. We highlight the imperative for educators to
deliberate on effectively incorporating AI technologies into
curriculum planning and instructional methods, aiming at
the comprehensive development of student competencies.
However, there are certain limitations, as the assessment of
students' CT skills did not include a pre-and post-test
comparison, and the use of social network analysis alone
cannot effectively demonstrate the development of
students' CT skills. Qualitative analysis should also be
integrated to explore the detailed development of students'
CT skills. Future research could explore how students
apply ChatGPT in CT courses and the relationship between
these applications and the development of their CT skills.
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ABSTRACT
With the development of information technology,
integrating computational thinking (CT) in mathematics
education has been widely highlighted by educators and
researchers. Scratch is one of the child-friendly blocks-
based programming tools that enables access to both
mathematical and computational ideas. In order to
effectively facilitate student-centered instruction with
Scratch, understanding students’ thinking processes in this
learning environment is essential. The Lesh Translation
Model (LTM) provides an analytical tool to interpret and
characterize students’ thinking processes across multiple
representations. In this study, we conducted task-based
interviews with three Chinese junior secondary students as
they explored the idea of linear function in a programming-
enhanced environment. We report on two themes
characterizing the students’ mathematical representational
activities, including their representations of amounts of
change and representations of slope as steepness.
Accordingly, we describe the students’ thinking processes
by characterizing representational fluency through the
LTM model and discuss the implications of integrating
Scratch programming in mathematics education.

KEYWORDS
Computational thinking, Mathematics education, Scratch,
Student thinking, Representation.

1. INTRODUCTION
Computational thinking (CT), which refers to thinking
“like a computer scientist”, is regarded as an essential skill
in the 21st century (Wing, 2014). Integrating CT in
mathematics education has been highlighted by educators
and researchers (Fang, Ng, Tam, & Yuen, 2023). However,
educators have experienced challenges integrating CT and
mathematics into practice (Ng & Cui, 2021). This difficulty
drives researchers to explore affordable learning tools, such
as user-friendly programming tools, to support CT-based
mathematics learning. Scratch, a block-based programming
tool that helps students understand and apply mathematical
and computational concepts, is one of the most prevalent
CT tools in mathematics education (Chan, Looi, Ho, &
Kim, 2023). Research is needed to investigate how it can
be used effectively and adequately to enhance mathematics
teaching and learning.

Moreover, educators call for a student-centered teaching
and learning environment where people switch attention to
understanding students’ thinking processes. Students’
understanding of a mathematical concept requires
flexibility in moving across multiple representations that
describe different aspects of a concept. The Lesh
Translation Model (LTM) (Lesh, 1979) (Figure 1) provides

an analytical tool to interpret and characterize students’
thinking processes, which specifies five types of
representations of a mathematical concept and explains
their relationships. We adopt the LTM model as the
theoretical framework to unpack students’ thinking
processes.

Figure 1. The Lesh Translation Model (Lesh, 1979).

Function is one of the key mathematical concepts, the
understanding of which entails a variety of representations
(Makonye, 2014). In this study, we situated a group of
junior secondary students learning linear functions in
Scratch to unpack students’ thinking processes and identify
the affordances of Scratch. The study is driven by the
following research question: How do students think and
reason with linear functions in a programming-enhanced
mathematics environment?

2. METHOD
To answer the research questions, we conducted three one-
on-one semi-structured task-based interviews. Each
interview lasted for about one hour and a half. Three junior
secondary students in China, Adam (pseudonym; Grade 8),
Brandon (pseudonym; Grade 8), and Calvin (pseudonym;
Grade 7), participated in this study. All students had some
prior experiences with Scratch, and none were officially
introduced to the concepts of linear function before.

2.1. Task Design
Focusing on the concept of linear function, we design a
task involving two subtasks: Part I and Part II. For Part I,
Adam and Brandon were presented with an animation
(programmed by Scratch) showing how a row of tiles
appears one after another. For Calvin, considering his
strong background in Scratch programming, we instead
asked him to create a program to generate the titling. All
students were asked to describe what they saw in the
animation and discuss the relationships between the areas
and amounts of tiles, which could be modeled by a linear
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function, y=kx, in which y refers to the Total Area Tiled, k
refers to the Area of a Single Tile, and x refers to the
Number of Tiles.

For Part II, students were asked to produce coordinate
graphs of linear functions with different methods and talk
about the properties of the graphs of linear functions, such
as 1) rate of change (k=Δy/Δx) and 2) slope as steepness
(degree of the “tilt” of a line). Adam and Brandon were
asked to draw the graphs on paper first and then on the
given coordinate system in Scratch (Figure 2a). Calvin was
asked to draw the graphs directly on Scratch and chose a
default stage set up in Scratch (Figure 2b).

(a) (b)

Figure 2. Different Stages Used by Different Participants.

2.2. Data Collection and Analysis
The data sources included the video recordings of all the
interview sessions from two camera angles, one capturing
students’ actions and the other focusing on the papers. The
Scratch works are also screen-recorded.

We report on the students’ activities and thinking based on
the data of Part II, the graphing tasks in Scratch. We
adapted the LTM model and removed the Real-life
Contexts representations, as it is addressed in Part I. We
focused on four types of representations (Figure 3), which
are relevant to characterizing students’ thinking of
mathematical and computational objects in an integrated
environment.

Figure 3. The Adapted LTM Model this Study Used.

We defined the Scratch coding blocks as Manipulatives
representation and the programming outcomes as Pictures
representation, which represent different aspects of linear
functions. For example, the codes “change x by ( )” and
“change y by ( )” (Figure 4a) and the outcome (Figure 4b)
represent how much the two quantities, x and y, change by.
The codes “turn ( ) degrees” and “point in direction ( )”
(Figure 4c) and the outcome (Figure 4d) represent the
angle between the drawing direction of the Pen and the

reference 0-degree facing at the 12 o’clock position (Figure
5).

(a) (b)

(c) (d)

Figure 4. The Coding Blocks and the Corresponding
Programming Outcome as Representations.

Figure 5. The Setting of Direction in Scratch and Angle in
Mathematics.

We conducted interactive coding analysis based on the
adapted LTM model to capture the mathematical
representations students used and the translation pattern
among different representations.

3. RESULTS
In this session, we report on students’ activities and
thinking in Part II. We identify two themes that occurred
during the Scratch tasks to characterize students’
representational activities.

3.1. Representations of Amounts of Change
The rate of change (k=Δy/Δx) is an essential idea in the
mathematics curriculum in secondary schools. When being
asked to draw a graph of a linear function y=x in Scratch,
participants used the codes “change x by ( )” and “change y
by ( )” to draw the graph.

Adam used the loop to draw the graph. He manipulated the
codes to change y by 10 and x by 10 by sequence in the
loop and repeat it 10 times (Figure 6a). However, he
refused to accept the outcome (Figure 6b), saying, “Why is
it curly, not straight?”
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(a) (b)

Figure 6. Adam’s Codes Represent the Amount of Change.

Calvin was asked to draw both y=x and y=2x. He used
similar codes as Adam to draw a graph of y=x, changing x
and y by 10 and repeating it 20 times; he then duplicated
the codes and changed x by 5 and y by 10 to produce a
graph of y=2x (Figure 7a). However, he was also
unsatisfied with the programming outcome (Figure 7b)
because the produced graph was not straight enough. He
then revised the codes, as shown in Figure 7c, and
conveyed satisfaction with the graph produced (Figure 7d)
since he believed that if the intervals were small enough, it
could be a straight line. We note that in modifying the
codes (Figure 7a and Figure 7c), Calvin was able to
minimize the values of change in y and change in x by
maintaining their ratio, which is an essential property of
linear functions.

(a) (b)

(c) (d)

Figure 7. Calvin’s Codes Represent the Amount of Change.

3.2. Representations of Slope as Steepness
Slope is a core concept in mathematics that characterizes
the “steepness” of a linear function graph. We observed
that students used the codes “turn ( ) degrees” and “point in
direction ( )” to draw graphs. For example, Adam used the
code “turn 45 degrees” (Figure 8a), and Brandon used the
code “point in direction 45” (Figure 8c) to control the Pen’s
direction, as they had discussed the steepness of the graph
of y=x.

(a) (b)

(c) (d)

Figure 8. Adam’s and Brandon’s Code Represent the Slope.

When explaining the reason for 45 degrees, Adam and
Brandon had different mathematical reasoning. Adam
explained, “The degree is 45 because there hides an
isosceles right triangle with two interior angles of 45 ° ”
(Figure 9a). However, Brandon explained that “there are
two triangles here, and they are congruent. So these four
angles are all 45 ° ” (Figure 9b). He also used another
explanation for the 45 degrees, “x and y are all changing
by the same number. Every point on the graph of y=x can
be the vertex of a square. So they are 45 °” (Figure 9c).
Recall that Calvin drew both the graphs of y=x and y=2x
together (Figure 7d). When asked about the difference
between them, he answered, “I think the angle of y=x is
45°, and the angle of y=2x is 22.5°. Because when y=100,
in y=x, x is 100. But in y=2x, x is 50. 50 is half of 100. So,
the angle of y=2x is also a half of 45°” (Figure 9d).

(a) (b)

(c) (d)

Figure 9. Students’ Explanation about the angles.
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We draw the reader’s attention to the different angles these
students were referring to. Calvin referred to the angle
formed by the y-axis and the linear graph moving
clockwise, which aligns with the direction setting of
Scratch (Figure 5). In contrast, Adam referred to the angle
moving counterclockwise, while Brandon’s case was
special in that he seemed to conceive all angles within a
square.

4. DISCUSSION AND CONCLUSION
In this study, we describe students’ representational
activities in a programming-enhanced mathematical
environment through the adapted LTM model and bring
implications about integrating Scratch in mathematics
education.

4.1. Students’ Thinking Processes
We identified empirical evidence of students translating
different representations of mathematical concepts when
working with Scratch. When asked to draw a graph of y=x,
the Written Symbolic representation of a linear function, the
participants first constructed a mental image of the graph
(the Pictures representation) and manipulated the coding
blocks (the Manipulatives representation) to produce an
intended graph. For example, Calvin used the codes and the
corresponding programming outcomes to express his
understanding of the rate of change of two variables in
linear functions. He could fluently translate from the
Manipulatives representation to the Pictures representation,
as he quickly changed the codes to meet his needs (Figure
7). Meanwhile, Calvin explained why he used those coding
blocks and why he was satisfied or unsatisfied with the
outcomes in his own words, switching across
Manipulatives and Pictures representations to Verbal
Symbols representation.

However, evidence also shows students struggled to
translate from Manipulatives representation to Pictures
representation. For example, Adam had difficulty accepting
the programming outcome produced by his codes (Figure
6b). Researchers and educators can help students improve
their representational fluency through reasonable task
design and scaffolding design.

4.2. Difficulties Arising from the Scratch Environment
In this study, we support the idea that Scratch offers an
opportunity to explore the properties of mathematical
objects. For participants in this study, the notion of
amounts of change became accessible in the context of
using Scratch to draw graphs of linear functions.

However, we also raise awareness of the proper use of
Scratch in mathematics education. For example, the

coordinate system, along with its scale in Scratch, is fixed
(Figure 2b). When we created a new coordinate system
with a different unit length (Figure 2a), students may have
trouble handling the mismatch between the unit length of a
given stage and what they should fill in the coding block to
control movement in Scratch. This situation poses
challenges to students translating from Manipulatives
representation to Pictures representation.

Moreover, the conventional reference systems in Scratch
and mathematics differ. In Scratch, the default direction is
set to 90 degrees facing toward the 3 o’clock position
(Figure 5), and 0-degrees is defined as facing toward the
12 o’clock position. However, in the conventional
Cartesian coordinate system, 0-degree is defined as facing
towards the 3 o’clock position (Figure 5). Therefore,
Calvin would need to do a conversion if he were asked to
discuss the ideas of slope in a non-Scratch context. We thus
called for educators and researchers to consider this
mismatch when designing graphing tasks with Scratch.
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ABSTRACT
In this paper, we suggested that an end-to-end machine
code generation framework using a natural language model
should involve an intermediate code validation step to
ensure the code generated is at least valid and less prone to
error. The advancement of large language models such as
ChatGPT has shown a promising result in high-level
programming generation. However, high-level
programming languages, like JavaScript, which can be
created from extensive language models, are not
necessarily valid and prone to errors during execution. To
highlight this issue, we evaluated the current JavaScript
quality from ChatGPT with different prompts. We then
execute JavaScript using the micro:bit platform during the
evaluation process. Although code quality can be
improved using carefully crafted prompts, the code
generated is not necessarily error-free. As such, we
suggested that the status of high-level programming
generation using ChatGPT still has much room for
improvement. One possible improvement towards the end-
to-end code generation is through producing an
intermediate abstract syntax tree for code validation using
graph and tree-related neural networks.

KEYWORDS
generative AI, humanizing AI, micro:bit, programming,
prompts

1. INTRODUCTION
Recent advancement of large language model has shown
promising results in the realm of coding generation (Xu et
al., 2022). Programmers can generate code using natural
languages. However, very often, high-level programming
languages such as JavaScript, which can be generated from
large language models, are not valid and prone to errors
during execution. In this paper, we used an example to
illustrate some major challenges we have observed when
using prompt to generate JavaScript.

We have designed a program called “Sports Expert” system
using the MakeCode platform. The MakeCode platform
enables programmers to use JavaScript (or Python), as well
as coding blocks for controlling micro:bit. The system can
be decomposed into two. The first part refers to the control
of servo’s status (movable or non-movable) with button A
and B. The second part refers to the control of servo’s
swinging angle according to the sound level after button B
is pressed. To evaluate the code generation capability, we
start off with a simple prompt and then gradually improve
the prompt until there are no errors during the testing
phases.

We have discovered that the quality of the code generated
from ChatGPT can be improved. However, it is worth
mentioning that although detailed prompting can make the
output pass our test case, ChatGPT’s answer is still not
necessarily optimal.

In the deep learning era, end-to-end (Chib & Singh, 2023)
deep learning techniques for solving engineering problems
have emerged. It is a technique in which we use a deep
neural network for solving complex tasks. The input data is
raw without any manual feature extraction and the output is
the end result that we desire. For instance, an end-to-end
solution for meeting transcription would be using a single
neural network that takes in audio wave file and outputs
meeting transcription. Thus, we propose an end-to-end
machine code generation framework by generating
intermediate abstract syntax tree would be a way to
improve the accuracy and validity of the code generated by
large language model.

2. LITERATURE REVIEW
Humanizing AI: The Convergence of Language,
Programming, and Learning

One of the applications of machine learning (ML) focuses
on how machines interpret and generate code (Dehaerne et
al., 2022). For example, Dehaerne et al. (2022) reviewed
how algorithms can learn patterns analogous to human
language acquisition. Programming language and language
learning both rely on understanding syntax, semantics, and
context. Machine learning serves as a conduit for insights
to flow between these fields. As machines become more
adept at understanding and generating code, they
simultaneously become more sophisticated in processing
human language. Thus, the integration of linguistic
methods, coding principles, and educational strategies
through LLMs is fostering a novel ecosystem where the
lines between human intellect and machine functionality
are increasingly interwoven. Human language is the
essence of human cognition. By incorporating linguistic
features into language models (LLMs), more people can
now participate in programming tasks that were previously
accessible only to those with specialized training (Xu et al.,
2022).

3. AN EXAMPLE OF APPLYING
PROMPTS IN TEXT-BASED GENERATIVE
AI FOR PROGRAMMING
The following shows an example of using human language
to prompt with gpt-3.5-turbo in generating JavaScript for
MakeCode on the system of “Sports Expert”. The system
includes micro:bit, 180 degree servo motor, three crocodile
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clip wires, a power source, the “Sports Expert” model
(made with cardboard, straw and paperclips) and a paper
roll as stand. The system is illustrated at Figure 1 below.

Figure 1. “Sports Expert” system.

The programme of “Sports Expert” system is designed and
developed on MakeCode, which enables an interchange of
JavaScript (or Python) and coding blocks for controlling
micro:bit. When button B on micro:bit is pressed, its LED
screen counts down from 3 to 1 and shows a smiley face,
before micro:bit starts measuring the sound level of
surrounding environment. If the sound level is larger than
30, the servo will swing continuously in a larger angle; if
the sound level is less than or equal to 30, the servo will
swing continuously in a smaller angle. When button A is
pressed, the servo stops moving while micro:bit’s LED
screen turns off.

The system was decomposed into two parts when it was
built. The first part refers to the codes for changing the
status of servo (movable or non-movable) with button A
and B. The second part refers to the change of servo’s
swinging angle according to the sound level after button B
is pressed. On the first step, we requested ChatGPT to
generate the code with a simple prompt, “Write the
JavaScript of MakeCode for micro:bit. When button B is
pressed, the servo motor swings continuously. When button
A is pressed, servo motor stops swinging.”. Figure 2 and 3
show a successful example of JavaScript generated by
ChatGPT, and its corresponding coding blocks on
MakeCode.

Figure 2. Example of JavaScript Generated by ChatGPT.

Figure 3. Coding blocks corresponding to the generated
codes.

ChatGPT does not always extract appropriate JavaScript
according to the prompts given. One of the cases is the use
of the event “OnButtonReleased”, which is common in
other JavaScript projects. However, it cannot be used by
micro:bit with MakeCode, but instead triggers error
message. There are various similar cases where codes
generated doesn’t exist in MakeCode’s coding block list.
Figure 4 shows an example of blocks that include a part of
JavaScript blocks (in grey), which can be run by
MakeCode, but doesn’t exist in MakeCode’s coding block
list. In another example, the servo in the system only
moves when button B is pressed down continuously, which
does not fit to our expectation that servo swing
continuously after button B is pressed once.

Figure 4. Coding blocks in grey cannot be found on coding
block list.

Throughout the process of prompting, we attempted to add
extra instructions and information to the prompt for
improving ChatGPT’s output. For example, after adding
the instruction “Make sure that the codes can be converted
to coding blocks provided by MakeCode.” and “Do not use
JavaScript blocks”, ChatGPT has reduced the use of non-
existing coding blocks. A similar approach is used when
prompting the full system in a single prompt. As an
example, in the progress of repeated testing on requesting
the servo to swing in smaller angle rather than swinging
between 0 and 180 degrees, it was also found that
ChatGPT’s performance varies greatly on the sequence of
words in a sentence. The prompt “servo motor swings in a
small angle, left and right continuously” gives better result
than the prompt of “servo motor swings left and right
continuously, in a small angle”. ChatGPT also failed to use
newly-added blocks which don’t exist in its database, such
as the music playing coding blocks using speaker on
micro:bit version 2. The refined prompt for generating a
complete system with one single prompt is shown in Figure
5 below.

Figure 5. Refined prompt used for generating a complete
“Sports Expert” system.

Although the above prompt is written in detail, which
makes the output closer to our expectation, ChatGPT’s
answer is still not necessarily correct. In the following
example of system generated by ChatGPT on Figure 6, it
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has oversighted the request of showing a smiley face at the
end of counting down after pressing button B. ChatGPT
has also used “forever” loop instead of the requested
“every 1000 ms” loop. Besides, an extra pause with 1000
ms is added to the end of the forever loop even though it
was not requested.

Figure 6. Coding blocks of the complete system
corresponding to the codes generated by ChatGPT.

4. DISCUSSION
From the example illustrated above, we observed that
ChatGPT can only generate basic JavaScript code for
micro:bit MakeCode when provided with a simple prompt
describing the desired functionality. However, the code
generated from ChatGPT is prone to incompatible syntax
errors. Furthermore, detailed context about the specific
hardware, coding environment and coding platform are
essential to help ChatGPT to generate correct code.
However, the phrasing of the prompt matters and small
tweaks of prompt are necessary. The variation of codes is
also restricted due to the limited training data. All in all,
ChatGPT demonstrates great potential for instructed code
generation yet requires human validation for code validity
and quality.

Deep learning models have been well known for their
ability to perform end-to-end tasks. For example, Open AI
whisper architectures (Radford et al., 2022) is a simple
end-to-end approach that directly translates audio
spectrogram to text. Similarly, future deep learning models
should be able to generate valid executables or machine
code directly from natural language. One possible
steppingstone towards the natural-language-to-valid-
executables is generating intermediate abstract syntax tree
for code validation. Graph Neural Networks (Zhou et al.,
2020), Graph-to-Tree (Li et al., 2020), Tree-to-tree (Chen,

2018) promise deep-learning architectures to produce valid
executables from natural language.

5. CONCLUSION
In this paper, we used ChatGPT to generate JavaScript
code for micro:bit platform MakeCode on the system of
“Sports Expert”. We have discovered even with a well
written prompt, ChatGPT’s answers are still not necessarily
correct. We proposed that one possible improvement
towards the natural-language-to-valid-executables is
through producing intermediate abstract syntax tree for
code validation using graph and trees related neural
network. This study is tentative, and more empirical studies
are needed to validate the findings and to ensure that the
generated code is not only syntactically correct but also
semantically functional across various scenarios. Further
research is required to explore the generalizability of the
approach to different programming languages as well as to
compare the performance of ChatGPT with other large
language models in code generation tasks.
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Abstract
This article outlines the theoretical framework,
characteristics, and importance of computational thinking
in K-12 education. It defines computational thinking and its
unique aspects, emphasizing the necessity of cultivating
students' problem-solving skills. The research examines the
four main components of computational thinking:
abstraction, problem decomposition, system modeling, and
algorithmic strategies, along with their interrelationships.
Through a systematic analysis of these key elements, the
paper aims to provide a scientific basis and operational
guidelines for the theoretical construction and practical
application of computational thinking education in K-12
schools. The goal is to promote students' abilities in
problem-solving and innovative thinking.

Keywords
Computational Thinking, Basic Education, Abstraction,
Problem Decomposition, System Modeling, Algorithmic
Strategizing

1. Introduction
Computational thinking significantly contributes to the
progression of contemporary society (Zhu, 2009). The
Compulsory Education Information Technology
Curriculum Standards (2022 edition) emphasize the
importance of cultivating computational thinking. Despite
the growing interest in computational thinking education
from 2015 to 2023, as evidenced by publications on the
China National Knowledge Infrastructure (CNKI), primary
and secondary education in China is still in the early stages
of exploring this field, lacking mature strategies and
applications. This study is dedicated to exploring the
application of computational thinking in primary and
secondary education, aiming to enhance students' problem-
solving and digital literacy skills.

Figure 1. Literature distribution of Computational thinking
from 2015 to 2023.

2. An Overview of Computational Thinking
Computational thinking, essential for solving problems via
computer science and information technology, is deemed a
necessary literacy in the information society (Chen, Zhang,
& Yang, 2023). Diverse definitions of computational
thinking have been offered by entities such as the

International Association for Technology in Education
(ISTE) and the Computer Science Teachers Association
(CSTA) in the United States, the Royal Society in the
United Kingdom, and the Chinese Ministry of Education
between 2011 and 2016, showcasing notable discrepancies
(Yu, Xiao, & Wang, 2018). This paper, drawing from the
definition in the Compulsory Education Information
Technology Curriculum Standards (2022 edition),
examines strategies for integrating and enhancing
computational thinking within educational frameworks.

3. Core Elements of Computational
Thinking
To enhance teaching practices, various institutions and
scholars have highlighted the essential components of
computational thinking. In 2011, CSTA and ISTE released
the Computational Thinking Leadership Toolbox, outlining
nine key elements: data collection, analysis, representation,
problem decomposition, abstract thinking, algorithm design,
automation, simulation, and parallelism. The Computing At
School of the United Kingdom (CAS) also emphasized
abstract thinking, problem decomposition, algorithmic
thinking, pattern recognition, and evaluation skills as
central to computational thinking.

Table 1. Elements of Computational Thinking published by
authoritative organizations.
CSTA
ISTE

CAS
UK

MT
CS

China's
Standards
2017

China's
Standards
2022

Abstraction √ √ √ √ √

Breakdown √ √ √

Modeling √ √ √

Algorithm design √ √ √ √

Automation √

Data Collection √ √

Data analysis √

Data
representation

√ √

Simulation √

Parallelism/
concurrency

√

Review √

Similarly, Australia's Mathematical Technology
Curriculum Standards (MTCS) focus on abstraction, data
handling, and algorithm implementation as crucial concepts
(Xiao & Gao, 2015). In China, the Information Technology
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Curriculum Standards for General High Schools (2017
edition) and the Compulsory Education Information
Technology Curriculum Standards (2022 edition) stress the
importance of problem definition, feature refinement,
structural modeling, and data organization, alongside
abstraction, decomposition, modeling, and algorithm
design as key processes in computational thinking.

Based on the above research results on the core elements of
computational thinking, we can integrate them into a
detailed table, as shown in Table 1.

We will discuss the four core elements of computational
thinking: abstraction, decomposition, modeling, and
algorithm design, as proposed in the domestic information
technology curriculum standards.

3.1. Abstraction
The concept of abstraction, corresponding to the concrete,
refers to a thinking process that refines, extracts, or
generalizes the common and essential attributes, relations,
and other elements from concrete things and abandons
individual non-essential aspects. This way of thinking
makes problems more concise and general, which helps us
understand and solve problems more efficiently. For
example, in programming, abstractions can help us define
common functions and classes, thus avoiding code
duplication and improving the maintainability and
extensibility of programs.

3.2. Decomposition
The concept of decomposition in computational thinking
refers to breaking down a complex problem into multiple
relatively simple, tractable problems that can be better
understood and solved. By breaking it down, we can work
through each subproblem step by step, and eventually
combine the solutions of the subproblems to solve the
whole problem. This approach not only makes the problem
easier to understand and handle but also promotes
teamwork because different people or teams can work on
different subproblems in parallel.

3.3. Modeling
Modeling is the process of creating an abstract
representation of a problem, and it usually involves
building mathematical or logical models that simulate and
analyze real-world situations. Through modeling, we can
test our understanding under different assumptions and
conditions, and predict the outcome of practical actions.
This is a powerful tool that can help us evaluate different
solutions before implementation, thus avoiding potential
errors and risks.

3.4. Algorithm Design
Algorithm design, another core element of computational
thinking, involves formulating a clear, ordered sequence of
steps to solve a problem or perform a task. Algorithms are
the foundation of the computational process, and they must
be detailed and precise enough so that they can be executed
by a computer. The design of algorithms requires not only
logical rigor but also efficiency and optimization to ensure
the performance and reliability of the solution.

3.5. The Relationship Between the Elements
The Order of the Four Elements In addressing specific
problems, the usual sequence of these four elements is
abstraction, decomposition, modeling, and algorithm
design. Of course, this sequence may be adjusted according
to the nature and requirements of the problem at hand.
Below is a typical process for solving a problem:

Abstraction: First, extract key information from the
problem and eliminate irrelevant details to form a
simplified description of the problem. This helps us focus
on the essence of the problem and lays the foundation for
subsequent steps.

Decomposition: Next, break down the problem into smaller,
more manageable sub-problems. This allows us to delve
into the problem step by step, tackle challenges one by one,
and also provides a clear path for subsequent modeling and
algorithm design.

Modeling: Express the problem or sub-problems using
mathematical, logical, or computer science methods. The
purpose of this step is to transform the problem into a
computable form so that it can be processed using tools
such as computers.

Algorithm Design: Finally, design a series of clear, precise,
and executable steps to solve the problem or sub-problems.
This enables us to transform the results of the previous
abstraction, decomposition, and modeling into a practical,
executable solution.

In practice, there is often interaction and iterative cycling
between these four elements. For example, during the
modeling phase, we may need to revert to the abstraction
phase to refine core information; similarly, during the
algorithm design phase, we might encounter the need for
further detailed decomposition of the problem. Therefore, it
is crucial to flexibly use and adjust the application order of
these four elements according to the actual situation when
solving specific problems. This is illustrated in Figure 2.

Figure 2. The sequence of the four elements.

4. Teaching Practices of Computational
Thinking in Primary and Secondary Schools
Since computational thinking education focuses on the
development and training of a mode of thinking, it has
different requirements and objectives from traditional
teaching. These requirements and objectives pose new
challenges to existing educational concepts and methods
(Li, 2012). However, implementing computational thinking
teaching practices, educators can effectively enhance
students' logical thinking capabilities and digital literacy,
laying a solid foundation for their lifelong learning and
career development. Currently, educational practices
around the globe have adopted various methods to ensure
that students can effectively engage with and master
computational thinking skills during their primary and
secondary education stages.
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Information Exchange and Sharing: In primary and
secondary school information technology courses, the
teaching practice of computational thinking emphasizes
effective information exchange and sharing by students
through the use of information technology tools. For
example, the American K-12 Computer Science
Framework mentions that third-grade students should be
able to use writing tools, digital cameras, and drawing tools,
among others, to express ideas, viewpoints, and events in a
step-by-step manner (Zhao, Li, Jiang, & Lang, 2017).

Information Privacy and Security: In computational
thinking education, students need to understand and master
the basic knowledge of information privacy and security.
Teachers can guide students to recognize the importance of
personal information protection and teach them how to
safely manage and share personal data in daily life, as well
as how to identify and prevent cybersecurity threats.

Online Learning and Living: Online learning has become
an important part of computational thinking education.
Teachers should encourage students to use online resources
for self-learning, while teaching them how to effectively
manage time and evaluate resources in the online
environment to meet the needs of the information society.

Data and Coding: At the K-12 level, educators should
design learning content that is suitable for students to
understand and master, such as teaching sixth-grade
students the basic steps of solving problems using
algorithms. Through programming activities, students can
learn how to collect, analyze, and utilize data, as well as
how to automate information processing through coding.

Algorithms in Daily Life: Teachers use real-life examples,
like search engines, to demystify algorithms, helping
students grasp their application in problem-solving.

Processes and Control: Learning programming languages
enables students to grasp program flow control, enhancing
their problem-solving skills through structured processes.

Internet Applications and Innovation: The internet offers a
vast platform for learning programming and engaging in
innovative projects, enriching students' understanding of
computational thinking and its practical applications.

IoT Practices and Exploration: IoT technology integration
allows hands-on exploration of smart device programming,
making computational concepts tangible and enhancing
tech mastery.

Artificial Intelligence and Smart Society: AI education
introduces students to cutting-edge problem-solving and
decision-making, emphasizing computational thinking's
role in modern intelligent systems.

Data and Computation: Teaching the importance of data
and computation equips students with the skills to analyze

and utilize data, applying computational methods to real-
world problems.

Information Systems and Society: Understanding
information systems' structure and societal impact
underlines computational thinking's significance, fostering
a sense of responsibility and innovation.

5. Conclusions
Through the widespread recognition of the importance of
computational thinking, various countries and scholars
have proposed their own standards and frameworks. To
better adapt to the specific needs of the Chinese
educational environment, this study, based on a
comprehensive analysis, re-examines the core elements of
computational thinking and their interrelationships. These
elements are not only the cornerstone of computer science
education but also an indispensable part of the modern
educational system, especially in cultivating students'
critical thinking abilities to face future challenges.

However, from a practical operational perspective, the
implementation of computational thinking education faces
multiple challenges, including the uneven distribution of
educational resources, the need for professional growth
among teachers, and how to effectively integrate
computational thinking with students' daily lives and other
disciplinary knowledge. In light of this, this study delves
into more than a dozen computational thinking teaching
practices nationwide, including information exchange and
sharing, information privacy, and security. By showcasing
these teaching practices, the aim is to provide educators
with a broader perspective, enabling them to more deeply
integrate computational thinking teaching strategies and
methods into daily teaching activities.
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ABSTRACT
Although computational thinking (CT) professional
learning opportunities are becoming more prevalent in
elementary schools, in-service teachers face persistent
challenges in learning and implementing CT due to the
complex changes in their beliefs, knowledge, and practices.
In this study, we explore the coaching experiences of an
elementary science teacher over 10 months of CT
professional learning and investigate the changes in her
beliefs and practices related to the notion of abstraction in
CT. Findings suggest that prolonged coaching is an
effective approach to encourage the teacher to initiate CT
practices in her classrooms. However, coaching also
introduced misconceptions and potential confusion about
CT. Implications for the design of CT professional
learning programs to support teachers are discussed.

KEYWORDS
Computational Thinking, Professional Learning, Coaching,
Abstraction

1. INTRODUCTION
Computational thinking (CT) has gained increasing
attention as an important skill for K-12 students to develop
(Kafai & Proctor, 2022). As many schools start to
incorporate CT into their curricula, supporting teachers’
learning and effective integration of CT principles poses a
significant challenge (Wang et al., 2022). Existing
research has highlighted teachers’ lack of familiarity with
CT concepts and struggles translating CT-focused
professional learning experiences into classroom practices
(Ketelhut, et al., 2020).

One promising approach for overcoming these challenges
is extending professional learning support over time
through coaching (Lefstein et al., 2020). Coaching allows
for prolonged, individualized feedback and guidance that
can help address gaps as they emerge for teachers
navigating complex changes in beliefs and pedagogy.
Although past studies have confirmed the positive impact
of coaching on teachers’ professional learning in CT
(Gibbons et al., 2021), researchers and practitioners tend
to assume that coaching is the “silver bullet” for bringing
CT into classrooms. Little research to date has explored
the longitudinal experiences of teachers participating in
extended CT coaching. This study seeks to address that
gap by investigating the professional learning journey of
an elementary science teacher through a 10-month one-on-
one coaching program focused on CT integration. An in-
depth examination of her experiences may provide
insights into both the affordances and limitations of

prolonged coaching models for CT professional
development.

2. Computational Thinking and Teachers’
Professional Learning
There has been a considerable research effort in promoting
and examining teachers’ professional development
through CS/CT-focused professional learning programs.
However, past research has found that in-service teachers
frequently lack an understanding of CT concepts and
struggle to implement lessons (Angeli & Giannakos, 2020).
As such, successfully integrating CT into existing
curricula often represents a significant pedagogical shift
for many teachers. For instance, Ketelhut et al. (2020)
investigated how a PL program with workshops, coaching,
and an inquiry community changed elementary teachers'
views on CT. Among the increasing efforts in teachers’ PL
for CT, many lack sustained and targeted support for
teachers (Liu, 2023). Acknowledging that teacher change
in knowledge and instructional practices is a long and
complex process and short-term workshops have proven
insufficient for facilitating complex changes in teachers'
beliefs and practices (Desimone, 2009). Coaching offers
long-term, individualized support shown to be effective
for science and literacy integration (Lefstein et al., 2020).
By addressing gaps as they emerge over time, coaching
holds promise for supporting teachers' CT learning.
However, few studies have examined coaching's role in
developing teachers' CT knowledge and skills.

3. Coaching
From a sociocultural perspective, learning occurs through
social interaction and collaborative experiences. Coaching
provides opportunities for teachers to learn CT concepts
through discussions with experts, as well as hands-on
experimentation with and reflection on practices in their
own classrooms (Gibbons et al., 2021). However,
coaching also involves a process of meaningful change for
teachers. Complex challenges may arise when (a)
revealing and probing problems of practice, (b) providing
evidence or reasoning, (c) making connections to general
principles, (d) building on others’ ideas, and (e) offering
different perspectives (Lefstein et al., 2020). This study
therefore also adopts a perspective of teacher learning as a
complex process of change that is facilitated through
social interactions between the teacher and the coach. The
coaching conversations will be examined for how they
influence teacher change over time. To this end, we aim to
understand how the coach supported an elementary
science teacher to develop computational thinking
practices. In this study, the research question we seek to
answer is: What are the different understandings of
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abstraction that were evidenced in the coaching sessions
over time?

4. Method
4.1. Context
This study describes the partial effort of a larger research
project aimed at exploring a sustainable professional
learning model for elementary school teachers to learn and
implement CT in their classrooms. The professional
development program in this study consists of online
modules of CT learning, monthly workshops, monthly
coaching sessions, and collaborative design and
implementation of CT-integrated lessons in real
classrooms. The entire professional development program
was led by coaches and facilitators from a professional
development company.

4.2. Case Study
In this study, we take a case study approach (Stake, 1995)
to focus on one elementary science teacher, Cassie
(pseudonym). Cassie has been very active and engaged
compared to the other participants. In this report, we focus
on the one-on-one coaching sessions in 10 months. In
these sessions, Cassie had sustained interactions with her
coach, Jackson, who played a major role in supporting
Cassie in her professional learning and teaching practices.

4.3. Data Sources and Analyses
To answer the research question, we drew data from
Cassie’s interviews, coaching sessions, and the field notes
that researchers have taken. We coded the video episodes
of those research sessions to identify instances where
Cassie and the coach discussed the notion of abstraction
and generated interpretive memos describing the instances.
Then, we adopted open and axial coding methods to
identify emergent themes characterizing Cassie’s diverse
understanding of abstraction.

5. Results
Over the course of the professional learning program, we
observed (a) Cassie has transitioned from a gross
understanding of abstraction to (b) multiple elaborated
understandings and finally transformed these
understandings into (c) pedagogical understandings that
afforded her implementation of abstraction in her
classrooms. The following sections describe these three
types of understanding of abstraction.

5.1. Gross Understanding of Abstraction
In the first coaching session, in responding to Cassie’s
wondering about the meaning of abstraction, Jackson
explained that abstraction is about “identifying the
important information” or “picking out which information
is the key information” from a given situation. They
discussed the example of why something melts, and
considered what makes different objects able to melt.
Cassie was asked to further inquire into the condition
under which ice and cheese melt, and she considered
temperature as the key condition. Jackson agreed that
being able to identify temperature as the key information
is an indicator of abstraction. That is, selecting
temperature from many other factors and properties
involves abstraction. Upon completion of this coaching

session, although we observed that Cassie and Jackson
seemed to arrive at an agreement about the meaning of
abstraction, we also observed uncertainty in Cassie’s
utterances, especially in terms of what should abstraction
activity look like in her classroom and what she should do
to support students’ learning of abstraction.

5.2. Elaborated Understandings of Abstraction
In the subsequent sessions, we have identified two
different, but related elaborated understandings of
abstraction that emerged from the discussion between
Cassie and Jackson. The first type of elaborated
understanding views abstraction as achieving a goal or
succeeding in solving a problem. This understanding
emerged during the conversations about differentiating
abstraction from decomposition. In the fourth coaching
session, Cassie and Jackson discussed an unplugged
classroom activity Cassie uses called Rossie’s Runtime. In
this activity, students use cardboard to direct Rosie, the
robotic dog, through a maze. Following the idea of
abstraction means achieving the goal, Cassie explained
that decomposition would mean the students break down
what they need to do, such as avoiding the puddles,
finding the bone, and getting to the park, while abstraction
would mean Rosie successfully arrives at the doghouse
and dry with a bone, meaning “it’s all over”.

In addition to abstraction meaning achieving the goal, we
inferred another related understanding of abstraction from
the instances. That is abstraction is the process of
identifying the qualities of a constituting element in order
to achieve a certain goal, while decomposition is the
process of identifying the element itself. This
understanding implies that abstraction has to come after
decomposition when solving a problem. One needs to
decompose a situation into subcomponents, and
abstraction helps tackle each to achieve the goal. This
understanding is not entirely separate from the previous
but related to it since it is also a goal-oriented
understanding with a hallmark of abstraction
accomplishing the goal.

Building upon these two understandings, and in their
attempt to come up with a diagram to illustrate abstraction
for students (during the seventh coaching session),
Jackson asked “what is a thing that only works when you
put all the pieces together?” Cassie proposed a puzzle
diagram or a pie might be good illustrations. Jackson
responded with enthusiasm that these are perfect ideas,
saying “if your pie has all these pieces, you’ve probably
met that abstraction goal.” In the eighth coaching session,
Cassie reflected on how the puzzle diagram was helpful
for her students when they used it as a checklist or
guidelines for their activities. We consider this to be
additional evidence of Cassie primarily interpreting
abstraction as associating with outcomes, which is
discrepant from a view of abstraction as a process or CT
practice in extant literature (e.g., Shute et al., 2017).

5.3. Pedagogical Understanding of Abstraction
When considering how to teach abstraction in classrooms,
Jackson recommended that Cassie could directly introduce
the vocabulary of abstraction at the very beginning, such
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as saying, “We are going to use the thinking skill of
abstraction to identify what is the most important
information we are looking for.” Jackson further explained,
“I believe the key for this… is that when we prompt

students, and we make it part of their problem solving
routine.” Jackson’s suggestion implies a view of
abstraction as a cue guiding students’ activities and
thinking. We observed that Cassie picked up on this
strategy and used the terminology of abstraction explicitly
in her classrooms. When asked by Jackson how
incorporating the notion of abstraction might influence her
task design, Cassie admitted that it did not influence the
design itself but merely for communicating with or
providing instructions to students. This observation is also
supported by the interview with Cassie at the end of the
coaching sessions. Although she claimed that she felt
much more confident in integrating abstraction, she did
not provide any concrete explanations of what abstraction
is and admitted that she is still confused with abstraction
and decomposition.

6. Discussion
The findings illustrated the changes and challenges Cassie
has experienced regarding the notion of abstraction in CT.
While Cassie has demonstrated progress in understanding
and operationalizing abstraction in CT and implemented
lessons with abstraction and concrete examples, some
conceptual challenges remain. Cassie's elaborated
understandings of abstraction as achieving goals or
identifying qualities of elements can be discrepant from
literature definitions that position abstraction as a
cognitive process (Shute et al., 2017). We posit that the
discrepancy is not necessarily a result of
miscommunication. In fact, Jackson helped Cassie to
understand abstraction through various concrete examples.
The discrepancy may reflect the complexity of the notion
of abstraction and CT at a cognitive level. CT itself can be
interpreted differently depending on the theoretical
foundations and the contexts (Kafai & Proctor, 2022; Lodi
&Martini, 2021). Although many practitioners may not be
able to engage in in-depth discussions about what CT
means to them immediately, it is non-trivial for them to
understand that CT can be operationalized in their own
context (Liu, 2023). In this study, seeing abstraction only
through its outcomes may hamper Cassie's ability to
design learning experiences that effectively support her
students. In future professional learning, coaching should
consider prompt critical reflection on how conceptual
understandings influence teaching beyond superficial
adaptations (e.g., offering different perspectives in
Lefstein et al., 2020).

7. Conclusion
This study explored an elementary teacher's CT learning
of abstraction through one-on-one coaching over 10
months. Findings reveal both progress and ongoing
challenges in Cassie's evolving understandings and
implementation of abstraction. Future research should
continue examining how to improve professional support

structures for enabling meaningful teacher change in
learning and teaching computational thinking.
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ABSTRACT
This study assesses the MIT App Inventor's effectiveness in
instilling Computational Thinking and Generative AI skills
through a five-day workshop focused on mobile app
development. With its block-based coding system, App
Inventor proved to be user-friendly, significantly enhancing
programming accessibility for beginners. Participants
experienced a marked increase in confidence and expressed
enthusiasm for applying these new skills in real-life
contexts, exemplifying the principles of Computational
Action. The results underscore the potential of App
Inventor as a valuable educational resource, fostering
technical aptitude and innovation among an international
array of students.

KEYWORDS
MIT App Inventor, Computational Action, Generative AI

1. INTRODUCTION & BACKGROUND
This paper investigates how technology's transformative
influence can be democratized through educational
initiatives like block-based programming platforms such as
Scratch and MIT App Inventor, the latter enabling users to
create mobile apps through a visual interface (Maloney et
al., 2010; Wolber, Abelson, and Friedman, 2015; Patton,
Tissenbaum, Harunani, 2019). While effective in piquing
students' interest in app development (Perdikuri, 2014;
Grover and Pea, 2013), the predominance of U.S.-based
evaluations leaves a gap in understanding its global impact.
Addressing this, the paper describes a workshop in Japan,
with participants who typically had no coding experience,
providing insight into the global potential of block-based
coding for fostering computational thinking.

1.1. Computational Thinking to Computational Action
Computational Thinking (CT) is a critical skill in
education, akin to traditional literacy, emphasizing
problem-solving and logic that transcends programming
(Wing, 2006). As CT fosters creativity and critical thinking,
it prepares students for a digitized future (Kong and
Abelson, 2022). Computational Action extends CT into the
real world, where learners apply abstract concepts to
develop tangible digital solutions through an iterative,
collaborative process (Tissenbaum, Sheldon, and Abelson,
2019). This educational approach enhances students'
understanding and confidence, preparing them for future
challenges in technology and innovation (Du et al., 2023).

Figure 1. Example of App Inventor’s new Gen AI
component

1.2. Educating Students about Generative AI
Generative AI refers to artificial intelligence systems that
can generate new content, ideas, or data that are novel and
not merely a reshuffling of existing information. This field
has seen a significant surge in both interest and
development in recent years, primarily due to advances in
machine learning and neural network technologies
(OpenAI, 2016). Generative AI holds the capacity to
profoundly transform numerous facets of human society,
bringing with it a spectrum of both positive and negative
impacts. It is crucial for an increasing number of people to
not only become aware of this transformative technology
but also to possess the skills and understanding necessary
to integrate it into their daily lives effectively. The
importance of educating about these technologies becomes
increasingly critical. Education in generative AI not only
involves understanding the technical workings of these
systems but also encompasses a broader comprehension of
their ethical, societal, and practical implications (Sharples,
2023). Recently, the MIT App Inventor acquired an
innovative addition to its platform - a chatbot/imagebot
component (Figure 1). This new feature abstracted the
integration of advanced generative AI models, like
OpenAI's ChatGPT and Dall-E (Shi et al. 2020), into
mobile applications built with App Inventor. With just a
few programming blocks, developers can now tap into the
power of these AI models, opening a wide range of
possibilities for app functionality.

2. METHOD
The workshop titled “Harnessing Generative AI in Mobile
Application Development” was conducted at the Kanagawa
Institute of Technology. It spanned five days, with each
session lasting three hours. The participant group
comprised 23 in-person students at the Kanagawa Institute
of Technology and 60 to 100 remote students, primarily
students from Malaysia and Indonesia.
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Figure 2. Curriculum of the workshop

3. RESULTS
The students' final presentations were particularly
impressive, considering that most of them had never heard
of MIT App Inventor before the workshop and for many,
English was not their primary language. Despite these
challenges, they showcased remarkable ingenuity i

The workshop's primary objective was to introduce
students, many of whom had minimal to no experience in
coding to the basics of mobile application development
using App Inventor. A special emphasis was placed on the
integration of generative AI components, showcasing the
potential of block-based coding in teaching computational
thinking and practical application skills.

As shown in Figure 2, the first three days of the workshop
were dedicated to hands-on tutorials in App Inventor,
focusing particularly on utilizing its new chatbot and
imagebot components. These sessions were designed to
provide step-by-step guidance, enabling students to become 

familiar with block-based coding and the essentials of
mobile app creation. On the fourth day, the workshop
shifted its focus to the foundational concepts of generative
AI. This segment included both theoretical and practical
elements, aiming to enhance students' understanding of
how generative AI operates and how it can be incorporated
into mobile applications. This was particularly relevant
given the use of AI components in the App Inventor
activities. The workshop culminated on the fifth day with
student presentations. Each participant or group was tasked 

with presenting a simple mobile application they had
developed using App Inventor, which incorporated
elements of generative AI. This session provided an
opportunity for students to demonstrate their understanding 

and creative application of the skills acquired during the
workshop.

An assessment of the workshop's effectiveness was
primarily based on the feedback provided by the students
and the evaluation of the projects presented on the final day.
These projects served as a practical indicator of the
student's grasp of the concepts and skills imparted during
the workshop. The IRB approval was obtained from
Kanagawa Institute of Technology, ensuring that all
research methods, participant recruitment, and data
handling procedures complied with ethical standards and
regulatory guidelines.

n

integrating generative AI with mobile application
development into their everyday lives. For instance,
highlighted in Figure 3, a standout project was an app
developed by a student using a chatbot to determine a
random ‘lucky color’. This color then inspired the
generation of images of items in that hue, along with
information on where to find these items. The student noted,
“This app helps me choose the color of my shirt each day”
brilliantly demonstrating the practical use of chatbot and
imagebot functionalities. This example underscores the
students' capacity to creatively utilize AI tools,
significantly enhancing their daily routines and decision-
making processes, all achieved within the context of
navigating a new programming language and working in a
non-native language.

Figure 3. Example of an app a student created.

Did students become more confident in programming?
The MIT App Inventor workshop significantly reshaped
participants' perceptions of programming over five days.
Those with prior interest noted minimal change, yet for
others, the workshop demystified programming's

The workshop's user-friendly, block-based programming
was a game-changer, igniting enthusiasm and dispelling the
notion that programming is inherently difficult. It
introduced a novel, less intimidating approach to coding
that contrasts sharply with traditional line coding, making
software development more tangible and engaging,
especially for novices. Attendees appreciated the
straightforwardness of block programming, which required
no prior experience, and found that it provided a clear
understanding of essential programming concepts like
event handling and data storage.
Moreover, the workshop opened new vistas for integrating
AI in app development, fostering an interest in
programming and AI. Participants were exposed to visual
programming and the use of pre-built components,
revealing the broad potential and adaptability of AI in
various applications. This exposure not only illuminated
new programming methodologies but also underscored the
importance of innovative educational tools in making
technology more approachable and versatile

complexity, showcasing its simplicity and accessibility.
This led to a noticeable boost in confidence among
attendees, particularly those who had viewed programming
as an insurmountable challenge. As one participant
reflected, they transitioned from being overwhelmed to
developing an active interest in app development.

.
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3.1. Was App Inventor an effective tool to learn?
Participants unanimously lauded MIT App Inventor for its
user-centric, accessible interface, highlighting its appeal to
novices and those with minimal coding background. Its
simplicity, a stark contrast to traditional coding approaches,
stood out as a significant benefit. The platform's block-
based, drag-and-drop interface was celebrated for
demystifying the app development process, as encapsulated
by one participant's remark, “It is easy to tinker around
with blocks, making programming far less daunting than
traditional line coding.”
The ease with which users could navigate and utilize App
Inventor was a recurring theme among feedback. Its direct,
no-frills functionality facilitated a seamless and swift app
creation experience, devoid of the complexities often
associated with coding. The platform’s design, inherently
accommodating to those without a coding pedigree, enables
the swift and straightforward development of mobile
applications. This accessibility is pivotal, positioning App
Inventor as an invaluable resource across a broad spectrum
of users, particularly those venturing into programming for
the first time. Moreover, the platform’s intuitive structure
allows users to quickly comprehend both the logic behind
app development and its design aspects. This feature was
especially attractive to participants who, despite finding
traditional coding barriers, were keen on venturing into
mobile app development.
Also, some praised the geometric tinkering process of App
Inventor. One student noted “The workshop ignited my
interest in programming, particularly because I tend to
avoid tasks that require extensive memorization, like
learning a programming language. The transformation of
programming into a puzzle-like format simplified the
learning process for me, allowing me to grasp the
underlying concepts of the project more intuitively”. The
visual nature of App Inventor, where coding is akin to
solving puzzles, was highlighted as a feature that enhances
learning and retention, especially for those who struggle
with writing code from memory. The platform was also
lauded for its ability to facilitate understanding of
technological developments and for making programming a
more approachable and enjoyable experience.
Furthermore, the platform was recognized for its efficiency
in frontend development and its broad functionality,
supporting various features needed for smartphone
application creation as one mentioned “The breadth of
functionality that allows for the implementation of a
complete set of functions needed to create a smartphone
application, as well as support for external hardware such
as pose estimation, ChatBot, cloud, Lego, etc.” The
convenience of real-time programming checks and the
reduced need for high-end equipment were also mentioned.

3.2. What can App Inventor improve?
The feedback from participants on MIT App Inventor was
varied, focusing on enhancements in user interface (UI)
design, additional features, and educational resources.
UI/UX Design Improvements: Several respondents
suggested more flexibility and customization options in the
UI design of the platform. This included a desire for more

UI components and the ability to edit code directly for
customizing UI and logic. Improvements in UI/UX design
were a recurring theme, with suggestions like a more user-
friendly interface and the introduction of features like dark
mode.
Enhanced Features: Participants expressed interest in
seeing more advanced features in App Inventor. Specific
suggestions included improved functionality for the chatbot
and imagebot components, image recognition AI, and an
in-built emulator for quick app testing. Some users also
requested more variety in components for editing user
interfaces and a desire for the platform to support
hardcoding.
Educational Resources: Requests for more comprehensive
educational resources were common. This included more
advanced tutorials, both in video and PDF formats,
complete documentation about the blocks, and additional
tutorials on diverse topics, including game development.
The idea of making tutorials more accessible and inclusive
for various learning environments was also highlighted.
Accessibility and Language Support: Enhancements in
accessibility features, such as Japanese language support
and a clearer display of warnings and commands, were
mentioned. Suggestions for an offline mode and
improvements in the website's UI/UX were also proposed.
Performance and Bug Fixes: Addressing performance
issues and fixing bugs were noted as areas for improvement.
This includes dealing with issues where blocks do not
display or the display freezes.
Community and Collaboration Features: Some
participants suggested features to facilitate sharing and
collaboration directly within the app, such as enabling
multiple users to work on an app simultaneously and
hosting activities to promote App Inventor's growth
globally.
Transparency in Coding: A few responses indicated an
interest in seeing the block-based code translated into
standard programming language notation, which could help
those interested in transitioning to traditional coding.

4. CONCLUSION
This study assesses MIT App Inventor's role in teaching
Computational Thinking and Generative AI to a global
student audience. Over a five-day workshop that combined
theoretical learning with practical exercises, students were
introduced to key programming principles, using App
Inventor to learn coding visually and interactively, a
method that proved especially beginner friendly. Analysis
indicates a strong preference for the platform's block-based
programming, citing improved accessibility and a boost in
confidence, which in turn inspired students to apply these
skills practically. The student-created applications during
the workshop demonstrate not only a solid understanding
of programming concepts but also their application for
personal and community betterment, embodying the
concept of Computational Action. The success of App
Inventor in this educational context emphasizes its value in
enhancing technological understanding and creativity
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among diverse student groups, offering insights into the
tool's potential for broad application in education globally.
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ABSTRACT
This study developed and implemented an out-of-school
(OST) STEM program, named the GEM STEM program,
specifically designed for underrepresented minority girls in
the southern United States. Utilizing a qualitative research
design, the study investigated the learning experiences of
forty-one underrepresented minority girls, ranging from
middle to high school (grades 7-12), all of whom have
engaged in this program for more than two academic years.
Following the Social Cognitive Career Theory (SCCT)
model, the results revealed the OST program benefits girls
by creating a conducive learning environment, encouraging
STEM participation, and facilitating meaningful
interactions with adult mentors. Key factors include
engaging conversations with professionals, collaborative
opportunities, and the integration of diverse subjects.
Participants also shared their perspectives on gender bias
and common stereotypes in STEM fields, with
socioeconomic status coming up as a barrier to their
professional growth.

KEYWORDS
STEM Education, After-school STEM Program,
Underrepresented Minorities in STEM Education,
Pathways to STEM Career, Comparative Analysis of
STEM Education

1. INTRODUCTION
In line with the rapidly changing technological era, the
United States places much effort into refining and
promoting STEM education. The U.S. government, along
with Congress, State legislatures, and school STEM
programs, has implemented extensive efforts to reform K–
12 STEM education and cultivate the next generation of
skilled scientists, engineers, technicians, and science and
mathematics educators (Kennedy & Odell, 2014). All
efforts emphasize the importance of preparing youth to
apply knowledge and skills to solve problems, make sense
of information in future careers, and use them in real-life
situations.

As the largest ethnic minority in the United States, Latinos
encounter unique challenges in STEM education,
demonstrating lower academic achievement rates, reduced
degree attainment, limited educational opportunities, and a
diminished presence in STEM professions (Taningco et al.,
2008). Gender disparities persist among Latinos in STEM
careers, particularly affecting Latina girls. Influenced by
ethnic identities and socioeconomic status, Latina girls may
face challenges in STEM interest, perceived ability in
STEM fields, and career motivation (Modi, Schoenberg,
and Salmond, 2012). Cultural influences, such as the
preference for attending schools close to home, further

impact educational choices for Hispanic youth (Dowd,
Malcom, & Bensimon, 2009).

To address these challenges, STEM enrichment programs
emerge as a pivotal solution. These programs, including
afterschool activities, summer camps, and competitions,
bridge educational gaps by providing content knowledge,
fostering real-world connections to STEM, and promoting
informal learning opportunities (Young and Young, 2018).
Research has demonstrated that STEM enrichment
programs boost students’ interest in STEM content and
careers (Mohr-Schroeder et al., 2014), STEM self-efficacy
(Leonard et al., 2016; Mann et al., 2015), school
connectedness, self-identity, and excitement about STEM
subjects (Mohr-Schroeder et al., 2014; Yanowitz, 2016).
When looking into the results of girl-focused STEM
programs, research demonstrated positive outcomes in
girls’ self-efficacy in STEM, interest in STEM-related
subjects, and excitement of STEM-related careers (Levine,
Serio, Radaram, Chaudhuri, & Talbert, 2015).

Despite these positive findings, there are fewer programs
specifically designed to cater to the needs and interests of
Latina girls, aiming to promote their active participation
and success in STEM fields. Prior research was limited in
terms of methodological issues to study OST STEM
programs. Most study samples used only single-item
survey measures to assess the importance of STEM
summer programs on student outcomes, which have a low
level of measurement reliability and validity (Saw et al.,
2019). Thus, this study employs a qualitative case study
design to delve into Latinas' experiences participating in an
OST STEM program, aiming to offer a comprehensive
understanding of their journey in the STEM educational
landscape.

2. SITE AND SETTINGS
2.1. Overview of GEMS OST STEM Program
The GEMS (abbreviated from Girls in Engineering,
Mathematics, Science) STEM program, initiated in 2015 at
a South Texas private university, strives to inspire and
empower more girls from underrepresented minorities to
pursue careers in STEM. Providing complimentary access
to robotics and STEM learning opportunities, the program
has established an all-girls learning environment, with a
special focus on those from underrepresented minority
backgrounds in low-income families. The program offers a
diverse range of initiatives, spanning from a 2-week
summer camp to a 6-week research camp and a year-round
program.

The miniGEMS program, a cost-free two-week summer
camp, emphasizes the fields of engineering and
programming (Figure 1). It aims to expose middle school
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girls to STEM disciplines through hands-on experiences,
including robotics, computer programming, graphic design,
and inspiring guest speakers. Over the years, miniGirls has
evolved from a one-week STEM camp to a two-week
STEAM and programming camp, integrating arts to
accommodate a broader range of interests. The program
extends its impact through miniRobots, a year-round
robotics club that serves as an extension of miniGirls,
aiming to enhance STEM interests and programming skills
for middle school girls.

Table 1. Overview of the GEMS STEM Program
Grade Level Length Core Curriculum
miniGEMS
(6th to 8th)

Two-week

Robotics
Programming
Game design

Hands-on STEM activities
Career Exposure
Guest speakers

Nutrition and gardening
Art activities

megaGEMS
(9th to 12th)

megaResearch
(9th to 12th) Six-week

Research-based projects
Academic writing course
Presentation training

Other STEAM hands-on
activities

miniRobots
(6th to 8th) Full year

Weekly hands-on robotic
Programming practice

Launched in 2019, megaResearch is a six-week summer
camp designed for juniors and seniors in high school. The
program borrows the NSF REU model but introduces high
school girls to faculty-guided research on a STEM project
and culminating in a research paper, presentation, and
poster. The goal of the camp is to provide high school girls
with valuable research learning experience, which in turn
may improve their research skills, STEM interests, and 21st
century skills. Participants engage in practical research
projects under faculty guidance, utilizing a Project-Based
Learning (PBL) approach that grants girls flexibility in
managing their time, encouraging their interest in pursuing
STEM majors and independence.
For example, the goal of the Drone project (Figure 2) was
to use Unity3D and a Geomagic touch haptics device to
learn how to design a simulation of explosive ordnance
disposal (EOD). The main goals of this project were to: (1)
introduce students to cutting-edge technologies such as
haptics; (2) provide them with practical experience in using
the Unity3D game engine while creating simulations using
the C# programming language; and (3) create a practical
real-world application for training bomb disposal squads.
The purpose of this project was to give students hands-on
experience and to investigate the options and possibilities
for building a haptics-based simulation. This project also
helped the girls understand the hazards bomb disposal
squads encounter and what is the necessary steps for
developing this application, including touch, feel, and sense
capabilities.

3. RESEARCH DESIGN
3.1. Research Questions
RQ1: What are participants’ learning experiences in the
GEMS OST STEM program?
RQ2: What are the influences of participating in the GEMS
OST STEM program on girls’ career interests?

3.2. Sampling and Data Collection
The study's sample comprised 41 middle and high school
girls, ranging from 7th to 12th grade. These participants
had extensive involvement in the program, with each
having participated in at least two rounds. This included
options such as two instances of a 2-week summer camp, a
6-week research camp, or a comprehensive year-round
program, all characterized by a high level of engagement.
All participants identified their ethnicity as Hispanic.

Semi-structured interviews with open-ended questions are
the major source to gain participants’ experiences within
the research scope. The researcher used three-interview
series and treated all interviews as opportunities to have
participants reconstruct their experiences within the study
contexts. Considering the participants were all middle
school and high school students, each interview took
fifteen to twenty minutes in this study. The researcher is
also preparing for other rounds of parents and teachers
interviews if needed. The study protocol follows the federal
government’s “Common Rule” for the protection of human
subjects and was approved by the University Ethical
Review Board for the Humanities and Social and
Behavioral Sciences at the institution of the first author.

3.3. Data Analysis
Followed by Stake (1995) and Yin’s (1993) data analysis
strategies, a constant-comparative method (Corbin &
Strauss, 2008) was employed to compare participants'
learning experiences. The interview data were audio-
recorded and transcribed using Temi software. To ensure
accuracy, the researcher made the final corrections to the
transcripts. Additionally, during data collection, the
researcher created short memos for each participant, coding
each memo in Dedoose. The analysis began with content
analysis, focusing on analyzing text and documents.
Subsequently, thematic analysis was conducted, with a
special emphasis on developing themes. The final phase
gave more attention to the selection of themes.

Figure 1. Programming in miniGEMS Program
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Figure 2. Drones Research Project in megaResearch Program

4. RESULTS
4.1. Learning Experiences in GEMS
Girls participating in the GEMS STEM program had
positive and varied learning experiences. The focus on
hands-on activities and projects, as described by Amanda,
“The camp is like a science and math based club where we
do different projects and it's, it's fun. We have to be
creative and think outside the box of like that.” The diverse
levels and types of the program offered distinct learning
experiences for participants. This variation was deemed
beneficial for high school girls entering postsecondary
education.

The program created an all-girls learning environment that
differed from formal schools, providing necessary
materials like robots and drones for hands-on experience.
The OST learning environment emphasizes the broader
opportunities and behavioral options for middle school
girls. Girls felt more comfortable making mistakes and
trying new ideas in this setting, contrasting with the
constraints of formal schooling. As Clara demonstrated, “I
feel more open here and I feel like, oh this is, I'm
comfortable here. I guess I feel more relaxed. And at
school I'm more like tenants. I'm more close and I don't, I
just listened to the teacher and that's it. Like I don't really
like talking but here I feel better. I feel like I have a voice.”

Communication and cooperation were essential
components of the program, fostering effective teamwork.
Girls worked together to solve problems and develop
necessary skills, leading to significant improvements in
solutions. For example, one girl described her experience
of working in teams by saying, “For the first one, it was
my experience or like something that describes miniGirls
summer camp. Um, and overall I learned how to work with
people and friendship and just like working together to like
come up with the new ideas.” Mentors played crucial roles
in the program, providing positive mentorship, and creating
a supportive learning environment. The level of mentor
involvement varied, with heavy involvement potentially
limiting students' engagement, but overall, mentoring
contributed to a positive student-mentor relationship and a
sense of community.

Students experienced personal growth through the program,
gaining familiarity with activities and overcoming initial
challenges. Elisa mentioned the robotic competition was
less stressful for her and she achieved better performance
in the competition by saying “I've gotten like more calm

about the robots and it felt easier this [second] year when
we were like putting together the EV3 and doing the coding
the first time”. Longer-term participants, such as those
attending two summer camps, exhibited increased calmness
and better performance, indicating personal development.
Some girls returned as mentors, campers, or volunteers,
further contributing to the program's success and forming
stronger bonds through shared experiences. Overall, the
GEMS program facilitated positive learning experiences,
personal growth, and a supportive community for Latina
Girls.

4.2. Influences of the GEMS Program on Girls’ Career
Interests
This study on the Girls in STEM program revealed its
positive impact on students' STEM learning and the
development of their interests in STEM fields. The
program fostered a fun learning environment, covering
various STEM concepts such as robotics, programming,
and graphic design. Middle school girls improved their
math efficacy, while high school participants gained
familiarity with a college environment, motivating them to
pursue additional STEM activities and classes. The
exposure to different STEM concepts through presentations
by guest speakers broadened participants' perspectives and
influenced their career interests, fostering aspirations in
engineering, coding, and related fields.

The data also highlighted the influence of gender
disparities and stereotypes on girls' career choices. Many
girls in this study realized the gender bias and stereotypes
towards women in STEM. As one girl expressed her
perspectives of gender bias by saying: “With them being
sexist, it's kind of bad because we females we probably
don't have as much style as the men cause due to them like
having been very picky. We're also picky but we like, work
harder to achieve that cause just ‘cause people think that
men do better than women when actually women work
harder. We, we try harder.”

Despite facing gender bias in STEM, participants expressed
a willingness to consider STEM-related careers as
alternative choices. Career aspirations centered around
helping others, with girls aspiring to become
dermatologists, therapists, and pursue careers that
contribute positively to society. The findings indicated that
the GEMS Program contributes to challenging stereotypes
and encourages girls to explore diverse career paths,
creating a pathway for them to pursue STEM-related goals.

5. DISCUSSION
The results of this study highlight the beneficial effects of
the GEMS OST program on raising participants' aspirations
for STEM careers. However, it raises the crucial question:
What can researchers and practitioners do to sustain and
enhance the STEM interests of underrepresented
minority girls?

As middle school and high school girls are at an age where
they desire to learn new things, it is beneficial for them to
have long-term STEM exposure so they can explore
various subjects and develop their interests in STEM
learning. Creating a supportive learning atmosphere is
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crucial for helping students share their viewpoints and
acquire necessary skills, which may impact their interests,
self-efficacy, and professional development. Similar to
numerous middle schools, engineering is not offered as a
course option for students. In the classroom, engineering
skills are hardly developed at all. Certain after-school
programs incorporate multiple disciplines and could serve
as an additional source of education beyond what is
typically offered by schools.

Enhancing program outcomes also requires programmatic
structure and continuous emotional and educational support.
Based on the programmatic structure, the OST STEM
program for middle school students could offer more
engaging and interactive activities, while the high school
curriculum may place more emphasis on education and
professional experiences. It is significant to remember that
middle school girls are going through physical, mental,
emotional, and social changes as they make the move from
elementary to middle school. They are also growing in
terms of self-identification and self-awareness at this age.

Therefore, it would be advantageous for girls to receive
assistance from OST program facilitators to enhance their
academic learning and develop their social and emotional
competencies. These facilitators can take on the role of
teachers, encouraging students to learn and stimulating
their curiosity in math and science. Students' motivation
and efficacy may decline in the absence of support during
the learning process, which also results in negative
emotions. Programs for STEM OSTs may need to
concentrate more on "how much" support than on "how
many" activities and topics they can cover.

It is also critical to recognize how socioeconomic status
and cultural backgrounds impact the educational and
professional choices of Latinas. Gender bias and
stereotypes in STEM are pervasive, and aligning social
environments such as school, family, community, and the
program can better support and encourage girls in
persisting and developing interests in STEM fields.
Collaborative efforts can foster an inclusive environment
that empowers Latina students to pursue STEM education
and careers despite existing societal challenges.
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ABSTRACT
Computational thinking is vital to the abilities of children
to solve problems effectively and overcome increasing
challenges efficiently in this technological era. Using
criteria of publication date, source, and relevance, 576
computational thinking (CT) publications were identified in
the WoS database from 2013 to 2023. Bibliometric analysis
and visualization were conducted on this literature set using
VOSviewer and CiteSpace to map CT research hotspots,
trends, frequency and centrality of themes, as well as gaps.
The bibliometric analysis in this study revealed several key
findings:(1) Despite strong advocacy for widespread CT
integration into K-12 STEM curricula, empirical guidance
lags on translating theories into scalable student learning.
(2) CT curricula must constantly evolve to reflect the
stages of development of young learners while also
leveraging educational robotics and emerging technologies
such as generative AI. (3) As keywords like "early
childhood education" and "games" surge, future work
should harness the interactive, scaffolded learning unique
to developmentally-oriented games for CT skills. (4)
Embedded, automated assessments show promise for
monitoring authentic applications of CT tools within
regular classroom environments.

KEYWORDS
Computational Thinking, K-12, Preschool, Educational
robotics, Bibliometrics Analysis

1. INTRODUCTION
Computational Thinking (CT) refers to the ability to
understand the underlying notions and mechanisms of
digital technologies to formulate and solve problems.
Wing(2006) defined CT as one of the most important
problem-solving skills, it is essential to differentiate and
relate between CT and other fields, such as programming
and coding for the reason that applying the CT method to
different scientific areas was the impetus for developing
computational science (Kong & Abelson, 2022). In this
study, scientometric analysis contributes to comprehend
data which can encourage researchers to (1) get a view of
the relationship between CT and other disciplines; (2)
identify influences and challenges of educational robots to
children' CT curricula in different contexts; (3) find
innovative methods like game-based learning to explore the
potential advantage to the cultivation of CT; and (4)
consider the formative framework of CT assessment of
children.

2. METHOD
The database utilized in this research is the Web of Science
(WOS) Core Collection, the search criteria were restricted
to three editions: "SCI-EXPANDED", "SSCI" and "ESCI".
A total of 618 documents were reviewed, the terms were

searched using the edited query "TS=(("child" OR children
OR student NOT higher education)AND("computational
thinking" OR "programming" OR coding) AND("Artificial
Intelligence" OR robot OR chatbot OR ChatGPT))".
Finally, a total of 539 records were retrieved from the
literature database. This study uses the quantitative method
of bibliometrics to explore the evolution of the literature in
this research area by counting the documents related to
children's CT with the use of the data processing function
of the CiteSpace (6.2.R2).

3. RESULT
3.1. Bibliometric and visualization analysis of keyword
co- occurrence
A total of 1552 keywords were relevant to the analysis. The
main keywords were computational thinking, robotics,
programming and coding. Studies in this cluster suggests
that utilizing technologies related to educational robots to
assist children in the programming process and designing
constructed scenarios in which children use computational
thinking to collaborate with robots are research directions
that should be focused on.

3.2. Analysis of keyword emergence based on CiteSpace
In this study, keyword emergence analysis was used to
understand the change in the number of citations of hot
words related to children's CT development at a certain
time period. There is a greater emphasis on refining the CT
education of children through interdisciplinary games, with
innovatively designed instructional paradigms to intrigue
students in further pursuit of domain learning (Kong SC,
2022), developing children's problem-solving skills in the
process of learning, as well as the competence to plan and
evaluate solutions.

4. DISSCUSSION
4.1. The challenges of integrative CT to K-12 STEM
education
CT is crucial for STEM education, mathematics and
science learning as there are many connections between CT
and compentences required in disciplines. According to the
OECD (2023), the 2022 PISA framework for mathematics
incorporates CT as one of the fundamental mathematical
capabilities students need. The mathematic curricula
relevant with CT are conducted in interdisciplinary
educational settings, which implies that the competency of
designing STEM teaching and learning activities is
indispensable(Hsu, Irie & Ching, 2019; Ye et al., 2023).

4.2. Evolving Computational Thinking Curricula for
Educational Robotics and Children's Developmental
Stages
Educational robotics has gained significant attention in
different education contexts, programming curricula are
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mostly implemented using plugged-in or unplugged
programming(Sigayret et al., 2022). When robots engaged
in the design of children's CT curricula based on Scratch,
they enable children to better understand how to
personalize the process of learning(Bers et al., 2019;
Pugnali, Sullivan& Bers, 2017). In subsequent studies we
should take into account children's knowledge, acceptance
and willingness to operate the robot and guide them to
solve problems independently.

4.3. The Innovative Construct of Game-Based Learning
for Improving CT skills
With the development of science and technology and the
emergence of new educational methods, the interactive
nature of games can promote students’ initiative
engagement and reduce the cognitive load during learning
(Sigayret et al., 2022). It's necessary to clarify how to
innovatively design and implement game-based CT
teaching appropriate to students characteristics(Hsu, Chang
& Hung, 2018). However, there are studies did not yield
significant positive results for some CT concepts, including
sequence, conditions, and loops(Howland & Good, 2015).

4.4. Embedded Assessments for Authentic
Computational Thinking Performance in Classroom
Contexts
Assessing the CT performance of children is crucial for
educators to analyze their development level of CT abilities
and provide appropriate educational support in real-life
situations(Grover&Pea, 2013). Existing research indicates
that framework of accessing students' CT skills are
systematic, which can be investigated further from the
perspective of complex education settings, and report
reliability and validity evidence to confidently qualify the
assessment.
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ABSTRACT
This document critically reviews research on teaching
computational thinking in Chinese elementary schools.
Utilizing the CNKI database, nine relevant articles were
identified and analyzed. The evaluation of computational
thinking typically revolves around three dimensions:
computational concepts, computational practices, and
computational perspective. Nevertheless, challenges such
as the ongoing evolution of computational thinking
definitions and the insufficient emphasis on process
evaluation in assessments remain unaddressed.
Recommendations include clarifying teaching objectives,
adopting diverse evaluation methods, and emphasizing
process evaluation to refine teaching activities. By
addressing these issues, the evaluation of computational
thinking in primary education can effectively promote
students' computational abilities and skills.

KEYWORDS
computational thinking, primary education, evaluation
methods

1. INTRODUCTION
Computational thinking serves as the foundational mindset
of the information age and occupies a fundamental position
in the realm of information technology education. It stands
as a focal point in the foundational education of
information technology during the primary education
stage(Jin et al., 2020). Primary school students are at a
crucial stage for forming behaviors and habits. It is
essential to give special attention to cultivating their
computational thinking skills. Scientifically effective
assessment of computational thinking is key to evaluating
the effectiveness of cultivation efforts and monitoring the
development of students' relevant abilities. By assessing
students' levels of computational thinking, teachers can
understand their strengths and weaknesses in this area. This
understanding enables teachers to formulate targeted
teaching strategies to help students improve their
computational thinking skills.

Presently, the cultivation of computational thinking, a
primary objective within information technology curricula,
has attracted significant recognition and focus among
educators. However, due to the lack of textbooks and other
teaching materials, frontline teachers often face confusion
regarding how to assess students' computational thinking
skills during the teaching process. This issue poses a
challenge to teachers in conducting teaching research
activities.

2. RESEARCH DESIGN
This study utilizes the China National Knowledge
Infrastructure (CNKI) database to sample relevant
academic journals. It uses "computational thinking" as the
keyword and "primary education" as the subject for
retrieval. The literature screening criteria were studies that
implemented teaching in primary schools and evaluated
computational thinking. In the end, 9 articles were obtained
(as shown in the table below).

Table 1. Literature Screening Results

Number Title

Evaluation
Dimensions of
Computational

Thinking

Sub-dimensions Evaluation
Method/Tools

1

Research on
Internal

Mechanism and
Teaching
Practice of

Programming
Education for
Development of

Children's
Computational
Thinking

Computational
Thinking

Decomposition
Thinking, Abstract

Thinking,
Procedural

Thinking, Iterative
Thinking,
Generalized
Evaluation
Thinking

the
Computational

Thinking
Scale (CTS)
adapted by the

author

2

The Impact of a
Design-based
Integrated
STEM+C
Teaching on
Students’

Computational
Thinking

Computational
Thinking

Problem Solving,
Creative Thinking,
Critical Thinking,

Algorithmic
Thinking,
Cooperative
Thinking

the CTS
adapted by the

author

3

Research on the
Influence of

Pair-
Programming on
Elementary

School Students’
Computational
Thinking Based
on Learning
Style and
Partnership

Computational
Concepts None

the
Computational
Thinking Test

CTt)
Computational

Practices
Bebras
questions

Computational
Perspective

Self-efficacy except from
scale

Programming
attitude questionnaire

4

Development
and

Implementation
of Goal-oriented
STEM School-

based
Curriculum in
Primary Schools

Computational
Thinking

Creativity, Critical
Thinking, Problem

Solving,
Algorithmic
Thinking,
Cooperative
Thinking

the CTS
adapted by the

author

5

Design and
Application of

Visual
Programming
Activities
towards

Computational
Thinking

Computational
Concepts

None

Bebras
questions

Computational
Practices

Bebras
questions

Computational
Perspective

the CTS
adapted by the

author

6

Research on
Precision

Teaching Model
of Human-
Computer

Collaboration for
the Cultivation

of
Computational
Thinking ——
Taking the Sixth

Grade
Information
Technology

Class “Silk Road

Computational
Concepts

None

excerpt from
the CTt

Computational
Practices

classroom
observation,
interviews, Dr.

Scratch

Computational
Perspective

Creativity,
Algorithmic
Thinking,

Collaborative
skills，Critical

Thinking, Problem
Solving,

the CTS
adapted by the

author
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Breakthrough”
as an Example

7

An Application
of a PBL+CT
Teaching Model

in Primary
Mathematics for
Cultivating
Students’

Computational
ThinkingTaking
“How to Enclose

the Largest
Area” as an
Example

Computational
Thinking

Decomposition,
Abstraction,
Algorithmic

Thinking, Critical
Thinking,

Problem-solving,
Collaborative
Learning

the CTS
adapted by the

author

8

An Empirical
Study of Scratch
Gamification

Programming for
Cultivating
Elementary
School

Students＇
Computational

Thinking

Computational
Concepts

Flow Control，
Data

Representation，
Abstraction， User
Interactivity，

Synchronization，
Parallelism，

Logic

examination
tests，student
works, Dr.
Scratch

Computational
Practices

Incremental
Iteration, Testing
and Debugging,
Reuse and
Recreation,

Abstraction and
Modularization

classroom
observation,
interviews

Computational
Perspective

Expression and
Creativity,

Communication
and Collaboration,
Understanding and

Questioning

adjustment
questionnaire,
classroom
observation,
interviews

9

Research on
DBL Instruction

in STEM
Courses to

Develop Primary
School Students'
Computational

Thinking

Computational
Thinking

Creativity, Critical
Thinking, Problem

Solving,
Algorithmic
Thinking,
Cooperative
Thinking

adapted
questionnaire
based on the
CTS and the
Creativity
Scale

Researcher analyzed computational thinking evaluation
methods in the literatures, summarized the characteristics
of computational thinking evaluation, aiming to provide
assistance for evaluation issues in teaching research and
teaching practice.

3. EVALUATION OF COMPUTATIONAL
THINKING
3.1. Dimensions of Evaluating Computational Thinking
Brennan proposed measuring computational thinking along
three dimensions: computational concepts, computational
practices, and computational perspectives (Brennan &
Resnick, 2012). Özgen Korkmaz developed a
computational thinking scale (CTS). The questionnaire
investigates learners' composite computational thinking
abilities across five sub-dimensions: creativity, critical
thinking, problem-solving, algorithmic thinking, and
collaborative thinking (Korkmaz et al., 2017).
These classification methods represent the predominant
frameworks for assessing computational thinking across its
diverse dimensions. Additionally, the CTS is also used to
measure levels of computational concepts and
computational practices.

3.2. Categories of Computational Thinking Evaluation
Summative evaluation is a method commonly used in
research, and all studies have chosen scales as evaluation
tools. Although some computational thinking assessment
tools are formative evaluations, they have not been used
extensively due to their high correlation with teaching

content. Researchers still prefer summative evaluation
scales as the method for evaluating computational thinking
levels. In addition, qualitative evaluation methods such as
interviews and observations are used to collect
supplementary data. These data, obtained from formative
assessments within student tasks, are rarely regarded as
primary analytical data.

4. ISSUES IN EVALUATING
COMPUTATIONAL THINKING
4.1. The Understanding of Computational Thinking
Affects the Evaluation
The academic community has not yet reached a consensus
on the essence of computational thinking. Moreover, some
scholars have pointed out that the essence and methods of
computational thinking will continue to evolve (Zhang,
2019). Shifts in the conceptual understanding of
computational thinking pose substantial challenges to its
evaluation in educational settings. Researchers in
computational thinking teaching research have utilized
existing computational thinking scales. However, they have
modified existing scales based on their understanding of
computational thinking, which may differ from that of the
scale developers (Duo et al., 2022).

In computational thinking teaching research, the
development and validation of computational thinking
scales are often not the main focus. However, modifying
existing scales without validating the changes and using
them with only a small sample size makes it challenging to
verify the universality of the scales. This approach can
indeed have a detrimental effect on the results of teaching
research.

4.2. Lack of Process Evaluation
When evaluating computational thinking, the majority of
cases rely solely on scale assessments, lacking process
evaluation. While teaching research needs to demonstrate
the effectiveness of teaching through evaluating
computational thinking, this approach overlooks students'
thinking processes and strategy choices during problem-
solving. As a result, it may not comprehensively reflect
students' computational thinking abilities and levels. Some
studies utilize classroom observations and interviews as
methods to assess computational thinking. However, the
analysis of the collected data often lacks depth, failing to
fully leverage these findings.
In learning environments, dialogue and communication
lead to co-constructed activities that result in cognitive
changes. Evaluation activities such as analysis, review, and
reflection play a crucial role in the internalization of
learners' knowledge and concepts (Zhou, 2018).
Researchers need to emphasize process evaluation to
promptly identify issues in teaching and refine teaching
activities.

4.3. The complexity of evaluation
The complexity and diversity of evaluation content can
complicate the evaluation process, making it challenging
for evaluators to identify key points and critical indicators.
This difficulty can impact the accuracy and consistency of
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the evaluation results. First, an abundance of evaluation
content may prevent researchers from conducting
comprehensive analyses of the collected data, especially in
terms of in-depth analysis of textual content, which may
seem inadequate. Moreover, excessive data collection and
analysis can obscure evaluation standards, increasing
subjectivity and uncertainty in the evaluation process. As a
result, this could diminish the credibility and fairness of the
evaluations.
In terms of evaluating computational practices and
concepts, although student work and interview materials
have been collected, many studies still only scratch the
surface, and some research does not collect data on the
teaching process.

5. RECOMMENDATIONS
The assessment of computational thinking instruction in
elementary schools is not just an important means to gauge
the development of students' computational abilities; it's
also key to enhancing the quality of education. This process
involves a comprehensive understanding of students'
computational thinking levels and uses diverse and targeted
assessment content and methods to stimulate and foster the
continuous growth of students' computational thinking
abilities.

5.1. Clarifying Instructional Goals for Computational
Thinking
In light of computational thinking's dynamic nature,
establishing precise instructional objectives constitutes a
crucial preliminary step within the educational process.
Teachers should base their specific instructional goals on
the core components of computational thinking. These
goals should match students' learning needs and cognitive
development stages and reflect the broad application of
computational thinking in real life. Clearly defined
instructional goals help guide the selection and design of
teaching activities, ensuring consistency between teaching
content and assessment methods, thereby more accurately
reflecting students' computational thinking abilities.
Indirect evaluation of computational thinking levels
through assessing students' grasp of the instructional
content can simplify the assessment challenge.

5.2. Utilizing a Variety of Assessment Methods
Cognitive abilities are closely tied to knowledge levels, and
the development of thinking abilities often requires a solid
knowledge foundation. Relying solely on scales may not
fully or accurately capture students' thinking levels.
Teachers need to employ a variety of assessment methods,
including traditional testing, project-based learning
assessments, peer assessments, self-assessments, and
teacher observations. By assessing students' knowledge,
cognitive abilities, and emotional attitudes from multiple
angles, teachers can comprehensively understand students'
computational thinking levels, promptly adjust teaching
strategies, meet students' individual learning needs, and
enhance their problem-solving and innovative thinking
skills.

5.3. Establishing Unified Computational Thinking
Assessment Standards
The crucial aspect of establishing unified standards for
assessing computational thinking is to integrate insights
from current research and educational practice to identify
core dimensions of computational thinking, such as
abstraction, decomposition, algorithmic thinking, critical
thinking, and creativity. This step involves an extensive
review of literature and a deep understanding of
educational practices, aiming to capture the entirety of
computational thinking abilities. Following this, based on
these core dimensions, a detailed assessment framework
should be developed. This framework should define
specific assessment criteria for each dimension and provide
clear descriptions of levels to ensure the accuracy and
consistency of assessments. Additionally, the framework's
design should take into account the cognitive development
stages of students of different ages, ensuring its broad
applicability and flexibility for implementation in various
educational contexts. By adopting this approach, a unified
and effective set of computational thinking assessment
standards can be established, promoting educational equity
and offering a comparable benchmark for educational
research.
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ABSTRACT
Computational thinking is considered a fundamental skill
essential for everyone in the 21st century. Current research
almost focuses on cultivating and developing students'
computational thinking through curricula, yet there is
limited research on constructing curricula under the
guidance of computational thinking. From another
perspective, we believe that computational thinking can
play a guiding role in the content design and
implementation of AI curricula in primary and secondary
schools. This paper builds upon the project-based learning
model for junior high school programming curriculum that
points to core literacy, and further extends it to a five-step
design method for Thinking Progressively in junior high
school AI curriculum large units, and use this model to
design the progression of problem chain and task chain for
the AI curriculum large unit. We then construct a junior
high school AI curriculum large unit from a computational
thinking perspective, offering a framework for other
educators to reference when designing and teaching AI
curriculum units.

KEYWORDS
computational thinking, junior high school, artificial
intelligence, large unit curriculum

1. INTRODUCTION
According to Professor Jeannette M. Wing's definition,
"Computational thinking involves solving problems,
designing systems, and understanding human behavior, by
drawing on the concepts fundamental to computer science.
Computational thinking includes a range of mental tools
that reflect the breadth of the field of computer science."
Therefore, computational thinking is often regarded
internationally as the process of teaching students to
analyze and solve problems.

Our literature review reveals that the vast majority of
research on computational thinking is focused on fostering
and developing students' computational thinking through
the curriculum, and very little research has been done on
building a curriculum guided by computational thinking.
From another perspective, We contend that computational
thinking can effectively guide in the content design and
teaching implementation of AI curricula for primary and
secondary schools, and developing a widely applicable
junior high school AI curriculum that aligns with local
conditions, thus fostering good computational thinking in
students.

2. PROJECT-BASED LEARNINGMODEL
FOR JUNIOR HIGH SCHOOL
PROGRAMMING CURRICULUM
POINTING TO CORE LITERACY.
Through repeated research and practice, we believe that the
elements of junior high school students' computational
thinking are decomposition ability, abstraction ability,
algorithmic ability and migration (pattern) ability. Under
the guidance of the above ideas, we constructed a junior
high school programming project learning model pointing
to the core literacy, including four linkages and six steps ,
as shown in Figure 1.

Figure 1. Project-based Learning Model for Junior High
School Programming Curriculum Pointing to Core Literacy.

Through the implementation of the curriculum over the
course of more than two years, students have notably
significant improvement in the above four competencies,
successfully cultivating and enhancing students' ability to
analyze and solve problems under the guidance of
computational thinking.

3. CONSTRUCTING AN ARTIFICIAL
INTELLIGENCE LARGE UNIT
CURRICULUM FOR JUNIOR HIGH
SCHOOLS IN THE PERSPECTIVE OF
COMPUTATIONAL THINKING - TAKING
"MACHINE LEARNING" AS AN
EXAMPLE
Building on the foundation of "Research on the
Development and Practice of Junior High School
Programming Curriculum Pointing to the Core Literacy of
Information Technology Discipline", we investigated the
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current state of AI education in junior high schools in
Wenjiang District from January to March, 2023. Based on
the investigation and the accumulation of the results of the
previous project, combined with the fact that the current IT
teaching materials lack AI-related content, other developed
AI courses require substantial hardware investment but
there is limited funding for AI specialization in our district,
etc. In order to achieve the objective of widespread AI
education across regional junior high schools, we planned
and designed a regional universal junior high school AI
large unit curriculum. Taking “Machine Learning” as an
example, the following is a detailed account of how to
construct a learning large unit under the perspective of
computational thinking.

3.1. Distill the Big Concepts of Large Unit
In this large unit, the big concept we distilled is “Machine
Learning”, that is, "how computers simulate or implement
human learning behavior in order to acquire new
knowledge or skills."

3.2. Create a Big Task (Big Problem) throughout the
Large Unit
Our students are all honorable members of the Young
Pioneers, and correctly wearing the red scarf is an
obligation and responsibility of being a Young Pioneers.
However, there are still many students who forget to wear
the red scarf or do not wear it correctly. Relying solely on
teachers and class cadres for inspection may not be very
feasible. Could students use artificial intelligence
technology to assist teachers in automatically checking
whether students are wearing and correctly wearing the red
scarf?

3.3. The Five-Step Design Method for Thinking
Progressively in Junior High School Artificial
Intelligence Large Unit
Based on the " Project-based Learning Model for Junior
High School Programming Curriculum pointing to Core
Literacy ", we have summarized the "Five-Step Design
Method for Progressive Thinking in Junior High School
Artificial Intelligence Large Unit " through continuous
learning and reflection, comprising the following five
stages, as shown in Figure 2.

The first step is decomposition, where the tasks of a large
unit are broken down into smaller, more manageable parts;
The second step is abstraction, where real-world problems
are converted into problems that a computer can handle;
The third step is algorithm development, involving writing
a series of executable code to solve these problems; The
fourth step is pattern, which involves evaluating,
summarizing, and generalizing to identify common
methods for solving this kind of problem; The fifth step is
iteration, where the solution is summarized and improved
to enhance its quality. Among these steps, the emphasis is
on the internal logical connections between them, which
facilitates the progressive and in-depth training of students'
thinking processes.

Figure 2. The Five-Step Design Method for Progressive
Thinking in Junior High School Artificial Intelligence

Large Unit

3.4. Constructing the Problem Chain and Task Chain of
the Junior High School Artificial Intelligence Large Unit
for Thinking Progression

Figure 3. Problem Chain and Task Chain of "Machine
Learning" Large Unit for Thinking Progression.

According to "The Five-Step Design Method for
Progressive Thinking in Junior High School Artificial
Intelligence Large Unit", we construct a problem chain and
task chain for thinking Progressively in junior high school
artificial intelligence units, as shown in Figure 3. The
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"problem chain" is a sequence of problems designed to
address the tasks of the large unit. We transform
knowledge into a series of clear and systematic teaching
problems based on students' existing knowledge or
experience, targeting the confusions that may arise during
their learning process. The "problem chain for thinking
progression" emphasizes that the problems are
progressively deeper and more coherent. Subsequently,,
through the " problems chain", the "tasks chain " is
constructed, which, driven by tasks, fosters students'
progressive thinking and achieves the cultivation and
development of their computational thinking.

3.5. Based on the Problem Chain, Clarify the Logical
Structure of the Unit's Knowledge and Determine the
Content for Each Lesson within the "Machine Learning"
Large Unit, as Shown in Figure 4

4. CONCLUSION
Wenjiang District is located outside the main urban area of
Chengdu City, and there are some urban schools with
advanced equipment and many township schools with
limited hardware. we have constructed a universal junior
high school AI large unit curriculum under the guidance of
computational thinking. After more than a year of
implementation, our curriculum has proven to be effective
and suitable for the regional context, achieving positive
outcomes even in schools with limited hardware resources,
and it also offers valuable insights and guidance for
teachers in other regions to design and teach AI large units
curriculum.
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Figure 4. "Machine Learning" Large Unit Lesson Design.
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ABSTRACT
In the education stage of junior high school, cultivate
students' ability to computational thinking, master the
methods of computational thinking, in order to improve
students' academic performance, through continuous
learning and training, in order to stimulate junior high
school students' sense of innovation. This paper uses the
questionnaire survey method to investigate the
development status of computational thinking of 43
students in the first grade of a junior high school, and the
survey results show that there are certain problems in the
development of computational thinking, and the research
results of this paper have a certain role in promoting the
cultivation of computational thinking.

KEYWORDS
junior high school students, computational thinking,
questionnaires

1. INTRODUCTION
With the continuous development of information
technology in China, junior high school information
technology has been valued and recognized, and
computational thinking has significant advantages in junior
high school students' information technology [1]. As one of
the four core literacies of information technology
disciplines, computational thinking has an important
discipline attribute identification. It is of great significance
to grasp the current situation of junior high school students'
computational thinking to welcome the implementation of
the Information Technology Curriculum Standards for
Compulsory Education (2022 Edition)[2].

Therefore, by investigating the development of
computational thinking among junior high school students,
this survey aims to find out the problems existing in the
development of computational thinking among junior high
school students, so as to put forward countermeasures and
methods to solve the problems, so as to lay the foundation
for subsequent training.

2. LITERATURE ACQUISITION
As shown in Figure 1, it is found that the preliminary
research on this topic began in 2014, and the published
literature in the following years showed an upward trend,
indicating that this topic has gradually become a hot topic
in recent years, which is worthy of exploration and further
research.

Figure 1. Literature trend chart

From the perspective of subject areas, as shown in Figure 2,
they are divided into three aspects: secondary education,
educational theory and educational management, and
computer software and computer application.

Figure 2. Subject area distribution

Through the search of the keyword "junior high school
students, computational thinking", two research and
analysis papers on the development of computational
thinking of junior high school students were obtained, and
it was found that these two articles belonged to the
investigation and analysis of the development of
computational thinking of junior high school students.
These two articles were published in 2018 and 2020,
respectively. Two years have passed since the publication
of the two articles, but through reading, it is found that
there is not much breakthrough in the content, and they are
both investigated and analyzed from the two aspects of
cognition and computational thinking ability.

Therefore, I focused on investigating and analyzing the
development of computational thinking among junior high
school students in more aspects, so as to draw suggestions
for cultivating computational thinking in junior high school
students.

3. RESEARCH METHODS AND
PROCESSES
3.1 Research Methods
In this study, we used a questionnaire method, which is a
structured questionnaire, which includes three types of
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questions: algorithm, logical reasoning, and system and
society, aiming to investigate and analyze the development
of computational thinking among junior high school
students.

3.2 Research process
In this paper, a total of 44 questionnaires were surveyed, 40
questionnaires were actually collected, and 40 questionnaires
were valid, with an effective rate of 91%. The results of these 40
valid questionnaires were counted and analyzed. (See the
appendix for the specific content of the questionnaire)

4. THE DEVELOPMENT STATUS OF
COMPUTATIONAL THINKING AMONG
JUNIOR HIGH SCHOOL
4.1. A comparative description of the average scores of
the three types of questions
According to the statistical results, the average scores of
the three types of content questions were obtained, among
which the average score of the algorithm was 1.625, the
average score of the logical reasoning questions was 2.342,
and the average score of the system and society questions
was 2.283. Through the comparative analysis of the
average scores of these three types of questions, it can be
seen that the average scores of students in logical reasoning
questions are the highest, which indicates that students
have clear thinking and are good at using their brains. The
average score on the algorithm is the lowest, indicating that
the students are lacking in the actual practice process.

4.2. Statistical description of the class scores of junior
high school students
According to the scores of the seventh class of the first grade of
junior high school, statistics were made, as shown in Table 1
below:

Table 1. Statistical chart of scores
Score 36points

Class average 23.625 points
Top score in class 34 points

Lowest score in the class 10 points
It can be seen that the range difference is 34-10=21, which
indicates that the development of students' computational thinking
is quite different.

4.3. A comparative analysis and description of the
number of people who answered correctly and the
number of people who answered incorrectly in the three
types of content questions
According to the statistical analysis of students' scores, the
number of complete correct answers and the number of complete
incorrect answers for three types of knowledge were sorted out, as
shown in Table 2 below:

Table 2. Statistics on the scores of the three types of questions
Number of people
who answered

correctly

Number of people
who answered
incorrectly

Algorithmic classes 0 2

Logic 19 1

Systems & Society 16 2

According to the above data analysis, the proportion of the
number of people who answered correctly to the total number of
students in the class was calculated, among which the number of
people who answered the algorithm questions correctly was 0%,
the number of people who answered the system and social
questions correctly accounted for 46% of the total number of
students, and the logical reasoning questions that answered the
most in the class accounted for 54%. This shows that most
students have strong logical reasoning ability, but lack a lot of
algorithms, which makes the development of computational
thinking unbalanced.

4.4. A description of the student's computational
thinking development

4.4.1. A description of the development of students'
computational thinking in terms of algorithms
According to the statistics of students' scores, the scores of each
student's algorithm questions were sorted out. In view of this, the
average scores of students in algorithm questions and the
comparison of students' extreme scores were further counted.
Among them, the full score of the algorithm question is 18 points,
of which the average score of the students in the class is 9.75
points, the highest score of the class is 16 points, the lowest score
of the class is 3 points, and the range difference is 16-3=13, which
further shows that the development of students' computational
thinking is very different in the algorithm.

4.4.2. A description of the student's computational
thinking development in terms of logical reasoning

Table 3. Statistics of the scores of logical reasoning questions
Score 9points

Class average 7.025 points
Top score in class 9 points

Lowest score in the class 0 points
According to the data analysis, the full score of logical reasoning
questions is 9 points, the average score of students is 7.025 points,
the highest score of the class is 9 points, the lowest score of the
class is 0 points, and the extreme difference is 9-0=0, which is a
large difference.

4.4.3. A description of the systematic and social aspects
of the development of students' computational thinking
According to the statistics of students' scores, the scores of each
student's system and social questions are sorted out and counted
as follows:

Figure 3. Scores of system and social questions
According to the above figure, most of the students' scores in the
system and social questions are concentrated in 6 points or more,
and the degree of dispersion is relatively high.To sum up, firstly,
the dispersion of students in the three aspects of algorithm, logical
reasoning and system society is too high, especially in the
algorithm. Second, there is a big difference between the highest
score in the class and the lowest score in the class; Finally,
students in logical reasoning and systematic social questions
scored highly, but many students scored very low. This indicates
that there are large individual differences in the development of
students' computational thinking.
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4.5. A description of the differences in the development
of students' computational thinking

4.5.1. A description of the differences in the development
of each student's computational thinking
According to the scores of the first grade students, the radar
analysis chart can be made as shown in Figure 4:

Figure 4. Radar chart of scores
The numbers 1-40 in the figure represent 40 students, and it can
be seen from the graph analysis that the development of students'
computational thinking is uneven.

4.5.2. A description of the differences in the development
of computational thinking among students in three
aspects
In this study, the overall computational thinking development of
students is analyzed from three aspects: algorithm, logical
reasoning, and system and society, and the average scores of
students in the three aspects are calculated, which can be made as
shown in Figure 5.

Figure 5. Radar analysis diagram
The development of students' computational thinking is better
than that of algorithms in terms of systems and societies and
logical reasoning, and the balance between the two is more
balanced, and the lack of algorithms is greater.

5. EXISTING PROBLEM
5.1. The overall computational thinking development of
junior high school students is lacking
According to the survey, 46% of the students in the class were
below the class average; Especially in the field of algorithms, no
students answered this type of question completely correctly, and
the average score of the algorithm class was only 54% of the total
score, which did not reach the passing level.

5.2. There are large individual differences in the
development of computational thinking among junior
high school students
This study analyzes the development of students' computational
thinking from three aspects: algorithm, logical reasoning, and
system and society, and finds that students' scores in these three
aspects are highly discrete and unfocused. There is a large
difference between the highest and lowest scores of students in
the class; This indicates that there are large individual differences
in the development of computational thinking among middle
school students.

5.3. There is an imbalance in the development of
computational thinking among junior high school
students
The analysis showed that the average score of middle school
students in algorithm questions was very low, while the average
score of logical reasoning and system and society was relatively
high. This shows that the students' ability to solve algorithm
questions is very weak, and they are more inclined to logical
reasoning questions and system and social questions.

6. STRATEGIES FOR CULTIVATING
COMPUTATIONAL THINKING AMONG
JUNIOR HIGH SCHOOL STUDENTS
Based on the above conclusions, this study concludes that the
development of computational thinking among middle school
students is insufficient. This requires teachers to focus on
cultivating students' computational thinking skills in teaching.

6.1. Upgrade the teaching mode to cultivate students'
computational thinking
In the teaching of information technology in junior high schools,
students are trained to think computationally by adopting
innovative teaching models. As teachers, we should explore new
teaching models, avoid the phenomenon of going through the
motions and being empty, and comprehensively use flipped
classrooms, micro-classes and other methods to achieve
comprehensive teaching effects and truly attract students to the
classroom. In the process of learning information technology in
junior high school, many students lack interest in learning and
learning participation, and the learning is not targeted and
effective, which needs to be further optimized and improved[3].

6.2. The cultivation of students' computational thinking
should respect the individual differences of students
From the perspective of current education, teachers should focus
on improving the effectiveness of computational thinking
classrooms. At the same time, it actively guides and changes the
bad learning habits of junior high school students in the teaching
process, so that students can effectively participate in the actual
teaching, and then improve students' attention to information
technology classrooms [4] At the same time, innovative teaching
methods are introduced to guide students to fully relax in the
classroom, create a classroom teaching atmosphere suitable for
students' learning, and improve the participation and experience
of junior high school students in computational thinking education
with the help of innovation.
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