{oo/Thinlex

KL ENBRNE
ORI, = »

CoolThink@JG

International Conference on
Computational Thinking Education 2018

14-16 June 2018

| |

AL
[i2is)

Computational Thinking Education

— -

Conference Proceedings

Created and Funded by

N A REGHICR S
The Hong Kong Jockey Club Charities Trust
WLNS R ADWE HGH TOGETHER

Editors

Siu-cheung KONG
The Education University of Hong Kong, Hong Kong

Diana ANDONE
Politehnica University of Timisoara, Romania

Gautam BISWAS
Vanderbilt University, The United States

Tom CRICK
Swansea University, The United Kingdom

Heinz Ulrich HOPPE
University of Duisburg-Essen, Germany

Ting-chia HSU
National Taiwan Normal University, Taiwan

Ronghuai HUANG
Beijing Normal University, People’s Republic of China

Robert Kwok-yiu LI
City University of Hong Kong, Hong Kong

Chee-kit LOOI
Nanyang Technological University, Singapore

Marcelo MILRAD
Linnaeus University, Sweden

Josh SHELDON
Massachusetts Institute of Technology, The United States

Ju-ling SHIH
National University of Tainan, Taiwan

Kuen-fung SIN
The Education University of Hong Kong, Hong Kong

Mike TISSENBAUM
Massachusetts Institute of Technology, The United States

Jan VAHRENHOLD
Westfalische Wilhelms-Universitat Mnster, Germany

Copyright 2018 The Hong Kong Jockey Club

All rights reserved.

ISBN: 978-988-77034-5-7

ISSN: 2664-035X (CD-ROM) / 2664-5661 (online)
Publisher

The Education University of Hong Kong

Preface

International Conference on Computational Thinking Education 2018 (CTE2018) is the second international conference
organized by CoolThink@JC, which is created and funded by The Hong Kong Jockey Club Charities Trust, and co-created
by The Education University of Hong Kong, Massachusetts Institute of Technology, and City University of Hong Kong.

CoolThink@JC strives to inspire students to apply digital creativity in their daily lives and prepare them to tackle future
challenges in any fields. Computational thinking (CT) is considered as an indispensable capability to empower students to
move beyond mere technology consumption and into problem-solving, creation and innovation. This 4-year initiative will
educate over 26,000 upper primary students at 32 pilot schools on computational thinking through coding education.
Through intensive professional training, the Initiative will develop teaching capacity of over 100 local teachers and help
them master coding and computational thinking pedagogy. Over time, the project team targets to make greater impact by

sharing insights and curricular materials beyond the pilot schools.

This year, the event is emerged with a 4-day Coding Fair to further outreach parents and students. The first two days are
open for schools while the last two days are open for public. Through a series of coding and STEM workshops offered by
32 pilot schools and STEM partners, students aged 4-12 will go through an exciting journey of coding and computational
thinking enlightenment. Teachers and students of the pilot schools will also get a chance to showcase their learning
outcomes through booth exhibition. As support from parents are always the most important factor in determining the
success of education, parent seminars with panel discussions are thus included at the Coding Fair to inspire parents to adapt
and master computational thinking as a new bridge for parent-child communication. Over 6500 enthusiastic parents and

students are going to join us at the Fair.

“Computational Thinking Education” is the main theme of CTE2018 which aims to keep abreast of the latest development
of how to facilitate students’ CT abilities, and disseminate findings and outcomes on the implementation of CT
development in school education. CTE2018 gathers educators and researchers around the world to share implementation
practices and disseminate research findings on the systematical teaching of computational thinking and coding across

different educational settings. There are 15 sub-themes under CTE2018, namely:

Computational Thinking

Computational Thinking and Unplugged Activities in K-12
Computational Thinking and Coding Education in K-12
Computational Thinking and Subject Learning and Teaching in K-12
Computational Thinking and loT

Computational Thinking Development in Higher Education
Computational Thinking and STEM/STEAM Education
Computational Thinking and Non-formal Learning
Computational Thinking and Psychological Studies
Computational Thinking and Special Education Needs
Computational Thinking and Evaluation

Computational Thinking and Early Childhood Development
Computational Thinking in Educational Policy
Computational Thinking and Teacher Development

General Submission to Computational Thinking Education

The conference received a total of 60 papers (28 full papers, 22 short papers and 10 poster papers) by authors from 16

countries (see Table 1).

Table 1: Distribution of paper submissions for CTE2018

Country/Region No. of submissions Country/Region No. of submissions
China 10 Malaysia 2

Taiwan 10 Australia 1

The United States 8 Canada 1

Germany 6 India 1

South Korea 6 Norway 1

Hong Kong 5 Spain 1

Singapore 5 Turkey 1

Croatia 2 Total 60

Each paper with author identification anonymous was reviewed by three International Program Committee (IPC) members.
Related sub-theme Chairs conducted meta-reviews and made recommendation on the acceptance of papers based on IPC
members’ reviews. With the comprehensive review process, 44 accepted papers are presented (12 full papers, 23 short

papers and 9 poster papers) (see Table 2) at the conference.

Table 2: Review results of submission acceptance for CTE2018

Sub-theme Full paper Short paper Poster paper Total
CT 2 2
CT and Unplugged Activities in K-12 1 1 2
CT and Coding Education in K-12 2 3 2 7
CT and Subject Learning and Teaching in K-12 1 1 3
CT and loT 1 1
CT Development in Higher Education 2 2
CT and STEM/STEAM Education 2 4 1 7
CT and Special Education Needs 1 1 2
CT and Evaluation 1 5 6
CT and Teacher Development 2 6 2 10
General Submission to CT Education 1 2
TOTAL 12 23 9 44

The conference comprises keynote, invited speeches and forum by internationally renowned scholars; seminar, workshop,

as well as academic paper and poster presentations.

Keynote and Invited Speeches

There are three keynote and two invited speeches at CTE2018:

Keynote Speeches

1. “Beyond Computational Thinking: Coding, Designing, and Making in the 21st Century” by Prof. Yasmin B. KAFAI,
University of Pennsylvania, The United States

2. “The Power behind the Power Point®” by Prof. Judith GAL-EZER, The Open University of Israel, Israel

3. “What Lies Beneath? Towards the Cognitive Underpinnings of Computational Thinking” by Prof. Judy ROBERTSON,
University of Edinburgh, The United Kingdom

Invited Speeches
1. “Computational Thinking for Social Change” by Mr. Nawneet RANJAN, Dharavi Diary, India

2. “Computational Thinking Goes to Science and Math Class: The Case for STEM+C” by Ms. Linda SHEAR, SRI
International, The United States

Computational Thinking and Future Education Forum

Pioneers and experienced frontline practitioners in local and international education sectors formed a panel to exchange

views and ideas on computational thinking and future education.

Panelists:

Principal Tsz-wing CHU, Baptist Rainbow Primary School, Hong Kong
Prof. Heinz Ulrich HOPPE, University of Duisburg-Essen, Germany
Prof. Chee-kit LOOI, Nanyang Technological University, Singapore

Moderator:

Prof. Siu-cheung KONG, The Education University of Hong Kong, Hong Kong

CoolThink@JC Senior Primary Coding Curriculum Dissemination Seminar

To make greater impact by sharing insights and curricular materials to more schools in Hong Kong, CoolThink@JC sheds
light on the curriculum, how schools can adopt it and what supports they will get. Pilot schools teachers also share their

experience in this seminar.

Speakers:

Prof. Siu-cheung KONG, The Education University of Hong Kong, Hong Kong

Mr. Tony LAM, Marymount Primary School, Hong Kong

Mr. Lee LAU, Baptist Rainbow Primary School, Hong Kong

Mr. Andy LI, Po Leung Kuk Dr. Jimmy Wong Chi-Ho (Tin Sum Valley) Primary School, Hong Kong

Workshop on “Interact with real world: MIT App Inventor and 10T (Internet of Things)”

Massachusetts Institute of Technology conducts a workshop on App Inventor and IoT (Internet of Things), in which the

instructor guides participants to design their smart phone app by using MIT App Inventor.

Instructor:

Mr. David Chi-hung TSENG, Massachusetts Institute of Technology, The United States

Academic Paper and Poster Presentations

There are 10 sessions of academic paper presentation and an academic poster presentation with 44 papers (12 full papers,
23 short papers, 9 poster papers) in the conference. Worldwide scholars present and exchange the latest research ideas and
findings highlighting the importance and pathways of computational thinking education covering K-12 education, special
education, teacher development and STEM/STEAM education etc.

On behalf of the Conference Organizing Committee, we would like to express our gratitude towards all speakers, panelists,
as well as paper presenters for their contribution to the success and smooth operation of CTE2018.

We sincerely hope everyone would enjoy and get inspired from CTE2018.

On Behalf of CoolThink@JC

Siu-cheung KONG
The Education University of Hong Kong, Hong Kong
Conference Chair of CTE2018

Tsz-wing CHU
Baptist Rainbow Primary School, CoolThink@JC Resource School, Hong Kong
Conference Chair of CTE2018

Table of Contents

COMPUTATIONAL THINKING ..ottt st sae et se e sessenassenessesnenes 1
Full Paper
A Complementary View for Better Understanding the Term Computational Thinking
Marc JANSEN, Dan KOHEN-VACS, Nuno OTERO, Marcelo MILRAD.........c.cccccvveieiiniieieseeesesesieens 2
The Use of Computational Thinking Concepts in Early Primary School
Ilvica BOTICKI, Danica PIVALICA, PEIEF SEOWccooiiiie ettt ettt et rtat e e s sstan e e s nran e e s nanes 8
COMPUTATIONAL THINKING AND UNPLUGGED ACTIVITIES IN K-12ccoviieiiniinesienenns 14
Short Paper
PG R AREES AR P REREY oz EZg) kARt)
FAZRGT 2 T2 T s 15
Poster

Design A Computational Thinking Board Game Based on Programming Elements

Sheng-yi WU, Jia-cen FANG, Shu-mei LIAN ..o s 19
COMPUTATIONAL THINKING AND CODING EDUCATION IN K-12......cocoiiiieeeeeeeee e 21
Full Paper

Analysis of Learner's Self-efficacy using Coding Education Support System for Understanding Complex
Problem-Solving Steps

In-seong JEON, Hyeon-jeong JEONG, Ki-SaNg SONGcccoeiiiiiiiiiiiiisieneseseeeeee s 22

Computational Concepts, Practices, and Collaboration in High School Students” Debugging Electronic
Textile Projects

Gayithri JAYATHIRTHA, Deborah A. FIELDS, Yasmin B. KAFAIcccccviiiiieieicceeece e 27
Short Paper
A School-wide Approach to Infusing Coding in the Curriculum

Sirajutheen Shahul HAMEED, Chee-wah LOW, Poh-tin LEE, Nur lllya Nafiza MOHAMED ,Wuay-boon

NG, Peter SEOW, BIiMIESh WADHWIA ..ottt sttt et et et ba e e raeenbe e ere e 33
Learning to Code—Does It Help Students to Improve Their Thinking Skills?

Ronny SCHERER, Fazilat SIDDIQ, Béarbara SANCHEZ VIVEROS ..ottt 37
To Improve the Computational Thinking of Elementary School Students by Scaffolding

Chien-i LEE, Sheng-chuan CHUANG, Shu-MiNn WUcccoiiiiiiiiicc ettt 41
Poster

A Curriculum and Contents of Programming Education for Computational Thinking

Hyojin BYUN, Miyoung RYU, SUNGWan HAN ..o 45
Comparing with Scratch and Python in CT Concepts

Tae-ryeong KIM, SUN-gWaN HAN ..ottt st e e beesbeesreesrae s 47

COMPUTATIONAL THINKING AND SUBJECT LEARNING AND TEACHING IN K-12............... 49
Full Paper
Students’ Attitude Changes through Integrating Computational Thinking into English Dialogue Learning

DT T T T 1o T4 =1 N (USSR 50
Short Paper
A7 DBReg ¥ 48 e A ——0 i L KkARt b

FHE T AW L0 L H B 56
Poster

Promoting Computational Thinking and Collaborative Skills in Primary Robotics Classes

Hyungshin CHOI, JEONGMIN LEEccooiiiie ettt st s re e e 60
COMPUTATIONAL THINKING AND TOT ..ottt sttt 62
Short Paper

A Design-based Approach to Implementing a Computational Thinking Curriculum with App Inventor and
the Internet of Things

Chi-hung TSENG, Mike TISSENBAUM, Wen-hsuan KUAN, Feng-chih HSU, Ching-chang WONG... 63

COMPUTATIONAL THINKING DEVELOPMENT IN HIGHER EDUCATIONccccocovviiiiieiiennn, 67
Short Paper
The Use of Computational Thinking to Advance Learning in the Pre-university Subject of Digital Literacies
HHAIKO WOLCZ......oe ettt ettt s e R et e e b e ke et et et e st e s s e neeteaneebesse st e nte e ene e 68
e Scratch 2. 38 & L ARk H AL KE s 5
WIS 0 ZICHF 0 FRIOT 5 BRI e 72
COMPUTATIONAL THINKING AND STEM/STEAM EDUCATION ..o 76
Full Paper
A DSML for a Robotics Environment to Support Synergistic Learning of CT and Geometry
Nicole HUTCHINS, Timothy DARRAH, Hamid ZARE, Gautam BISWAS ..., 77
Introducing Computational Thinking Across the Curriculum with Virtual Reality
Merijke COENRAAD, David WEINTROPcccoiiiiieirieiseeseistese et sensssesessessasens 83
Short Paper

A Development of a SW-STEAM Education Program using the Flipped Learning
Hae-nam SONG, SUN-GWAN HANo e e et e st e e sr e e e ta e e ntae e s teeesnneennes 89

Development of BIC-Science Module: An Interdisciplinary Approach of Computer Science and Primary
Science Education

Tracy MENSAN, Kamisah OSIMAINooii ittt sre e seeeneenaenne s 93

Thinking in Parts and Wholes: Part-Whole-Thinking as an Essential Computational Thinking Skill in
Computer Science Education

Nils PANCRATZ, 1Ira DIETHELMooviiiiieieeeeeeeeeee et s sttt ettt ettt eses s sss s s e 97
BlE B3N iEiEe 2 T8 L AERR 48
RARE D M ESE o - M ol e, 101

Poster

Examining a Secondary School Computational Action Curriculum Using App Inventor and the Internet of
Things

Mike TISSENBAUM, Josh SHELDON, Hal ABELSON, Mark SHERMAN.........c..ccccoovriiinneninesinnenns 104
COMPUTATIONAL THINKING AND SPECIAL EDUCATION NEEDS.cccoooviiiiiiiineieeenen, 106
Full Paper
The Application of Minecraft in Education for Children with Autism in Special Schools
Wen-wen MU, KUEN-FUNG SIN ..ot et besneenresne s 107
Poster
BLEFELAAR) BARKT E RORE RS EH 2 FE
FER B 5 FRIOE 5 0 4E3E 0 BRIF B0ttt ettt e bttt ettt b e beebe et et et e et neens 112
COMPUTATIONAL THINKING AND EVALUATIONociiiiicteceeee e 114
Full Paper
Evaluating Computational Thinking in Jupyter Notebook Data Science Projects
Clara SORENSEN, ENi MUSTAFARAU. ..ottt sttt ss et ss e b s s 115
Short Paper
Assessment of Computational Thinking
Nikolina BUBICA, IVICA BOLJIAToiuiiieiieiiee ettt ettt ese et sseneesesasns 121
Cross Comparison of Multiple Computational Thinking Activities: a Grey-based approach
Meng-leong HOW, Chee-Kit LOONcocioiiiiiiciccece ettt sttt sre st nne s 125

On Tools that Support the Development of Computational Thinking Skills: Some Thoughts and Future
Vision
Gregorio ROBLES, Jean Carlo Rossa HAUCK, Jestis MORENO-LEO N, Marcos ROMA N-GONZA LEZ,
Roberto NOMBELA, Christiane Gresse von Wangenheim.........c.ccccoiveiiiiiiiciese e 129

B R E aT g LR R (2013-2017)

e I I A R i SRS SUR PR TPSSON 133
R d porae Bl EH RS Y LR
BRI 0 F 0B 7 2300 oo 137
COMPUTATIONAL THINKING AND TEACHER DEVELOPMENTccocoiiiiiiieieie e 140
Full Paper

Computational Thinking Reshapes the Teachers’ Perspective on Human Mind towards Teaching and
Learning Process

[(AT R LTSI O | AN TSR 141

Teacher’s Perceptions and Readiness to Teach Coding Skills: A Comparative Study between China, Finland
and Singapore

Chee-kit LOOI, Jari MULTISILTA, Longkai WU, Pauliina TUOMIcccoiiiiiiiiiiiiineeecee, 147
Short Paper

“It Opens Up a New Way of Thinking, but...”: Implications from Pre-Service Teachers’ Introduction to
Computational Thinking

Yu-hui CHANG, Lana PETERSONccoiiiiiiiiceieesee e 153

The Readiness of Computational Thinking Education in Taiwan: Perspectives from the K-12 Principals in
2017

TING-CRIA HSU ...t b bbb nr e n e 157
Two Studies of Perceived and In-Situ Readiness for Implementing the Computing Education in Singapore
Longkai WU, Chee-kit LOOI, Meng-leong HOW, Liu LIUccccoviviiiiiiiic e 161
PETARRERFELLAFPREN I NS
R AT T B2 0 PR 165
T E N R ROT kAL S LB
FUE F 0 FEFS 0 BT 0 58 TH it 169

B 73 24 Code.org i ¥ L AT F (748 2 2dF 3

ZITHF > AT 5 2 BRI E bbbt bbbttt 173
Poster
Designing Computational Thinking Assessment: A Case Study of a Pre-Service Teacher Course in Korea
Mi Song KIM, Hyungshin CHO........cooiiiiiiiee e 177

Which Parts of Computer Science Concepts Do Future Teachers Identify? First Results of a Part-Whole-
Thinking Analysis in Computer Science Education

Nils PANCRATZ, Ira DIETHELMooiiiiiiiee ettt 179
GENERAL SUBMISSION TO COMPUTATIONAL THINKING EDUCATION.......c.cccoveiviiieiene 181
Full Paper

Developing a Framework for Computational Thinking from a Disciplinary Perspective

Joyce MALYN-SMITH, Irene A. LEE, Fred MARTIN, Shuchi GROVER, Michael A. EVANS, Sarita
o I 182

Poster
Virtuality Literacy: On the Representation of Perception
ANAIEAS DENGELocviiiiiceicite ettt et sttt st et e te e s tesaees e e besaeesaesteeneestnnreensenneas 187

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

A Complementary View for Better Understanding the Term Computational

Thinking

Marc JANSEN??, Dan KOHEN-VACS?3, Nuno OTERO?4, Marcelo MILRAD?
L University of Applied Sciences Ruhr West, Bottrop, Germany
2 inneaus University, Véxjo, Sweden
3Holon Institute of Technology (HIT), Holon, Israel
4 Instituto Universitario de Lishoa (ISCTE-IUL), Lisboa, Portugal
marc.jansen@hs-ruhrwest.de, dan.kohen@Inu.se, nuno.otero@Inu.se, marcelo.milrad@Inu.se

ABSTRACT

The term Computational Thinking is closely related to
efforts connected to teach a systematic and well-structured
way of problem solving that includes a set of tools and
techniques used in Computer Science. While substantial
research in this field has shown promising outcomes
concerning distinct intervention programs and teaching
initiatives, the term Computational Thinking itself requires
to be revised in order to get a wider consensus about its
meaning and purpose. This paper contributes to the ongoing
quest concerning the definition of the term by starting with
a fundamental perspective on computational theory and
corresponding concepts in order to describe the theoretical
building blocks of a systematic view to further elaborate on
an approach for teaching and learning about Computational
Thinking. Additionally, based on this foundational effort,
more advanced concepts are presented and discussed in
order to better understand this domain. Finally, the paper
identifies and discusses a set of relevant challenges taking a
cognitive psychology perspective on Computational
Thinking.

KEYWORDS

Computational Thinking, 21st century skills, computability,
cognitive psychology, knowledge transfer, multiple
external representations.

1. INTRODUCTION

Many developed countries are experiencing significant
changes concerning organizational structures, work
processes and daily routines. Technological innovations
impact daily practices regarding the ways people socialize,
work and administrate their activities (Kulkarni, 2017).
Many of these changes have been enabled and are supported
by new Information and Communication Technologies
(ICT) (Horizon Report, 2017). The demands that this
changing societal context pose are being reflected in new
educational programs that aim at offering students an
updated set of skills identified as crucial for the 21th century
(Trilling & Fadel, 2009). In fact, competences concerning
critical thinking as well as problem solving are seen as
central in contrast to other competences often considered
less useful to cope with the fast pace of current changes.
Some researchers suggest that the, acquisition of these skills
should be provided in authentic settings (Doleck et al.,
2017), where technologically supported creative

collaborative activities are proposed (Kong, 2014; Mishra
etal., 2013).

In line with these developments, computer and learning
scientists have been proposing that these skills can be
fostered through educational programs involving computer
programming and miming how computer scientists
approach problem solving (Wing, 2014), including the
expression of a solution in a computer solvable way. The
term Computational Thinking (CT) has emerged to reflect
this particular view on this topic. However, although the
term is widely used, it requires to be revised in order to get
a wider consensus about its meaning and purpose within the
scientific community (Selby & Wollard, 2014).

This paper starts with a section describing the state of the
art, after which we reflect on the term CT from a computer
science theory perspective. We do so in order to identify the
basic building blocks that allow problems to be framed and
solved computationally. Thereafter, the next section
discusses more advanced computer science topics related to
CT. Concrete examples are shown and discussed in order to
elaborate on the proposed ideas. We proceed by discussing
the core ideas presented in the paper in order to widen the
definition of Computational Thinking. Finally, we proceed
by identifying and describing a set of relevant challenges
for CT teaching and learning from a cognitive psychology
perspective. We conclude the paper with a section providing
an outlook describing our future efforts.

2. STATE OF THE ART

The benefits of computer programming for students’
cognitive development have been explored and are well
recognized. Clements & Gullo (1984), foresaw the
important role of ICT in daily routines. They also examined
the effects of computer programming on children while
indicating on advantages in terms of development of
cognitive skills (Papert, 1980). Additional approaches that
would nowadays be gathered under the term CT have been
made way before the definition of the term itself (Brennan,
2012; Resnick et al., 1998).

In addition, the benefits of computer programming were
also recognized in terms of its potentials to foster creativity
and meta-cognitive skills exercised as part of development
tasks. More than 30 years ago, Pea & Kurland (1984)
published the results of their research exploring aspects that
are crucial for incorporating computer programming in
educational studies. They pointed over challenges while
expressing their concern about practicing such skill among

mailto:marc.jansen@hs-ruhrwest.de
mailto:dan.kohen@lnu.se
mailto:nuno.otero@lnu.se
mailto:marcelo.milrad@lnu.se

young ages. They also addressed goal definitions aligned to
the requirements and knowledge that are needed prior and
during the development of cognitive skills supported by
computer languages. Additionally, they investigated the
benefits of such skills in the light of individual work versus
collaborative one.

As implied, nowadays, our daily routines are
technologically enhanced in a way that emphasize the
important role of programming as a tool to aid structured
thinking processes as well as a tool for the implementation
of solutions based on ICT. Consequently, Computational
Thinking as an innovative approach for solving problems is
increasingly recognized and incorporated in educational
programs that need to be implemented across different
subject matters and levels (Kong, 2014). This solution could
be conceptualized and formulated in the form of a computer
program expressing logical procedures towards a refined
solution. CT offers the opportunity to exercise a generic and
iterative process consisting of three steps. In the first step,
students are provided with an educational opportunity to
identify and formulate a problem or challenge on an abstract
level. Thus, students can formulate the problem in a more
generalized (and at the same time easier) way and try to
solve this more general problem first. During the second
phase, they can continue and express a possible solution to
it. Finally and in the third phase, this solution is executed
and evaluated as a part of the iteration enabling continues
refinement aspiring to optimized problem definition
adapted with best solution.

Often, learning environments and activities guided by the
ideas behind Computational Thinking incorporate
motivational tools like robots (Bers et al., 2014) in order to
increase students” motivation to work in a structured way
and to provide procedures that support the solution of a
given problem. Although Computational Thinking could be
applied already to very early ages, significant efforts have
also been undertaken in relation to older students, which
have been proven successful also (Grover and Pea, 2013;
Touretzky et al., 2013).

Nevertheless, as Selby & Wollard (2014) have described,
the term Computational Thinking has several different
connotations and it is used throughout literature in very
different ways. Those different ways basically differ in the
understanding of CT in terms of the definition of thinking,
problem solving, computer science and imitation.
Therefore, this paper makes an attempt to provide a distinct
and complementary perspective to CT, based on
computational theory. Starting from computational theory
concepts, we move on by taking a step forward to more
advanced topics that derive from the field of programming,
based on the theory mentioned above.

3. THEORETICAL BACKGROUND

As already indicated earlier in the paper, one interpretation
of the term “Computational Thinking” is that it refers to
solving computational problems in the way computers do.
In order to define what these kinds of problems are, it is
worth looking to the definition of Alan Turing about
computability (Turing, 1937). While Gddel (1931) already
proved that there are theories in every axiom system that are

not provable, and therefore not computational, Turing
proposed a formal definition of computational theorems by
the definition of the Turing Computable Functions also
referred to as Turing complete functions. Here, Turing
Complete Functions, are functions that could be solved by
a Turing Machine. According to the Church’s theorem
(Turing, 1939) the set of naive computable functions equals
the set of Turing Computable Functions. Therefore, it could
be said that every problem that is solvable, could be solved
by a Turing Machine. Hence, one complementary
perspective to the existing one on CT could be to have a
look at the mechanisms that are used by Turing Machines
and other approaches to computability in order to solve
those kinds of problems. Especially, the theory of p-
recursive functions, loop-, while- and goto-computability
are those under consideration. Analyzing these fundamental
theories of computational functions, it shows that there are
a couple of concepts necessary in order to address and tackle
problems that are solvable by computers:

e conditions - as in Turing Machines in the form of
the transition function

e loops - as in loop- and while-computable functions

e goto / subroutines - as in goto-computable
functions

e recursion - as in p-recursive

The following subsections will provide a short overview on
the implications that the different concepts might have for
teaching and learning Computational Thinking.

3.1. Conditions

Conditions basically allow for the distinction of cases.
Usually also referred to as if-this-then-that (IFTTT),
conditions allow to treat different states of a (sub)problem
differently. States are usually expressed / modelled in the
form of Boolean expressions. Often, those conditions also
have an else part, that is executed if a certain Boolean
expression does not hold. It could easily be shown, that the
existence of an else part does not yield to more functions
that are computable. A simple example for a condition that
checks if a given number is even could be implemented in
Scratch as shown in Figure 1. Scratch will be our visual
programming language of choice for the remaining
examples also, since we believe that it is widely accepted
and at the same time easy enough to understand even if the
reader does not have any pre-knowledge here.

£+l The provided number is even

m The provided number is not e\-en!l

g)
Figure 1. A simple condition in a visual programming language.

Interestingly, the way to model computer programs as a set
of IFTTT expressions lately became more and more
prominent, e.g., in the field of the Internet-of-Things (1oT)
and / or blockchain based technologies. Both examples
provide highly up to date questions, in which a large number
of scenarios could be implemented based on simple IFTTT

conditions. This underlines the importance and power of
this kind of modelling.

3.2. Loops

Loops are a means for repeating a certain task. Usually, two
different types of loops are used in computational theory:
count controlled loops (in which a certain task is executed
defined times) and condition-controlled loops (in which the
task is executed as long as a certain condition holds). It
could easily be shown that count controlled loops could be
expressed also as case-controlled loops, but not the other
way around. Therefore, it could be said that the concept of
case-controlled loops is richer than the concept of count
controlled loops. Nevertheless, count controlled loops are
often easier to understand since counting is a very basic
task, while conditions are a bit trickier.

An easy to implement example based on a count-controlled
loop is the Fibonacci number. A Scratch based
implementation might look similar to the block shown in
Figure 2.

define fibonacci numberl

numberl >

numberl - @B

add | item B3P of stack 4+ item length of stack -) of stack to stack

Figure 2. A count controlled loop in a visual programming
language.

3.3. Goto / subroutines

Another class (equivalent to the condition-controlled loops)
are Goto Computable Functions. Goto constructs basically
allow to jump to certain parts of a program, while in contrast
Turing Machines need to work sequentially through their
memory. Although, as said before, the class of Goto
Computable Functions are equivalent to the class of
functions that can be computed with condition-controlled
loops, the concept is worth noticing, because it provides a
first way for implementing subroutines. Historically, this
could best be seen in languages like Basic, which
introduced (at least in some dialects) an additional keyword
gosub (beside Goto) in order to allow for subroutines in
Basic programs.

Subroutines are usually used in order to allow a re-use of
the implemented functionality. Taking the example from
above for checking if a given number is even or not, a
subroutine that could be re-used could be implemented as
new block in Scratch as shown in Figure 3.

numberl mod 3 = I

The provided number is even!

m The provided numbar i not euen!'

J

Figure 3. A subroutine defined as a block in a visual
programming language.

3.4. Recursion
Finally, after discussing that conditions and loops are the
basic control structures of computational functions, another

mechanism also needs to be discussed. Although recursion
is at first a mathematical mechanism used for functions that
call themselves, it could also be used as a control structure
since it influences order commands executed by a program.
Beside this, it is a very powerful mechanism to describe
some mathematical functions, e.g., the famous Fibonacci
number. It could be shown that the class of primitive
recursive functions is equivalent to the class of functions
computable by count-controlled loops, which especially
means that every primitive recursive function could also be
expressed as a count-controlled loop. Taking up the
example of the Fibonacci numbers based on a count-
controlled loops as shown in 2, the corresponding
implementation based on recursion looks like presented in
Figure 4.

define fibonacci numberl

’ddu stack

fibonacci [numberl |-}

add | item 8D of stack 4+ item| length of stack - of stack | to stack

]
Figure 4. A recursive function implemented in a visual
programming language.

Here, an interesting task from a CT perspective could be to
switch the representation of simple functions from their
recursive representation to a solution based on a count-
controlled loop and vice-versa, in order to foster the
understanding of both concepts. It is further known that the
class of p-recursive functions is equivalent to the class of
function computable by condition-controlled loops.

As mentioned at the beginning of this section, the concepts
presented here can be seen as the building blocks for
enabling to frame a complementary way to solve problems
from a computational perspective. Therefore, in contrast to
more traditional views to CT that take a standpoint from
social and behavioral sciences our approach results from a
computational theory perspective. This proposed view aims
to expand the current definition of CT by bringing central
ideas and views based on this theory. In other words, the
concepts discussed here are the fundamental tools that allow
computer scientists think with in order to frame problems
and explore solutions (and the fact that computational
approaches are being used in very different domains with
success supports its value). One of the key ideas behind CT
is that this specific way of framing problems can be
introduced to learners from an early stage and as such it has
the potential to enhance their problem-solving skills in a
variety of domains. The next section further elaborates on
other useful concepts that extend this perspective.

4. MORE ADVANCED TOPICS BASED
ON THE DESCRIBED THEORY

In the previous section, we presented stepping stones
enabling the framing for solving problems taking a
computational theory perspective. In this section, we go
beyond the stepping stones referred to in the previous
section and present a set of additional concepts to be offered
to learners as tools applicable for their reasoning process on
problems. More specifically, the more advanced topics that
will be discussed are Object Orientation, Frameworks and

Design Patterns. The presentation and discussion of these
ideas are illustrated through the implementation of an
algorithm known as bubble sort capable of sorting a set of
objects in a given list. The sorting process is achieved
through repeated steps in which a pair of objects are
compared and if necessary swapped. As implied, bubble
sort includes steps that use the concepts previously
introduced including conditions and loops. This particular
example is provided in order to illustrate our particular and
complementary view on CT.

4.1. Object Orientation

In this subsection, we address Object Oriented structures
including their properties and functions built based upon
concepts previously presented. Specifically, we propose to
use them in order to describe objects that may interplay in
cases in which learners aim to solve a given problem.

Here, an object is basically a combination of a data
structure, together with methods operating on the data
structure. Figure 5 shows an object representing a sorter
responsible sort a list of numbers. Figure 5, provides an
example of an Object-Oriented implementation made in
Scratch. In this implementation, we included a method that
gradually sort neighbor pairs of numbers till the list is
completely sorted. In each iteration, a pair of number is
sorted by another function operating according to the swap
principal demonstrates in the previous subsection.

'length of myList - o

itemm of myList < item (my of mylList

replace itamm of mylist with item (r
-

replace item { myCount

of myList with [myTemp

Figure 5. A simple object of a sorter in a visual programming
language.

4.2. Frameworks

Frameworks are referred to an abstraction level in a way that
enables to provide generic functionality that could be
altered, deployed, implemented and reused to satisfy
specific aspects of a problem. When discussing frameworks
in the context of programming, this may include various
components including libraries, compilers and APIs
consolidated in order to enable development of complete
systems. In our case, a sorter algorithm could be offered as
a generic framework which represents a service
implementable in systems requiring such kind of
functionality.

4.3. Design Patterns

Design patterns represent general and reusable problem
solution pairs for commonly occurring problems. The
notion of sorting strategies in the light of Design Patterns

has been discussed by Nguyen & Wong (2001), while
indicating on best ways to apply different strategies for
sorting challenges. They specifically addressed different
aspects of a typical sorting challenge including the interplay
between involved objects, the selection of an optimized
solution for sorting and ways to visualize the result of this
sorting. They emphasized on the Model-view—controller
(MVC) pattern enabling a separation of concerns between
models (data to be sorted and the sorting algorithm itself),
views (presentation layer for presenting the solution of a
sort algorithm) and controller (logic layer responsible for
connecting the model and the view).

In the last two sections, we present our perspective
addressing various and central concepts later elaborated
through advanced topics reflecting additional tools and
techniques used in Computer Science. In the next section,
we elaborate on the challenges related to cognitive
perspectives on Computational Thinking. These ideas take
into consideration the fact that CT approaches need to be
implemented across different levels and subject matters.

5. CHALLENGES FROM A COGNITIVE

PSYCHOLOGY PERSPECTIVE

We need to be aware that empirical evidence clearly
showing the connection between learning how to program
and improving reasoning and analytical skills is still scarce
(see for example, Pea & Kurland, 1984, or Salomon &
Perkins, 1987, for detailed reviews concerning the previous
efforts on psychology of programming). Although CT goes
beyond teaching how to program we must take on board the
issues raised and incorporate these in a research program.
Although revisiting all these topics is beyond the scope of
this paper, when considering the teaching of a particular
subject matter, a cognitive psychology perspective needs to
account for two basic interconnected issues: what to teach
at distinct stages of human development and how to teach
it. However, the teaching of Computational Thinking poses
particular challenges because it is not only a subject matter
per se but it is intended to be a thinking tool that allows a
distinct way to frame and tackle problems emerging from
different disciplines. In other words, it is close to what has
been termed as a transdisciplinary effort.

In relation to the concepts to teach and its suitability in
relation to the different stages of human development, we
have identified two main challenges:

1) Identify suitable and meaningful problems to the
age group, enabling the introduction of the main
concepts at an early stage and be able to iteratively
refine them with increased levels of complexity.

2) Find appropriate ways to ensure transfer of
knowledge between domain areas that utilized
concepts from computational thinking.

Regarding the identification of suitable and meaningful
problems for a certain age group, this stance clearly aligns
itself with the early proposals by Bruner (1960) and Papert
(1980) that rejected closed notions of development stages,
considering that such approaches might miss the
opportunity to introduce concepts at early stages and be able
to leverage from it (see for example, Bruner, 1960; Papert,

1980; Pea & Kurland, 1984, Resnick, 1984; Resnick et al.,
1998). Actually, current experiences with spiral approaches
to programming curriculum development suggest that this
is indeed possible (Armoni, Meerbaum-Salant & Ben-Avri,
2015). In relation to the problem of ensuring efficient
transfer of knowledge, this is indeed an old question with
distinct theories and conceptual approaches being proposed
(a proper review of the theme is beyond the scope of this
paper, however, see for example, Bransford & Schwartz,
1999) but CT might be, in fact, an enabler since it provides
the necessary conceptual tools for connecting across
domains. Nevertheless, a successful knowledge transfer
approach for CT will need to include the following aspects:
a) encourage the use of analogies so that the learners are
stimulated to explore potential connections between subject
matters, b) avoid excessive focus on the contextualization
of problems so that learners are not submerged on detail and
fail to abstract, and c) provide the necessary tools that
facilitate abstraction in relation to the core concepts of
computation.

Two other crucial aspects concern how to teach the different
concepts and which tools seem suitable to support this
process. In our perspective, the teaching of computational
thinking needs to be closely tied to the learning activity of
modelling distinct phenomena. Encouraging students to
construct models of different phenomena is a well-
established educational activity (see for example, Milrad,
Spector & Davidsen, 2002 and Pinkwart, 2005). However,
models can be of very distinct types, from qualitative to
quantitative, using graphical/pictorial symbolisms and/or
formal notations. From a psychological perspective, there is
an ongoing debate regarding the way the distinct types of
models can and should be integrated, not only in relation to
the age group of the learner but also to the actual stage of
problem comprehension. Considering the different notion
involving computational thinking we need to assume that at
some point learners will need to specify the model in such
a way that it is amenable to computing. Thus, we believe, it
requires some fair degree of formalization and such will
need to be in line with the cognitive skills of the learners.
Relevant questions that can be posed are then:

What are the appropriate levels of formalization for the
models considering the age group, cognitive skills and
previous knowledge of the learners?

How to ensure that the increasing levels of formalisms
sophistication are clearly followed through by learners (in
other words, do the learners understand the connections
between the distinct formalisms)?

In fact, the aspect concerning learners' understanding of the
distinct levels of formalisms sophistication also connects
with the notion of using multiple external representations to
foster the learning of computational thinking. The
transdisciplinary nature of computational thinking themes
clearly suggests the use of a varied range of external
representations (some connected with computational
concepts and some connected with the particular domains
under scrutiny). But as previous research pointed out being
able to establish the connections between distinct external
representations is far from trivial (Ainsworth, 1999;
Ainsworth & Van Labeke, 2004). Research needs to

account on how different external representations combine,
looking for synergies and clearly justify cost/benefits of
using them. Nevertheless, multiple external representations
can support deeper understanding by promoting processes
such as abstraction, extension or generalization of
knowledge especially if efficient highlighting of the links
between different representations is in place. Finally, the
evaluation of computational thinking approaches need to
consider not only the outcomes of learning events but also
the processes. Relevant questions are: a) How to capture the
learners’ skills regarding the transfer of knowledge? b) How
to capture and understand learners’ representational skills in
different educational contexts? c) What methods are
particularly suited to account for a) and b) at distinct stages
of human development?

6. OUTLOOK AND FUTURE WORK

This paper revisited the core concepts of computational
theory and how these are related to the notion of CT. By
doing so, we contributed to the clarification of the ongoing
discussion around the term "Computational Thinking".
While most common definitions result from an elaboration
that takes social and behavioral sciences as a point of
departure, we have used a computer science theory view
and added a cognitive psychology perspective afterwards.
In some sense, this might help us to re-focus on the
fundamental concepts to be taught from a subject matter
perspective. Then, we can identify, based on existing
literature and empirical evidence produced, how to teach
these. Additionally, we provided concrete computationally
relevant instantiations of the concepts discussed in section
3 including conditions, loops, goto/subroutines and
recursion. In this respect, we also addressed more advanced
topics including Object Orientation, Frameworks and
Design-Pattern.

The issues that have emerged from our reflections regarding
these themes lead us to consider the following key broad
steps: (a) identify the topics in distinct subject matters that
are particularly suitable to be included in an initial
curriculum sketch that implements the core computational
concepts we referred to. This task should be carried out in
close collaboration with experts in distinct subject matters
and teachers of learners in different key stages; (b) reflect
and create a pedagogical approach that takes into
consideration the different issues stated as challenges from
a psychological perspective and provide solid empirical
evidence. In relation to relevant empirical studies we are
considering starting with issues related to knowledge
transfer and the use of different representations to support
it; (c) design an intervention in order to evaluate how a
pedagogical approach can be successfully implemented in
an authentic context; and (d) implement a comparative
evaluation study that will endeavor to clarify the putative
benefits of the approach and contribute with empirical data
to facilitate further refinements. Focusing on the subjects of
Mathematics, Natural Science and Technology in grades 4-
9, we are currently exploring and validating the ideas
described in this paper in our ongoing projects with
elementary school in- service teachers.

Acknowledgement
The work reported in this paper was partially funded by the
EU project eCraft2Learn (Grant Agreement no. 731345).

7. REFERENCES

Ainsworth, S. (1999a). A functional taxonomy of multiple
representations. Computers and Education, 33(2-3),
131-152.

Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of
dynamic representation. Learning and Instruction, 14(3),
241-255.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015).
From Scratch to “Real” Programming. Trans. Comput.
Educ., 14(4), 25:1-25:15.

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D.
C., & Marshall, K. S. (2011, March). Recognizing
computational thinking patterns. In Proceedings of the
42nd ACM technical symposium on Computer science
education (pp. 245-250). ACM.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.
(2014). Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum.
Computers and Education, 72(C), 145-157.
http://doi.org/10.1016/j.compedu.2013.10.020

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking
transfer: A simple proposal with multiple implications.
Rev Res Educ, 24, 61-100.

Brennan, K., of, M. R. O. T. 2. A. M., 2012. (n.d.). New
frameworks for studying and assessing the development
of computational thinking. Scratched.Gse.Harvard.Edu.

Bruner, J. S. (1960). The Process of education Cambridge,
Mass.: Harvard University Press..

Clements, D. H., & Gullo, D. F. (1984). Effects of
computer programming on young children's cognition.
Journal of educational psychology, 76(6), 1051.

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., &
Basnet, R. B. (2017). Algorithmic thinking,
cooperativity, creativity, critical thinking, and problem
solving: exploring the relationship between
computational thinking skills and academic performance.
Journal of Computers in Education, 4(4), 355-369.

Godel, K. (1931). U ber formal unentscheidbare Séatze der
Principia Mathematica und verwandter Systeme |I.
Monatshefte flir Mathematik und Physik, Band: 38,
Nummer: 1, 173-198.

Grover, S., Pea, R. (2013). Computational Thinking in
K12 A Review of the State of the Field. Educational
Researcher 42(1), 38-43

Horizon report, (2017). Retrieved from
http://cdn.nmc.org/media/2017-nmc-horizon-report-he-
EN.pdf

Kong, S. C. (2014). Developing information literacy and
critical thinking skills through domain knowledge
learning in digital classrooms: An experience of
practicing flipped classroom strategy. Computers &
Education, 78, 160-173.

Kulkarni, C. (2017, January 3). 15 Trends Every Business
Leader Should Watch in 2017. Retrieved January 01,
2018, from http://fortune.com/2017/01/03/2017-tech-
trends/

Milrad, M., Spector, J. M., & Davidsen, P. I. (2002).
Model Facilitated Learning. Learning and Teaching with
Technology: Principles and Practices (pp. 13-27).
London, UK and Sterling, VA, USA: Kogan Page
Publishers, UK.

Mishra, P., Yadav, A., & Deep-Play Research Group.
(2013). Rethinking technology & creativity in the 21st
century. TechTrends, 57(3), 10-14.

Nguyen, D., & Wong, S. B. (2001). Design patterns for
sorting (Vol. 33, No. 1, pp. 263-267). ACM.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York: Basic Books.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive
effects of learning computer programming. New ideas in
psychology, 2(2), 137-168.

Pinkwart, N. (2005). Collaborative modeling in graph
based environments (pp. I-VIII). University of Duisburg-
Essen, Germany.

Resnick, M. (1994). Turtles, Termites, and Traffic
Jams.Cambridge, MA: MIT Press.

Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella,
V., Kramer, K., & Silverman, B. (1998). Digital
Manipulatives - New Toys to Think With. Chi, 281-287.
http://doi.org/10.1145/274644.274684

Selby, C. & Wollard, J. (2014). Refining an understanding
of computational thinking. Retrieved 01, 08, 2018 from
http://eprints.soton.ac.uk/id/eprint/372410

Touretzky, D. S., Marghitu, D., Ludi, S., Bernstein, D., &
Ni, L. (2013). Accelerating K-12 computational thinking
using scaffolding, staging, and abstraction. Sigcse, 609.
http://doi.org/10.1145/2445196.2445374

Trilling, B., & Fadel, C. (2009). 21st century skills:
Learning for life in our times. John Wiley & Sons.
Turing, A.M. (1937). On Computable Numbers, with an

Application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society. Vol 42, 230-265.

Turing, A.M. (1939). Systems of Logic Based on Ordinals.
Princeton University. p. 8.

Wing, J. (2014). Computational thinking benefits society.
40th Anniversary Blog of Social Issues in Computing,
2014.

http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf
http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf
http://cdn.nmc.org/media/2017-nmc-horizon-report-he-EN.pdf
http://eprints.soton.ac.uk/id/eprint/372410
http://eprints.soton.ac.uk/id/eprint/372410
https://webspace.princeton.edu/users/jedwards/Turing%20Centennial%202012/Mudd%20Archive%20files/12285_AC100_Turing_1938.pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

The Use of Computational Thinking Concepts in Early Primary School

Ivica BOTICKIY", Danica PIVALICA!, Peter SEOW?
! Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
2 National Institute of Education, Nanyang Technological University, Singapore
ivica.boticki@fer.hr, danica.pivalica@fer.hr, peter.seow@nie.edu.sg

ABSTRACT

This paper presents a study on the use of computational
thinking (CT) in early primary school. First grade primary
school students were using a custom designed CT tool as
part of their school lessons. The tool allowed for designing
and delivering digital tasks with CT content coming from
three subject areas with the goal of finding out how well
students complete such tasks. The tasks were aligned with
course contents and the curriculum and required students to
choose, set or order CT primitives in an adequate way. The
tool allowed for automated task solution evaluation in form
of animations and visualizations reflecting the exact steps
chosen by the students and prompting them to revise their
choice if needed. The analysis of students’ task completion
process reveals that CT tasks including object properties and
problems with loops were the most demanding, and that
prior mathematics and reading skills impact early primary
students’ CT task completion performance across school
subjects.

KEYWORDS

computational thinking, mobile learning, early primary school,
student performance, mathematics

1. INTRODUCTION

Mindstorms is a book written by Seymour Papert in which
he argues for the benefits of teaching computer literacy
(Papert, 1983). It was in this book that the term
computational thinking (CT) was coined and since then
modern CT initiatives have become the subject of worldwide
attention. Due to the profound transformation of today’s
society sparked by the rapid progress of digital technology,
many educators and leaders started becoming interested in
incorporating CT into education.

Even though CT has a rich history, its broader recognition
began in 2006 with an essay by Jeannette Wing (Wing,
2006) in which she revived the previously coined CT phrase.
CT was described as a general-purpose thinking tool which
builds on natural and artificial information processes, and is
about acknowledging limits in available resources, reducing
problems to smaller parts, abstracting information and
choosing appropriate problem and (or) solution
representations. A few years later, the Cuny-Synder-Wing
definition was proposed describing CT as “the thought
processes involved in formulating problems and their
solutions so that the solutions are represented in a form that
can be effectively carried out by an information-processing
agent” (Wing, 2010).

Brennan and Resnick (Brennan & Resnick, 2012) argue
there are three dimensions of CT: computational concepts,

computational practices and computational perspectives.
Computational concepts are congruent with the fundamental
concepts of programming languages. Computational
practices refer to practices developed during CT activities
while computational perspectives show in what way has
learner’s viewpoint changed after engaging in CT activities.

Regardless of CT receiving considerable attention
nowadays, there is little agreement on how it should be
integrated and used in primary and secondary education.
This paper aims at discussing the use of key CT concepts as
proposed within Brennan and Resnick’s framework
(Brennan & Resnick, 2012) with young primary school
learners, with a special emphasis on the computational
concepts dimension. A custom CT tool for early primary
school learners along with the accompanying CT tasks
covering the subject area of Mathematics, Science and
Croatian language is proposed. This study examines how
early primary school students completed CT tasks which
include a variety of CT concepts and which were designed
to cover the three subjects’ contents.

2. COMPUTATIONAL THINKING

CONCEPTS

Some researchers have adopted an assessment approach to
evaluating computational thinking through code generated
by students. Brennan and Resnick proposed that students’
computational thinking competencies can be assessed
through how they engage with computational concepts
found in Scratch programming environment. The
computational concepts are sequences, loops, parallelism,
data, events, and conditionals (Brennan & Resnick, 2012).
These computational concepts convey relevant vocabularies
and notations to be used to describe computational processes
such as ordering a list or how to do multiplication (Lu &
Fletcher, 2009). For example, multiplication can be
described as the number of loop iterations needed to add up
the same number.

Students use computational concepts to develop projects
such as stories, animations, games, tutorials and musical
instruments through programming (Resnick et al., 2009;
Ruthmann, Heines, & Greher, 2010). Based on this,
Moreno-Le6n and his colleagues developed Dr Scratch to
give feedback on different dimensions of computational
thinking competency to teachers and students in their
Scratch projects. The dimensions measured are abstraction,
logical thinking, parallelism, data representation and
algorithmic sequencing (Roman-Gonzélez, Pérez-Gonzalez,
& Jiménez-Fernandez, 2017).

Table 1. CT tasks organized into five CT task groups. Each task covers one or two school subjects and up to several CT concepts.

Group Task number in School subjects CT concepts
number group
1 1 Croatian language, Sequence, algorithm, recognition and
Science removal of unnecessary steps
2 Croatian language, Sequence
Science
3 Croatian language, Sequence, algorithm
Science
4 Croatian language Sequence, algorithm
5 Croatian language Sequence
2 1 Object and its properties (sparrow)
2 Object and its properties (frog)
3 Science Obiject and its properties (bat)
4 Obiject and its properties (hedgehog)
5 Object and its properties (rabbit)
6 Sequence, object and its properties
3 1-4 Problem task

Mathematics

(selecting steps of a path)

5-8 Croatian language Problem task
guage, (selecting the right steps of a path and
Mathematics : i
identifying the correct goal)
9-10 Croatian language Problem task with loops (selecting the
Mathematics right steps of a path and identifying the
correct goal)
4 1-8 Mathematics Problem task (numbers 1-10)
5 1-3 Mathematics Problem task (numbers 11-19)
4-7 Mathematics Problem task with loop
(numbers 11-19)
8 Problem task with combining two loops

Mathematics

(numbers 11-19)

This study focuses on the computational concepts CT
dimension and examines several CT concepts implemented
as CT Mathematics, Science and Croatian language subject
tasks. Table 1 shows five groups of CT tasks which are
aligned with the school subjects. By building on the
presented state-of-the-art research in the field, a CT tool in
form of a scaffolded environment with visualization and
animation feedback on the proposed CT task solutions is
designed, implemented and examined in early primary
school contexts.

3. METHODS AND TOOLS

The study was conducted on a sample of 23 primary first
grade students 7 to 8 years old, who study in a neighborhood
primary school in Croatia. There were 12 female and 11
male students in this study. The study included five groups
of computational thinking tasks (Table 1) and was carried
out within the period of two months (May-June 2017), with
each task group taking place on a single day and taking 2-3
hours of direct student time. Each student was using an
individual tablet of his or her choice (an Android, iOS or
Windows tablet) to complete the tasks.

Multiple tasks per group were designed with the help of the
class teacher, so that they relate to the courses taught in first
grade of Croatian primary schools and make use more
contextualized and meaningful to the students.

To scaffold task delivery and collect usage data, a CT tool
in form of a block-based visual environment in which
students drag-and-drop blocks into a scripting pane to build
a solution was designed. Such an environment is inspired by
similar research targeting young children (Wilson & Moffat,
2010) and should reduce the efforts and challenges of
learning programming and the underlying computational
concepts such as sequence or objects. The tool included a
narrative in form of a virtual character named Matko the
robot, guiding students in the CT tool usage.

EEEE cesivom

- o0

e P
Dodaj bradno

-

Dodaj sol

p— —

Stavi tijesto peéi na 30 minuta

Umijesi tijesto

Figure 1. Left hand side: user interface of the CT tool
presented in this study; right side: enlarged toolbox - an
extraneous element not to be used in completing the task

(in red color).

The tool was built on top of Blockly.js framework and its
user interface is composed of the following elements: the
toolbox (the surface with blocks available for use in the

current task), the working area (the surface on which
students provide the solution), control button for starting the
current task evaluation process, control button for deleting
all blocks on the working area and the control button for
displaying or hiding the current CT task text (Figure 1, left-
hand side, blue button).

Since the participants were young and English was not their
mother tongue, the tool interfaces were developed in
Croatian language. Each student task attempt as well as the
sequence of steps undertaken in solving a task were recorded
(logged) (i.e. types of blocks she used, how did she connect
them, when did she use them etc).

4. USING THE COMPUTATIONAL

THINKING TOOL

The CT tool designed as part of this study is typically used
by engaging in these steps: (1) the identification of suitable
computational primitives from the toolbox, (2) placement
and sequencing of the primitives onto the working area, (3)
starting the solution evaluation via the control button, (4)
examining the evaluation (visualization or animation)
provided by the system, (5) modifying the primitives choice
via the control buttons and (6) using the control buttons to
open the next task (Figure 2).

Open the next
task

Successful
evaluation
Identify suitable Place primitives onto Start the Examine the
CT primitives | the working area evaluation ["1 evaluation
A 2
Modify
placement of [€
primitives Unsuccessful

evaluation

Figure 2. The CT tool usage process.

After a student identifies the suitable primitives in the step
1), and places blocks as part of the solution onto the working
area in the step 2), and presses the control button to start the
evaluation (step 3)), the tool automatically evaluates all
student actions and data and provides feedback information
about the current solution in form of an animation or
visualization (step 4)) consisting of multiple steps to
represent the chosen sequence of CT primitives.

In the first task group (see Table 1 for all task groups and the
corresponding CT tasks), students were given sets of steps
of certain well known algorithms, such as the recipe for
making bread, as CT primitives, and were asked to place
them in order. Some tasks had extraneous steps listed, which
students needed to recognize and eliminate from their final
solution (Figure 1, right-hand side). Once CT primitives are
chosen and sequenced, the animation or visualization is run
to represent the solution proposed by the student (Figure 3).
It is to be noted that in the case of an incorrect step choice or
sequencing done by the student, the displayed animation will
reflect the incorrect choice (i.e. recipe/algorithm for making
bread will intentionally be displayed in the wrong sequence
and an indication to students will be given — right hand side
of Figure 7).

Dodaj vodu

Figure 3. An animation displayed to a student
following the choice of primitives and their placement and
sequencing on the working area (task group 1 — recipe for

making bread task).

Each task from the second task group had a dedicated animal
well known to the students. To correctly solve a task,
students needed to recognize which properties belong to an
animal set in the task, for instance how many legs a frog has.
In this task group, following a student primitives choice,
animal properties are visualized step by step (Figure 4) in
the central working area, prompting students to examine and
reiterate their initial object property choice if needed.

Figure 4. Choosing animal properties within an animal
frog object representation (left hand side). A visualization
displayed to a student following the choice of primitives on
the working area (task group 2 — legs and feathers as
incorrectly chosen properties of a frog).

Zaba
Brojnogu ,
Dom: L

 Posebnost zimi:

To correctly complete a task from the third task group,
students needed to define the path a bunny should use to get
to the goal. In this task group, feedback provided to the
students, after they submitted their task solution, consists of
an animated bunny traversing the map according to the
primitives sequence provided by the student (Figure 5).
Some of the tasks from the third task group had multiple
goals drawn, and the students needed to distinguish which
goal should their bunny reach based on the supplied task
text. The text specified whether the goal was the
largest/smallest or left/right in relation to their bunny on the
displayed map, which students needed to read, comprehend
and apply in their solution.

The fourth and fifth task groups consisted of mathematics
tasks where the students were given a start value and asked
to supply the correct sequence of steps corresponding to
adding or subtracting the pre-selected numbers to reach the
correct end solution. Although in this task group the students
needed to reach the correct solution by applying
mathematical formulae, they were required to choose the
right loop CT primitive to reach the final solution. The steps
were selected by choosing the right blocks, where some of

10

the blocks were simple operations (e.g. “Create number 117,
“Add 5”), while the others included repetitions (e.g. “Repeat
two times”). The fourth task group included the addition and
subtraction of numbers from 1 to 10, while the fifth group
included the addition and subtraction of numbers from 10 to
19. In both task groups, animated visual representations of
mathematical equation elements related to each solution step
of the calculation are shown to students (Figure 6). The right
hand side the Figure 6 shows one of the expressions being
calculated (1+1), currently chosen number to be added (+1
in blue color), and the end result (=2 in purple color).

Zeko ide do cilja

Figure 5. An animation displayed to a student
following the choice of primitives and their placement and
sequencing on the working area (task group 3 — guiding a
bunny towards the goal).

Imate jos 3 blok(a).

G=E== e,

Ponovi dva puta

Figure 6. The animation displayed to a student
following the choice of primitives and their placement and
sequencing on the working area (task group 4 and 5 —
assembling a formula and providing its result).

In all task groups, after a solution has been visualized or
animated to a student, a message about its correctness is
shown to the student completing the task (Figure 7). If the
task was solved correctly, student should continue with the
next task should one be available. If the provided solution is
incorrect, student should choose to complete the task again.

Pogreska

foct Ttk e e o
Mo e e

Figure 7. Feedback message after evaluating solution
proposed by a student (left hand side — a correctly
completed task, right hand side — an incorrectly completed
task).

5. ANALYSIS AND RESULTS

The CT tool presented in this paper allowed for detailed data
collection of students’ usage and performance data for each
CT task group and its corresponding subjects and tasks. The
collected data for each student for all five CT task groups
included (1) the time students needed to complete a task, (2)
the total number of attempts for a task, (3) the number of
successful attempts for a task and (4) the number of
unsuccessful attempts for a task (Table 2).

Table 2. Overall statistics of the collected data for all
tasks across all five CT task groups.

Mean SD
Single task completion time (per
student) (seconds) 62.49 19.14
Task completions (attempts per 78 25
student)
Successful task completions 35 12
(attempts per student)
Unsuccessful task completions 43 18
(attempts per student)

The analysis indicates that, on average, students engaged in
a single task for about one minute and, on average completed
more than 70 tasks over the course of all 5 lessons and, on
average, had slightly more unsuccessful attempts than the
successful ones, with the mean success rate being M=0.46
(SD=0.11, N=23). The total time students spent on dealing
with repeated solutions attempts amounted to only around
15% of the overall task completion time.

Table 3 indicates students spent most of time on engaging in
the Science subject and on completing science tasks. What
is more, in the Science subject students had the most
successful and unsuccessful per-task attempts, with the
unsuccessful attempts reaching high value of 2.48 attempts
per task. These figures come with large standard deviation
(SD) values indicating large between-student differences.

On average students spent as much as 243 seconds on
completing CT tasks with object properties and only 68
seconds on completing problem tasks (the time includes all
attempts in completing a single task). The difference is
notable in per-task completion time as well, which is around
two times larger in favor of object properties. The analysis
indicates that the CT concept of object properties had the
largest values of successful and unsuccessful task attempts,
with substantial SD observed. SDs both in the case of object
properties and problem tasks were high.

When solving tasks related to the sequence and object
properties CT concepts a high number of successful and
unsuccessful attempts was exhibited by the students. In the
case of recognition and removal of unnecessary steps CT
concept, SD for the total completion time was extremely
high, indicating large differences in student performance.

11

Table 3. The analysis of total completion time, per task time and the number of successful and unsuccessful attempts for
school subjects and specific CT concepts (time is indicated in seconds).

Total Total Per task Per task Succ. Succ.atte Unsucc. Unsucc.
completion completion completion completion attempts mpts attempts attempts
time (mean) time (SD) time (mean) time (SD) (mean) (SD) (mean) (SD)

Croatian language 143.67 49.46 62.76 23.31 0.99 0.58 0.97 0.43
Mathematics 94.72 49.59 41.79 21.93 0.85 0.38 0.76 0.49
Science 208.19 88.50 65.18 33.49 1.19 0.54 2.48 1.75
Sequence 167.42 78.12 68.34 38.35 1.11 0.97 1.01 0.68
Algorithm 161.60 130.02 70.27 50.11 0.75 0.44 1.00 0.92
Recogn. and rem. 137.46 154.92 53.63 48.24 0.87 0.63 1.17 1.70
of unnec. steps

Object properties 242.57 103.09 69.79 36.93 1.36 0.72 3.25 2.64
Problem task 68.28 62.00 33.76 23.23 0.85 0.35 0.64 0.58
Problem task with 166.48 109.53 63.61 46.86 0.86 0.54 1.09 1.00

loops

In the remainder of the analysis, the time and the number of
successful and unsuccessful attempts were correlated with
the students’ skills in mathematics and the prior reading
difficulty variable to check how student academic
performance relates to their CT task performance. The
teacher was asked to assess students’ knowledge of
mathematics on a scale from 1 to 10 prior to the study onset.
The mean value for all students’ mathematics knowledge
was M=7.91 (SD=1.62). Reading difficulty was indicated by
the teacher in 6 out of 23 students.

The correlation analysis, presented in Table 4, shows that
students with good prior mathematics skills on general take
more time and have more successful attempts in solving
language CT tasks. On the other hand, students with
identified reading difficulty are less successful in language
task. For the Science subject, mathematics skills contribute
to shorter completion time, while the students with reading
difficulty spent more time on Science tasks. Interestingly,
there were no correlations of mathematics and reading skills
with the students” Mathematics subject performance.

In regards to the CT concepts, students with better
mathematics skills are in general more successful in
algorithms and have fewer unsuccessful attempts in solving
problems tasks CT concept tasks. They spend less time on

object properties and problem tasks. Students with reading
difficulty had less successful attempts in algorithm tasks and
take more time in completing object properties and problem
tasks. Surprisingly, students with reading difficulty were
more successful and took less time in problem tasks with
loops, however this result warrants for more research.

6. DISCUSSION

Early primary school children participating in this study
were very enthusiastic about solving computational thinking
tasks and were able to learn how to use the CT tool almost
instantly. Researchers observed that children love the
narrative of a robot named Matko which was the main avatar
in the utilized CT tool. When solving the CT tasks, students
on average failed slightly more times than they were
successful, but they completed the repeated attempts very
quickly and helped each other in the process.

One of the key findings of this study is the identified
relationship between students’ mathematics and language
skills in completing CT tasks. Young primary school
children are just beginning their schooling and some of them
still lack reading and mathematics skills which is found to
affect their performance in the Croatian language and
Science CT tasks.

Table 4. The correlation of school subjects and CT concepts with students’ mathematics skills and reading difficulty.

Subject/CT concept

Mathematics skills

Reading difficulty

Croatian language

Avg. completion time r=0.419*

Num. of successful attempts r=-0.453*

Num. of successful attempts r=0.470*

Science

Tot. completion time r=-0.521*

Tot. completion time r=0.438*

Algorithms

Num. of successful attempts r=0.478*

Num. of successful attempts r=-0.503*

Object properties

Avg. completion time r=-0.501*

Tot. completion time r=0.564**

Tot. completion time r=-0.638**

Problem tasks

Avg. completion time r=-0.461*
Tot. completion time r=-0.547**

Avg. completion time r=0.435*
Tot. completion time r=0.481*

Num. of unsuccessful attempts r=-0.434*

Problem tasks with
loops

Num. of successful attempts r=0.563**

Tot. completion time r=-0.446*
Num. of successful attempts r=-0.463*

*p<0.05, **p<0.001

12

Young primary school children need to have adequate
reading skills to interact with CT primitives used in courses
other than Mathematics more successfully (this was
especially the case with the Science subject). Classroom
observations during the in-class CT activities show students
had less issues with using the tool interfaces and
understanding how to manipulate the primitives than with
understanding and applying some of the used vocabulary
(i.e. the words up/down/left/right). This extended the
students’ time in completing the CT tasks and indicates that
more interactive forms of content representation such as the
puzzles or board games might be suitable for young
students. Nevertheless, the identified gap proved as a great
opportunity for teacher or peer facilitation of student work,
whereby students get engaged in the task completion
process even more.

In this study prior mathematics skills are identified as an
important prerequisite in young children’s successful and
timely CT task completion across all subjects. With almost
all CT concepts (algorithms, object properties and problem
tasks) better mathematics skill was related to more success
in solving CT tasks, and usually in less time. Such findings
indicate conceptual similarities between the areas of
mathematics and CT skills and warrant an adequate
curriculum alignment of the Mathematics subject and other
subjects using CT.

Students were fast and successful in completing
mathematics CT tasks, with the exception of mathematics
problems with the double loop CT concept, which proved
to be fairly complex for young primary school learners. The
CT concept of object properties caused misconceptions
leading to most time spent and the largest proportion of
successful and unsuccessful attempts. Classroom
observations indicate students often reverted to trial and
error method of completing such tasks since they found
them both conceptually difficult and challenging to read and
process.

The presented findings consistently indicate large
differences between young students in solving CT tasks. It
seems some students still struggle with basic language
knowledge and basic mathematics, even though they are in
the second semester of the 1st grade. On the other hand,
some students are already doing well in language and
mathematics, or were exposed to computer games and other
computational tools at home or in kindergarten, leading to
better CT task success. Such differences were alleviated
with a small amount of scaffolding from the teachers or
classmates, with all students being able to catch-up, excel
and have inspiring aha-moments connecting previously
unknown task elements.

7. CONCLUSIONS

The paper presented a study on computational thinking use
in early primary school. The findings indicate reading and
mathematics skills play an important role in students’ CT
task performance. Mathematics skills are of great
importance and they help students in completing CT tasks
in subjects such as language and science. Reading difficulty

presents an issue when young children are to process more
complex CT tasks, warranting for contingency in terms of
teacher and peer scaffolding. Large variation in students’
performance seeks for an approach in which CT tasks of
varied difficulty are used.

8. ACKNOWLEDGMENT

This work has been fully supported by Croatian Science
Foundation under the project UIP-2013-11-7908. The
authors would like to thank the staff of Primary School Tin
Ujevic, especially Ines Falak, for their partnership in the
realization of the study presented in this paper.

9. REFERENCES

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of
computational thinking. Annual American Educational
Research Association Meeting, Vancouver, BC, Canada,
1-25. http://doi.org/10.1.1.296.6602

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about
computational thinking. ACM SIGCSE Bulletin, 41(1),
260. http://doi.org/10.1145/1539024.1508959

Papert, S. (1983). Mindstorms: Children, computers and
powerful ideas. New ldeas in Psychology (Vol. 1).
http://doi.org/10.1016/0732-118X(83)90034-X

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk,
N., Eastmond, E., Brennan, K., ... Kafai, Y. (2009).
Scratch: Programming for All. Communications of the
ACM, 52, 60-67.
http://doi.org/10.1145/1592761.1592779

Romén-Gonzélez, M., Pérez-Gonzélez, J. C., & Jiménez-
Fernandez, C. (2017). Which cognitive abilities underlie
computational thinking? Criterion validity of the
Computational Thinking Test. Computers in Human
Behavior, 72, 678-691.
http://doi.org/10.1016/j.chb.2016.08.047

Ruthmann, A., Heines, J., & Greher, G. (2010). Teaching
computational thinking through musical live coding in
scratch. SIGCSE ’10 Proceedings of the 41st ACM
Technical Symposium on Computer Science Education,
351-355. http://doi.org/10.1145/1734263.1734384

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to
introduce younger schoolchildren to programming.
Proceedings of the 22nd Annual Workshop of the
Psychology of Programming Interest Group, 64-75.

Wing, J. M. (2006). Computational Thinking.
Communications of the Association for Computing
Machinery (ACM), 49, 33-35.
http://doi.org/https://www.cs.cmu.edu/~15110-
513/Wing06-ct.pdf

Wing, J. M. (2010). Computational Thinking: What and
Why? Thelink - The Magaizne of the VVarnegie Mellon
University School of Computer Science, (March 2006),
1-6. Retrieved from
http://www.cs.cmu.edu/link/research-notebook-
computational-thinking-what-and-why

13

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking and
Unplugged Activities in K-12

14

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking
Education 2018. Hong Kong: The Education University of Hong Kong.

\: |

3B it B R

ARFEH

b P REKE Y

(SR kA b

:f% ki

A

PIRS

* 2, s
v i< T

AR HT E

binggingbnu@mail.bnu.edu.cn, zhangjb@bnu.edu.cn

&
i -nA\./EI—L_Zl‘EF X X1 ‘Sﬁ’*ﬁr&f&ﬁ”ﬁ?i‘ﬁ
FEAHR AL DT Y ?y-‘ﬁ%}‘iﬁ“ﬁ,ﬁ,l?%ﬂ" % &
Pt E LA KEEF AL AKI2ZME BB D E > A

BRERLG I REFDSFY o A1
M ot B R ERMAL R mE S > B RarE
T AR > B D R R g A E AN L
«“:—ﬁ'* Cm RS RPN KF A Mea%ﬁﬁ s s
TR mZ2EAE 20 AFFMAT T L Benix
SIFBRFFN A 0 A “ BELB - Z%4P
AT BAKE > FFEREBFH LN FARE) FAE

"1 \M

Nlc *Lﬁ

BAFFarrE L a4 okt b F 4 A g
G, HAPEF AR AARDFE? P AL

ik R ROR i R

Matz

HERR AR ES R RE T4 R

1. 73 #%

i%,fimz_ﬁ;gﬁv} feiZdh >t EpeiEd £ £ 1 8
Rt AfrR kR E T PR AFT A1 Lo B

E‘B#m*‘@”EﬂW#W"k4% AR v

SIAT A chfR oo - B W 4 ARt 21 ® % TR A

3 SEER (Bocconl S. & A. Chioccariello,

etal, 2016) > i+ & 2w £ A KI2 &7 A0 X 31 ﬁ
£ 5enX i o AWM S i Bl Bt L
AT HY gt E LR P LAE LT ALK
AT 2006 E 0 BB SSE AR E N L HiE kg
Aol F AR A 2 7 P ALRfE kAR R A
FARBELEL AR E2L T R L AEH
(Wing, 2006) > £ #7F A & A EFOL Dfi o ¥ 1 E

S SRS S

7 ;J-_';sﬁ

RATF IR 0 B B
A TEL o KBS RT f AT Y B o

EKIR2MEp XA 2 3 A b XATE
R R 0 L E 2 S R kAR o I A SR B
AL ARETRDIBAY - 2B ELARE
VIS peft # Fo L F iRt Ak o it B e
ﬁmlﬂﬂﬁ%ﬁéﬁw1ﬁ@&i%%%ﬂ%ﬁ%
- Matthias % % 45 &) > g 2 46 %K fR kv A
Flrpen > F4 v & £ F 2 ¥ E {12 23 % (Matthias H.
A, 2018)» F b d T HRF T P E G RS
i ght KI2M Ben® 4 /e &g 5 iR LIk B 4ot
FemfeRS 0 0 2B PRET VMRS EF
XRRUF] o A KI2ZM R 3 e F = L &

FANAE s A ip FE D oonk o B - HE s B ARGE
LB E L Ak kA ko l“ﬂﬁﬁ;ﬁnﬂ_{‘t‘é‘lﬁ v I e
%J‘lﬁi‘}':}}i‘“ﬁh’“lg\J’B#m;}liﬁ a4 ii_';aj
AARat 4 EE G o 77 0 AR AR *LE, ‘1,/&
EF L5 S o E AP Ahfens 2 AR b
MY E ST A DRFEFFHI AL FE S R
“*ﬂﬂ%imﬁ P ER AR ES P
A (25 PR E, 2017) > @ 2ihmAR e jE A ex gl
FAREAERADET 0 G F A PfOES 20
AR E 1 o
2. < #RiFuk

21 ~EFL A

B R ap X A T LT 20 % 50 £ % g
W1 FR% ka5 (Seymour Papert)
<<;&Ir$/:ﬁ‘ﬂlz_>> 5"’1“‘;*’?33@_”0‘5: ,J',FHJ_

e
B
¥

%]

7}““?{’3 m}%ﬂﬁ \’J‘E“Fifiut"ﬁ 5]5\#5;{53“/‘ i»\;
XL e Aded o d T E LR B E
FLE LI FARUHAX O PELALS PR AT

IR

FAMALIFFAL) KT 1 F AR Y
Lasst g Pk EKES o

E R Rl F %iﬁmd_}—lm%1%’ 8-
va (Yihua L,1998) 32 &+ 5 L A5 4 dvkde s 3554
BEAFEE o RLHAR S SRR o Bp B e
kAo LH A g;fg_# A0 MEBRME S LHER
AR X A HE R R A R E-: ﬁf"fh%‘\ﬂ’i—: I R
G R o X R EKI2ZMEF A RhFE L >] EM
BAE LB ,\,#%\mf * o K7- Kgr‘h&»,ﬂ#’P 4
R 3 4o fe 1] * —::u,ﬂ-}?*/—r]‘?”&ﬁ’ B Y MEL
FAHFEF AP oA R ¥ A R@E AT L
Hp AL ELAL L o F Y MBS g g
oot B e ¥ e #F 5 2 B & L o Chiu-fan # 4 £
A F A EACEE A hE) SR VT KO
AT B AP E R LR F AR
e E L FE Y o FA ;?i»JWﬁ'riE‘lir'fF’ % g Zr L4
BE R GRS E A R F Ry P'JJ_IE'TU i
o 8 M sA 4 ii;bjy}mﬁ.lq_a}a‘{m -"‘L’L E M B FE
(Hu,C.,Wu,C.,&Wang,A,2017) o &L fmt » i+ Ffufl %
E T A T L E «l‘*i’zﬁ-m’ 4 ﬁiif”‘" R
(R S ek O

A R S TR A T A ST
it ‘}u?(—_?_‘s —\A’foijﬂf,.A‘ FroipmmE P o A §—<1—ﬁ$‘¥r1c
o BALT Ra P A BROMAEY ok H

15

nﬁﬁwap&$i4z&uﬂ%ﬁ5@’)fiyﬂﬁx
4 7 5Ef% - Debroah %« d= 3 AP > F ¢t HAeft
+7§<ﬁit’ iER g Y RE RG> @R F4 3%

oF st a #mfi fl,‘\ s ;if;,—jiiﬂa 2 /g[_mw.,Eéﬁ"‘ s A
?’5m#z't—4‘" La A okt E R Ak
* (Flelds, D. A., Debora, L. U. |, & Kafai, Y. B.2017)
BAROCKLR2ZM B Gk 17 2 R E b > B2
gt Bl E RS L R ER oI P E REDE 2
(Bell, T., Alexander, J., Freeman, I., & Grimley, M
2009) - A FEE DR EFEHANF G L B E
PLAE RED °Qﬂq/}km?{$;1 ?,—irf"‘}?‘ﬁ;%’ v A
AL R ARRRFE REAERBRUEGESE Y S E e
FEIG Miméﬂ\fﬂfﬁ‘frﬁ,‘lﬁ ﬂ_ s A FE Y it
FLAKFEREL A BT EH ’ﬁ T E
Bosyets 2 nRgEINRELAMELEHTR
P BB FenE B A FE A R A o

22 AfEe i+ E L8 %
PR gt Bl E g E A d 3a 2 Tim Bell »
Lan H.Written §= Mike Fellowes = i~ %% % 4= » a‘;] R
il j FoABPEAS TR A B R ig#m%uigﬁﬂ
P RBEA ISR E DI AE S E TR A
E%m?u&%%ﬂﬂ“ﬁﬂﬁiwﬂﬁoﬁé%m
£ od TIMF T FIX 5427 §E 0 vt el 97 p &
PEF S] EFereR oo * 0 H P L P F EeX L

‘\z»

E S X

Hier 1 ACM v 4 57 KI2HM Baifdz o S B LA
ﬁn&% K12 % % # -] BaEiEs avrt Rk

FLRAKEDES Y LT H ?1—3,; (Barr, V., &
Stephenson, C. 2011) o XA I E L A K F RGN E

7?Wmiﬁﬁiiﬁ(rzwi~wﬁv2m2)’i?ﬁ
AR AT AR aaE 4 Rk E RS (TDMCT)
HREFAB - ZEAPIPERIRSERFFE o
pAZReLIATR AL FRADEH 0 B

FroRF @IV UBAFE) FO AL -

AT AT AFE T N E R kAR B> U7
B AN 2R o HENER DBR L AR D
TELAREFFHPAT BAKEI N AP E
A E R P S H A E 0 S AR @
LE Y ALY At @Mﬁ,‘m,\,f,gﬁﬂq;o Bok 2
EAFmBDE AR MRLT P g E2
-

«,

e i
3. Bkt

31Ag dtfe1 £
AR ASRGEAY 0 AR SRF AR oP L 2
REALBNE hipe F4 F0 et d o BikEFEAY
ALBRE A F Y o EE A dd - kAP Ao
I B AT AR A PEL eI R E A
AEFFFE2Z - o JIF R EAFREF L F F A
$£ooRk* F 54T aE 4 (Likert Scale) » i & AskAg it
N RRALR ARE REZfARAFLES
N IR EE L o idxt 071 BEGAAEE R
E%mﬁ*d§¢¢4—k*¢&4r£’ﬁiiﬁ

RSERS TR o SECAERE NS S U CE JE i
FooF Wit Akd AP A mr ALy

Zildr=

o

wix 4

Flentp 3 i iz 4
Bl 2 e

32 A AP EEF

SRl MRS % 0F 5 RS ASUREAT Y
LADZ L RAKEHSN AL FRER S BERTFIe
FrH2pddES & KFLELES A

e fet b 5o 2 f -

o
O T A 3! L ¥4t E LG kD
RN '$¢#%%P¢7H%#mﬁé{+i

P F 0 g R PR g A B et E kAR Il
e Aifkf o o 24+ ”ﬁ T4 lﬁt"‘:l B S %ol 2

e

Fite o RHENA B3 3RE o kB RmFE L
I a;}l%ggl»,,\ i £ ,,ia')bk;f-gf”_/‘}r(_ﬁ\o
JEES E FhEL s RESHEL AP Aok 1
7T

241 eup
i
A7 BAE 4 BRI
x4 2
+2q
5 4 7 ez
B RIS x4 3 SRR
244
4 14cix 4 20l 2250 B peng S E4 {7
IR RM e ZH I B B A f S
EABEs o @545 hasp f1¥% 45
A E4 e o Rt D 2 FIE RS 2GR
IR AR A oRTRAZRES TS 30 W
AL Es Ay szl Es > AP FEARYEF
Zop ez IR FHEE o P T ERirE s &
BRAF+ gt ELand 24222 F4 09
ﬁiﬁ?ﬁ@”ﬁ%#’%iii&%’ﬁﬂﬁﬁ&
AL LI A A %aw%’ﬁ 455 ErikiE B

LMo o frﬂmi;»' AR
i e ALE o

33F Gt R X AR

UAReA B KRR D EREL S K B2 A £ Lk
A2 (F 34+ 18) o ikfpiZ 2wt E 4 £ HikfriZ 3
B A > 80% M b enE 4 At tikdew A b g AR
KEZH o {3k F g o g 5545480
WKEEH o L Ed T FP %ﬁiﬁéh’}lﬁilﬂéﬂ\
HhHFABORKEED > T Ak EL YD EA
L oo SFLBNB2 L EA N 24 4 m 5234 - mo
FEAFLP AT RE LT EIRFEL E
Bz i RS oo

AR X7 S5 AN N) SR S 1

|

ern

BPMEES R ARR PP B Ao G - 2OEfE
A F S E gk § AR K F) R PR s o R
“‘f*‘*m’*iluﬂ?fimﬂ*uﬁ%*b*E Foft £ R L
—fr’}%l) ,‘z*ﬁ s NEIR s A R i F T
L EF A R PE T G FAFE S A Ao
TARR P P B H A H A 2 L AR o § P
BEA e 2 KGOS ELAL S > ok E D 2

*_“ v

A A E L AN g R4 g R X éﬁémlﬂ (- »
2017) - ¥ JF’iiﬁJ4~#%#ﬁi’aJ:E%w

16

/‘T_———I?]‘E';z‘ﬂ

TR F AT o 2 4 s Ao
T4 5 A g AR{o4F

7\"}? ’FF'?‘””‘#HT?F{?*“/ F
F s i AR o

4, %% gt

i%ﬁiuii R NN N) 3:{{3_‘3 kA ,’f s t"'-i—.l'ji%
Y A RPREEST) R ER TS ES
PEERYE R e S K A s et S
e 47, MR adA 4 B e i 7t

FAEL P B LBERELFAN. BRRGES G
A2l L Nicole % A g7 § iy > 3+ 8 L Bens 1 47
B A4ob 4 LM N7 Feap 3% 2 (Hutchins, N. M.,
Zhang, N., & Biswas, G. 2017) ~ & X & = & iFehid 42
P AL R § 4T E L ,sf;; G- fez A

E4 0 F DT o B FEL PkEFRES G o T
A EFEFHY LAep o ded 29757 o
2292 p%% (%)
® i) B
74 14.71 76.47 5.88 2.49
A4 1111 50.09 38.89 0
P

BORARA L R o 0 80%)1 F enE 4 ah ik Ar ¥ B R

BARE B G A B L B R
PRALEAA LR FRES B Y RixhE 1 B

F—Q%%Mﬁ%iwm* m%ﬂﬂ}13ﬁ>w%ﬁ
T LG EAE Ao A L RE A E T A
CHE S FHEFE R ”4 FoA L eAnGK A ;’7%‘3;;'1'7;%
AR 5% - e T|MF AR #—EP?'%WTVIF%’J
TLE D ATehdvin o AL A FR 2R Y o VTR R
RRIF AL R E A A R AR A D E S

£ 3T R Lo @R AR 0 B R
Fr2Ro gL {agRhAELDE JE&feE LR
Lféiﬁ}ii*i‘fﬁ#‘*:*ﬁﬁﬂﬁ” BLHL244p5 5
AR o T ORARR B A A AKX > 50% 1 e
N F A e 37}’]'?1’117}:5 » F A a sk
B E 2 g ds o 3 Aogdgp B
Joo A KRAEY o AT B EA L
Pl¥cgEmd > H Y AL i B adiEs Ha4

Ry ﬁ#‘liﬂ’ﬂ“’ﬂiﬂ A feenPE g 0 A
XIFHAEZEIE s AT s S DN 2
LB RS g Ef‘_f"lﬁﬁ\i?’ﬁ& R B LT R
i B - AR e LfFL > F A4 R F
g s o FR

a4

y X ¢

o

B Ao o o

2T B 20 B4 EBHBNET AFPMERET (T s
FRFBORFERGAPRAFELFE AHPE L H
RAFED DT ER AN Bk E S T
M%ﬁﬂﬁ%ﬁ’%%ﬂéiﬁ’%iw»i%ﬁ+

*oix

AL B A2 F A AR 0 Y FE A R
LI T N g*m4¥#;z:ﬂﬂ#&%ﬁ%%x
TR EXfRE2FELIT R RA) B]
ﬁ#oﬂmﬁwwﬁJ@iﬁ Wt E 4 mERE
WebF A Rl E A BiEs o A FE T 2k

_

kF o REFFZ S ES OE L AT T BT

NBAEF KBRS

\) EsS
k3 S T .
o
Q// x'*/ ab'-%
¥ o5 o
X Q\f?- e
" ,/'35' L
[FEsmngm-2 | -—si=mt2i | Bssass |

[=z=2 | 37, 50% B0, 87% | 95. 24%

Fliz4 £2%
TEEARRESF > L2 f T4 e |
MEBH X - e ZHfrt 24T it iz 4
oS- hEsan] miEs 2% r s 87.50% 0
BRe- /3B E4 Y > pkF s kT 95% o o] e
EAad e FA e BARTENT 1L Zle
SRR R D PR R RS 2 4o

fTrEs FRE 2 NFE

ZRAREDE SRR > 40

SRR L IR & ISR T

%$ﬂ$ﬁﬂﬁ¥kﬁ;_ g%

mffi’i/r"l’;b'&?pﬁ?im’ FLa
A epde B A E Y 3 B o

7

5. B%5RY

ARSI RS A Ui T L F Lk
2 s

,L

"M ETORE R ZBES
D fRE A A 4 -
1% % > 55
e, A g IR
i 2 4E

:
RN T

~#
IR A

= "1\\

1

F"%%p P B PEA AT AFEE S LK
FREY R A ARR PR Ly kA e 2B it Y
BIcF EFH LY F (Learning by Doing) * % g
St e s ¥4 L2 EHFE AR ¥ (Tan and

;—?:f-.m +«1

Kim, 2015) » £ # & KI2 Mifieh@ &£ % 4 o 4= ¥
PA > AABY Bt A4 TR o

AT A B Ao WA U B g Y ik
PALIEE ORFE O FIBRALR S > PG XL
C kg B oW F A iR BRI
SE AL 0 3 F o Halil 4 41 0«7 - B 8 e
XY 0 S XAPAERA HARfrR A N E
4 & doehX 1t (Haseski, H. 1, llic, U., & Tugtekin,
U.,2018) o}—H\Eﬁ Il XA HICET 2 oGk
J"’ﬁ BT AVEXNT EFFALEFRES G TR Lo
%%*P*ﬁ’ﬁﬁéﬁ%<&i30&u#vUQi
/:-4—-&3‘4,;\/:_7_4/\}4@,_,—4;_} 4 ¥l 4.3;
2 Fe47 o sk BE TG o
6. ;*egk
T (2017) o B PR LAY A4 E L g
% %% »3> 154-

L& ~i%4l (2012) o AT E R A E iz 4
Feh F R o B kT 0 7 94-96 -

EF Aok g (2011) o AT E R AGES
Pt NEERN PRI F o MAKTHAR 5 215 44-49

I - A

17

IF P RE (2017) o A B it B4R E B E
R kit o KT MAL > 20> 45-47 ¢

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to k-12: what is involved and what is the role of
the computer science education community?. Acm
Inroads, 2(1), 48-54.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009).
Computer science unplugged: School students doing real
computing without computers. The New Zealand Journal
of Applied Computing and Information Technology, 13
(1), 20- 29.

Bocconi, S. & A. Chioccariello, et al. (2016). Exploring the
Field of Computational Thinking as a 21st Century Skill.
8th International Conference on Education and New
Learning Technologies

Flelds, D. A., Debora, L. U. I., & Kafai, Y. B. (2017).
Teaching computational thinking with electronic textiles:
High school teachers’ contextualizing strategies in
exploring computer science. Siu-cheung KONG The
Education University of Hong Kong, 67-72.

Hu,C.,Wu,C.,&Wang,A (2017). How computer scientists
and computing teachers think different in the concepts to be
included in a secondary school computing curriculum. Siu-
cheung KONG The Education University of Hong Kong,
Hong Kong, 50-54.

Haseski, H. 1., llic, U., & Tugtekin, U. (2018). Defining a
New 21st Century Skill-Computational Thinking:
Concepts and Trends. International Education Studies,
11(4), 29.

Hutchins, N. M., Zhang, N., & Biswas, G. (2017). The Role
Gender Differences in Computational Thinking
Confidence Levels Plays in STEM Applications. Siu-
cheung KONG The Education University of Hong Kong,
Hong Kong, 34-38.

Matthias H Andrea Adamoli, S.(2017). The program is the
system. Proceedings of the 17th Koli Calling Conference
on Computing Education Research 11 (4):29-42

Tan, L. & B. Kim (2015). Learning by Doing in the Digital
Media Age, Springer Singapore.

Wing, J. M. (2006). "Computational thinking." ACM Sigcse
Bulletin 49 (3): 3-3.

Wismath, S. L. & D. Orr (2013). Collaborative Learning in
Problem Solving: A Case Study in Metacognitive

Learning. Canadian Journal for the Scholarship of
Teaching & Learning 6 (2): 23-32.

Yihua L. (1998). Exploration on Database Teaching Based
on Computational Thinking. Boletin Técnico, 55(17),
363-370.

18

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Design A Computational Thinking Board Game Based on

Programming Elements

Sheng-yi WU, Jia-cen FANG?, Shu-mei LIAN?
1Department of Science Communication, National Pingtung University, Taiwan
2 ChungCheng Junior High School, PingTung, Taiwan
digschool@gmail.com, pray9821@gmail.com, dido8877@gmail.com

ABSTRACT

Computational thinking (CT) in education has been
considered significant to future national competitiveness and
development. Programming is seen as the most direct way
to develop the CT skills. However, it is also argued that
young starters are easily frustrated and discouraged when
they have difficulties in programming syntax and concepts.
Thus, a programming course with adaptive visualization or
game-based learning is considered a better solution to
encourage higher-order thinking that benefits young
students. The unplug educational board game features low
selling price, intensive interaction among players, and is able
to play without any computing equipment. It is therefore
attracting growing attention from schools and teachers. In
this study, we designed a CT board game, Interstellar
Explorer, on the theme of space. Users play Interstellar
Explorer by controlling on-screen spaceship and defending
with obstacles to find the most residential planet in an
animated outer space. Interstellar Explorer challenges
players to design and implement strategies to carefully
control the movement of spaceship and successfully build a
defense. This study contributes to developing player’s
logical thinking and problem-solving ability as well as
inspiring their imagination and creativity.

KEYWORDS
computational thinking, programming, coding, board game,
interstellar explorer

1. BACKGROUND

Computational thinking (CT) in education has been
considered significant to future national competitiveness and
development ever since the notion of CT was reintroduced
by Jeanette Wing from Carnegie Mellon University in 2006.
In some countries such as America, England, Australia, and
Estonia have started including computing in the school
curriculum and teacher training.

CT uses basic concepts of computing and information
science to solve problems, design systems and understand
humor behavior (Wing, 2006). Along with reading, writing
and arithmetic, CT is a requirement of a part of core
knowledge. CT consists of skills like induction, embedding,
transition, and simulation, which help to solve complicated
problems in the way we are familiar with.

2. MOTIVATION and PURPOSE

The change of trend in education and global realization to
the importance of CT has identified the significance of
developing CT skills at a young age. In other words,
programming is seen as the most direct way to develop the

CT skills. (Buitrago Floérez, Casallas, Hernandez, Reyes,
Restrepo, Danies, 2017). However it is also argued that
young starters are easily frustrated and discouraged when
they have difficulties in programming syntax and concepts
(Costelloe, 2004 & Powers, Ecott & Hirshfield(2007).
Furthermore, traditional programming can be boring to
young students mostly due to its requirement of various
syntax inputs (Mannila, Peltoméki & Salakoski, 2006). Thus,
a programming course with adaptive visualization or game-
based learning is considered a better solution to encourage
higher-order thinking that benefits young students
(Brusilovsky & Spring, 2004).

At present on the market, teaching materials to develop CT
skills can be generally divided into three kinds of design: 1)
blocks-based visualization, like code.org and Scratch; 2)
real-robot control, like mBot and Dash & dot; 3) unplug
educational board game with cards, like Robot turles, King
of Pirate, Doggy code, Code master, Robot Wars Coding
Board Game. Each of the designs has its advantages and
limits. The unplug educational board game features low
selling price, intensive interaction among players, and
playing without any computing equipment. It is therefore
attracting growing attention from schools and teachers.

The five board games mentioned above are designed in
accordance with programming elements. Yet, the elements
are incompletely considered due to age setting and game
mechanism. Thus, we try to design a CT board game based
on programming elements, allowing players at any age to
develop and practice CT skills.

3. DESIGN OF CT BOARD GAME AND
AMALYSIS OF PROGRAMMING

ELEMENTLS

We design a CT board game, Interstellar Explorer, on the
theme of space. Users play Interstellar Explorer by
controlling on-screen spaceship and defending with
obstacles to find the most residential planet in an animated
outer space (see Figure 1).

Designed for players aged 8+, Interstellar Explorer
challenges players to design and implement strategies to
carefully control the movement of spaceship and
successfully build a defense. This contributes to developing
player’s logical thinking and problem-solving ability as well
as inspiring their imagination and creativity.

We create a set of cards to use in the game. Players place
these cards in linear arrangement in the way similar to visual
programming language learning. Players are also allowed to
create his/her own conditional environment and implement

19

rules with blank cards where they can define clearly the
condition and rules. Interstellar Explorer provides a game-
based learning environment to teach basic programming and
CT skills including sequences, events, loops, conditional,
parallelism, names, operators, and data (Bernnan & Resnick,
2012) (see Table 1).

Figure 1. Description of Interstellar Explorer

Table 1. Programming Concepts

Concept Gameplay Instruction
sequences Starting starship
events adding meteorite, clearing meteorite,
pause card, observing planets with
telescope, beam card, deflector shield
card, destroying meteorite in front,
changing character, calling for character’s
skill, multifunction card, preference card
loops flying card effect X n
conditionals condition card 1-5
parallelism controlling the opponent’s ship
creating function card, calling for
names function card, blank condition card, blank
implement card
meteorite explosion, alien attack, magic
operators
power recorder
data magic power recorder, supplies card

4. CONCLUSION

Promoting CT skills in education has become a global trend.
Introducing CT concepts to young learners is even a
significant step to develop problem-solving ability and
logical thinking at a young age. Thus, we design a CT board
game, Interstellar Explorer, based on programming concepts
to help young learners in learning CT concepts and skills. In
the future, we will carry out a study to explore the
effectiveness of this CT board game, Interstellar Explorer,
using the computational thinking scale and the behavior
model.

5. REFERENCE

Brennan, K., & Resnick, M. (2012). Using artifact-based
interviews to study the development of computational
thinking in interactive media design. Paper presented at
annual American Educational Research Association
meeting, Vancouver, BC, Canada.

Brusilovsky, P., & Spring, M. (2004). Adaptive, engaging,
and explanatory visualization in a C programming course.
In L. Cantoni & C. McLoughlin (Eds.), Proceedings of
World Conference on Educational Media, Hypermedia,
and Telecommunications 2004, 1264-1271. Chesapeake:
VA: AACE.

Buitrago Florez, F., Casallas, R., Hernandez, M., Reyes, A.,
Restrepo, S., & Danies, G. (2017). Changing a
Generation’s Way of Thinking: Teaching Computational
Thinking Through Programming. Review of Educational
Research, 0034654317710096.

Costellog, E. (2004) Teaching Programming The State of the
Art. Department of Computing, Institute of Technology
Tallaght, Dublin 24. CRITE Technical Report.

Falkner, K., Vivian, R., & Falkner, N. (2015, January).
Teaching Computational Thinking in K-6: The CSER
Digital Technologies MOOC. In Proceedings of the 17th
Australasian Computing Education Conference (ACE
2015) (Vol. 27, p. 30).

Grover, S., & Pea, R. (2013). Computational Thinking in K—
12 A Review of the State of the Field. Educational
Researcher, 42(1), 38-43.

Mannila, L., Peltomaki, M., & Salakoski, T. (2006). What
about a simple language? Analyzing the difficulties in
learning to program. Computer science education, 16(3),
211-227.

Powers, K., Ecott, S., & . Hirshfield , L. (2007). Through the
looking glass: teaching CSO with Alice. Proceedings of the
38th SIGCSE technical symposium on Computer science
education SIGCSE '07, 39 1, 213-217.

Wing, J. (2006). Computational thinking. Communications
of the ACM, 49(3), 33-36.

20

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking
Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking and
Coding Education in K-12

21

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Analysis of Learner's Self-efficacy Using Coding Education Support System for

Understanding Complex Problem-Solving Steps

In-seong JEON, Hyeon-jeong JEONG, Ki-sang SONG"
Korea National University of Education, Korea
wf212@naver.com, dolimofe@naver.com, kssong@knue.ac.kr

ABSTRACT

In this study, Levenshtein distance algorithm-based coding
education support system which shows learners’ progress in
real time was developed in order to observe how learners
would solve complex problems in the coding environment

and a pilot test was conducted on elementary school students.

When the teacher used the developed system to teach
students, there was a statistically significant difference in
integrated regulation, external regulation, and introjected
regulation among the sub-factors of learning motivation
compared to the conventional classes. Among the sub-
factors of self-efficacy, efficacy dimension showed
statistically significant difference.

KEYWORDS
Coding Education, Software
Motivation, Self-efficacy

1. INTRODUCTION

The core of Computational Thinking(CT) is to break down
a complex problem into familiar and easier sub-problems
(problem decomposition), solve the problems by applying
algorithm, review how such problems can be transferred to
similar problems, and decide whether to use computers to
solve them better (Yadav, et al., 2016). In other words,
Computational Thinking is the ability of computer scientists
to solve problems by using computing technology as a way
of thinking to solve problems, so CT plays an important role
in solving complex problems.

education, Learning

Among the methods to graft CT into school education, there
is automation. This element requires learners to connect to
the computer. Learners can learn modeling and simulation
using computing technology in this learning environment.
These automation tools are developed in Scratch or in the
local versions of Scratch so that programmers can learn CT
skills easily through the coding process.

For effective programming learning, learners should have
interest and internal motivation and they should be provided
with the learning method considering the level of individual
learners and interest (Katai, Z. & Toth, L., 2010). However,
in reality, general programming education is conducted for
a large number of learners in a classroom. For a learner to
get an appropriate feedback from a teacher in this situation,
adequate time allowance as well as the teacher’s teaching
ability is necessary (Han, K. W., Lee, E. K. & Leg, Y. J,,
2010). Accordingly, related studies such as scoring
according to the efficiency of the algorithm for a given
problem or analyzing and evaluating the learners' learning
are actively being performed (Jang W. Y. & Kin S. S., 2014).

Yet, automated tools to provide a convenient and flexible
evaluation method are not available. Unlike the
programming environment on the computer, it is very
difficult to maximize the learning effect of software
education in a limited environment where the learner's
programming is analyzed and the task evaluation is
performed manually (Kim M. H., 2007). To overcome these
difficulties, studies on programming learning analysis
system, where the teacher can analyze the learning status
with an automatic and efficient method, give optimal
feedback and easily evaluate tasks of the learners, should be
made. In this study, a block programming education support
system based on Levenshtein distance algorithm, which is
designed to support the teaching of the teacher and promote
the motivation of learners in the field of coding education,
was developed and it was applied to 10 units of classes to
analyze its effects on learning motivation and the self-
efficacy of learners.

2. BACKGROUND

2.1. Algorithm Learning Analysis System

In the algorithm learning analysis system, when a learner
creates a solution to a given problem using a programming
language, the prepared source code is stored in the server,
and the analysis program repeats the execution several times
while confirming the number of times the server code is
stored in the server at a predetermined time interval. Each
time it is executed, data prepared in advance is entered to the
program, and the result is compared with the value of the
prepared answer data. The existing algorithm learning
analysis system uses text-type programming language to
compare strings, line, and compilation results of source code
and answer code according to a certain algorithm, and
provides error or score through message feedback.

These systems work well in environments that use text type
programming languages and have the advantage of being
able to feed back the results immediately. However, there is
no learning analysis system developed for the purpose of
performing such a function in the block type programming
language environment which is currently used at the
elementary and secondary school level. Therefore, the
teacher should observe students roaming around the
classroom and it is difficult for a teacher to identify what a
learner thinks difficult.

2.2. Related Studies

Kim (Kim, M.-H., 2007) designed and implemented a web-
based programming task evaluation system that allowed the
teacher to automatically evaluate the performance of the
program and easily check the style and plagiarism of the
program with appropriate feedback (Kim M.-H., 2007).

22

Song (Song, J.-H., 2011) designed and developed an
automatic scoring-based programming education system
that could perform learner-centered self-directed learning by
performing programming education more efficiently. Jang
& Kim (Jang W. Y. & Kin S. S., 2014) developed a client-
server based system by enforcing teaching-learning
functions of the existing Online Judge style system and
found its significant effect on programming learning. Jeong
(Jeong, J.-K., 2010) developed a system that can be used for
programming learning and evaluation of science high school
students unlike Online Judge system which is used for
evaluation in competitions.

From the analysis of previous studies, it was found that
various automatic scoring systems for programming
learning and evaluation had been developed. However, there
have been no studies related to the development of a system
that supports block programming languages for elementary
and secondary school students and teachers up to now.
Therefore, in this study, a pilot version of a system that
performs block programming language learning analysis
function was developed and the effect of the system on
learning motivation and self-efficacy of learners through the
classes where a teacher uses the system was verified.

3. SYSTEM DESIGN

In this pilot system, a learner can program using Entry, a
block-type programming language, through a web server,
and click the save button to analyze the source code in real
time.

Teachers Chentry System | Students

[] View Module | ‘
> Teacher’s Student’s (> M

Webpage Webpage .‘
Main Module I ;

Code Analysis

(
[Code Structuring
(

Code Evaluation

)
)
)
HEE

Figure 1. Developed pilot system [J.-H. Kim, et al. 2018]

The system applied to this study divides the web agent into
a view agent to which the teacher and learners connect, a
core agent that analyzes and structures the code, and a DB
agent that stores class information, account information, and
learning information. The teacher opens a class by entering
the class name and the URL address of the answer code.

The learner accesses the system with his/her account, enters
the URL address of the source code, and programs in Entry
environment. The system checks whether the learner clicks
the save button at a pre-determined time interval and saves
accumulated achievements using the Levenshtein distance
algorithm when the save button is clicked.

Levenshtein distance is a kind of edit distance technique that
calculates the minimum number of edits such as deletions,
insertions, or substitutions required when a string is
converted into another string (Levenshtein, 1966).

dist(sy, s3)

lev(s,,s,) = ——=2—
(51, 52) max(|s;], |s,])

In this study, the progress of students' learning was
calculated through individual block group agreement and
whole block group agreement.

Individual block group agreement(%)
Levenstein block distance

MAX (No.of Teacher block, No.of student block))

=100 X (1 —

Whole block group agreement (%)
ILevenstein block distance
=100 x (1 -

IMAX(No.of Teacher block, No.of student block))

In addition, if the block type is the same but only the variable
or the block parameter is wrong, it is considered to be
corrected 0.5 times rather than 1.

The teacher can check which block each learner has used,
how the block of the learner has been changed for a certain
time, and what the degree of final achievement is. The
teacher can also provide corrective feedback to the student
with low achievement level. The algorithm of the overall
pilot system through the above agents is shown in Fig. 2.

START

l 1
Learner | | Instructor |
. .
Save learner’s Save Instructor’s
programming Best Practice
source code Code

Stored source
code

IJ

Run pilot system

v L3
Learner’s source code | ‘ Best code READING

Y

Result output

END
Figure 2. Algorithm of pilot system

4. Learners’ Self-Efficacy in Developed Pilot

System Utilization Education

The factors that affect programming education will vary.
Wiedenbeck (2005) presented programming experience,
self-efficacy, and knowledge organization as learning
factors for non-professionals to successfully achieve
programming learning. In this paper, we have proposed
various learning examples for learners to gain programming
experience and consider learning strategies to enhance
learner's self-efficacy. To do this, we conducted a
programming education with a constructive approach and a
cognitive approach to designing teaching and learning. The
learner was able to receive the feedback of the instructor and
confirm the achievement degree of each block and construct
the cognitive processing through the meta - cognition.

23

In order to verify the educational effects of the pilot system
developed in this study, an experiment was administered on
40 grade 5 students in S elementary school in Gwangju,
Korea. The experimental group and the control group
received a total of 10 units of programming education using
a block type programming language. In the case of the
experimental group, the teacher identified the progress of the
learners with the developed system, intervened
appropriately, and let the learners compare their progress
with the teacher's answer. For the control group, on the other
hand, the traditional teaching method was used where the
teacher roamed around the classroom to observe and advise
the learners.

4.1. Program Design

The curriculum of 10 classes applied to the two groups was
structured to learn computer science subjects such as
sequence (SE1), repetition (R), selection (SE2), simple
variable (V), list (L) and concatenation (C) included in the
software education curriculum of elementary school in
Korea. The summary of the curriculum is shown in Table 1.

Table 1. Curriculum for Programming education.

Time Title Elements

1 Basic programming language C
manipulation
Use movement, shape block

2 Create simple block C,R
application program

3 Make ‘bears meet bees’ C,R,V
Use repetition with variables

4 Make ‘Bee shot bear’ C,R, SE2
Use selection Structures
Make ‘Shark Avoid’ Game C, R, SE2
Develop games: C,R,SE2,V
Use Replication Blocks

7 Complete the game: C,R LV
Use lists and variables

8 Make a gift lottery program C,R
Use random number

9 Make ‘Producer Speaker’ C,R LV
Use Random Numbers,
Arithmetic Expressions

10 Draw a polygon C,RF

Use pen-block, basic functions

In the experimental group, learners were asked to check their
learning achievement through the pilot system constantly
during the 10 units of classes. The teacher checked the
achievements of learners during the class and provided
corrective feedback to the student who kept having low
achievement level for quite a long time by analyzing the
causes of low achievement. In the control group, the teacher
gave a lecture just like in the conventional teaching method
and gave feedback directly to the learners while roaming
around the classroom.

4.2. Research Method

In order to measure the learning motivation of the students,
the motivation test tool for youth developed by Lee M. H.
and Jung T. Y. (2007) was modified for elementary school
students. The learning motivation test tool was composed of
26 questions in total; specifically 5 items of Amotivation, 5
items of External Regulation, 5 items of Introjected
Regulation, 5 items of Identified Regulation and 6 items of
Integrated Regulation. Amotivation is the status wherein the
desire to learn is not generated regardless of external stimuli,
External Regulation is behavior control by external factors,
Introjected Regulation is to act through influence of past
experiences such as reward and punishment, Identified
Regulation means that integrated control as external factor
is changed into internal factor, and Integrated Regulation is
the motivation to create and achieve something on its own.
Table 2 shows the items and reliability of sub-factors of
learning motivation.

Table 2. Reliability test of Learning Motivation.

Elements Quantity Item number Reliability
Integrated 6 1,3,12, .839
Regulation 17,20,23
Amotivation 5 4,6,7, .674
9,26
Introjected 5 11,16,18,19, 750
Regulation 25
External 5 5,13,14, .818
Regulation 15,21
Identified 5 2,8,10, 775
Regulation 22,24

In order to measure the self-efficacy of students in
programming language, the self-efficacy test tool in
computer programing language education environment
developed by Kim (Kim, K. S., 2014) was modified. The
self-efficacy test tool is composed of 30 questions in total;
specifically 10 questions about language, 10 questions about
Efficacy Factor and 10 questions about Efficacy Dimension.
Language refers to the challenging spirit to develop a
program by knowing the general structure of a programming
language and the terminologies of variables, expressions,
control statements, operators, arrays and functions and
utilizing them. Efficacy Factor refers to whether they have
direct or indirect experience with success or failure. Efficacy
Dimension is the learner's perception on the level of
difficulty of a given task, the willingness to challenge more
difficult problems, and whether to generalize it. Table 3
shows the items and reliability of sub-factors of self-efficacy.

Table 3. Reliability test of Self-efficacy.

Elements Quantity Item number Reliability
Language 10 1,2,3,4,5,6,7,8, .875
9,10
Efficacy 10 11,12,13,14,15, .874
Factor 16,17,18,19,20

24

Efficacy 10 21,22,23,24,25, .835
Dimension 26,27,28,29,30
4.3. Result

In order to verify the homogeneity of the experimental group
and the control group, pre-test was administered to measure
learning motivation and self-efficacy of two groups. As
Table 4 shows, there was no significant difference, which
confirms the homogeneity of the groups.

Table 4. Homogeneity test of group to measure
for Learning Motivation & Self-Efficacy

Area Group N M SD t P
Learning Experi- 20 7390 7.873 -421 .676
Motivation Mental
Total Control 19 75.16 10.658
L1 Experi- 20 2250 4.274 432 .668
Mental
Control 19 2179 5.903
L2 Experi- 20 1025 3.226 -934 .357
Mental
Control 19 1132 3.888
L3 Experi- 20 1220 3.122 -959 .344
Mental
Control 19 1326 3.784
L4 Experi- 20 10.95 3.900 -401 .691
Mental
Control 19 1153 5.037
L5 Experi- 20 18.00 3.356 .580 .565
Mental
Control 19 17.26 4.520
Self- Experi- 20 93.20 16.979 .165 .870
efficacy Mental
Total Control 19 9211 23.949
S1 Experi- 20 29.75 7.813 .024 .981
Mental
Control 19 29.68 9.310
S2 Experi- 20 30.90 5330 -814 421
Mental
Control 19 32.84 9.167
S3 Experi- 20 3255 6.362 1.343 .187
Mental

Control 19 2958 7.434

*p <.05
L1=Integrated Regulation, L2=Amotivation, L3=Introjected
Regulation, L4=External Regulation, L5=Identified Regulation
Sl=Language, S2=Efficacy Factor, S3=Efficacy Dimension

The results of the post-test on learning motivation and self-
efficacy are shown in Table 5. There were significant
differences in Integrated Regulation, External Regulation
and Introjected Regulation among the sub-factors of
learning motivation, but there was no significant difference
in Amotivation and identification control. There was a
significant difference in Efficacy Dimension in the sub-

elements of self-efficacy, but there was no difference in
Language and Efficacy Factor.

Table 5. Post-test of group to measure
for Learning Motivation & Self-Efficacy

Area Group N M SD t P

L1 Experi- 20 2230 4.567 .2074 .044*
Mental
Control 19 19.33 4.902

L2 Experi- 20 10.74 3.374 - 112
Mental 1.623
Control 19 1243 3.529

L3 Experi- 20 1257 4660 -997 .324
Mental
Control 19 1386 3.851

L4 Experi- 20 10.78 4.680 - .069
Mental 1.863

Control 19 13.38 4,555

L5 Experi- 20 18.65 3.688 2.308 .026*
Mental
Control 19 1576 4.603

S1 Experi- 20 3335 7.352 .6511 .519
Mental
Control 19 3186 7.844

S2 Experi- 20 37.04 8.054 650 .106
Mental
Control 19 3324 7.162

S3 Experi- 20 34.70 8578 1994 .050*
Mental
Control 19 30.05 6.659

*p <.05
L1=Integrated Regulation, L2=Amotivation, L3=Introjected
Regulation, L4=External Regulation, L5=Identified Regulation
Sl=Language, S2=Efficacy Factor, S3=Efficacy Dimension

In order to analyze the difference of the self-efficacy before
and after the application of the system in the experimental
group, the mean and the standard deviation were calculated
by dividing the test period. Table 6 shows the paired t-test
results. As presented in the table, the sum of self-efficacy
after system application is significantly higher than before
the system application. In the analysis of sub-factors, there
was a statistically significant difference in Efficacy
Dimension and there was no difference in Language and
Efficacy Factor.

25

Table 6. Paired Samples t Test of group to measure
for Self-Efficacy.

Area Group Paired Differences t P
N M SD

Total Pre 20 1410 28.10 2.244 .037*
Post

S1 Pre 20 420 1191 1578 131
Post

S2 Pre 20 6.60 8.18 3.606 .002*
Post

S3 Pre 20 330 11.32 1.303 .208
Post

*p <.05

Sl=Language, S2=Efficacy Factor, S3=Efficacy Dimension

5. CONCLUSIONS

This study analyzed the effectiveness of learning motivation
and self-efficacy by developing a pilot system that supports
coding education using a block programming language for
elementary school students and teachers. The results are as
follow.

First, in the verification of effects on learning motivation and
self-efficacy, it was found that the teaching method allowing
learners to check their achievements constantly and enabling
the teacher to identify students with low achievement from
time to time and to give them one-to-one feed-backs would
give more interest to learners and enforce them to achieve
the goal.

Second, students were able to gain experience of success in
the programming learning structure through the pilot system
presented in this study. It gives them indirect experience of
continuous success and the ability to create additional
programs by showing achievement unlike the existing error
checking method.

Based on the process and results of this study, it is necessary
to provide a web-based lecture support system where the
teacher can monitor learners in real time and provide a more
convenient learning environment. In addition, it is necessary
to study a system that can integrate and manage the tasks and
achievements associated with the curriculum in conjunction
with CMS or LMS.

6. ACKNOWLEDGMENTS

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (Ministry of Education) (No.
2017S1A5A2A01026058)

7. REFERENCES
Chang, W. Y. & Kim, S. S. (2014). Development and
application of algorithm judging system: analysis of

effects on programming learning. journal of Korean
Association of Computer Education, 22(2), pp.15-24.

Han, K. W., Lee, E. K., Lee, and Y. J. (2010). “The Impact
of a Peer-Learning Agent Based on Pair Programming in a
Programming Course”. IEEE Institute of Electrical and
Electronics IEEE transactions on education, 53(2), pp.318-
327.

Jeong, J. K. (2010). Design and Construct of Programming
Assessment System based on "Online Judge" for a Science
High School student. master’s thesis, Korea National
University of Education.

Kim, K. S. (2014). Measuring and Applying the Self-
efficacy in Computer Programming Education. Journal of
The Korean Association of Information Education, 18(1),
pp.111-120.

Katai, Z., Toth, L. (2010). “Technologically and artistically
enhanced multi-sensory computer-programming
education”. Teaching and teacher education, 26(2),
pp.244-251.

Kim, J,-H., Choi, J.-H., Shadikhodjaev, U., Nasridinov, A.,
and Song, K.S. (2018) “Chentry: Automated Evaluation of
Students” Learning Progress for Entry Education
Software,” to be published in the Advances in Intelligent
Systems and Computing, Springer.

Kim, M. H. (2007). Design and Implementation of an
Automatic Grading System for Programming
Assignments. Journal of Internet Computing and Services,
8(6), pp.75-85.

Lee, C. H., Kim, S. H. & Kim, D. M. (2016). Understand
and actualization of software education. Seoul:
Yangseowon.

Lee, M. H., & Jung, T. Y. (2007). Development and
Validation of the Learning Motivation Scale. Studies on
Korean Youth, 18(3), pp.295-321.

Levenshtein, Vladimir I. (1966). "Binary codes capable of
correcting deletions, insertions, and reversals". Soviet
Physics Doklady, 10(8), pp.707-710.

Song, J. H. (2011). An Automated Assessment based
Programming Education System for Self-Directed
Learning. Doctoral dissertation, Soongsil University.

Wiedenbeck, S.(2005). Factors Affecting the Success of
Non-Majors in Learning to Program. The International
Computing Education Research, pp. 13-24.

Yadav, A., Hong, H., and Stephenson, C. (2016).
Computational Thinking for All: Pedagogical Approaches

to Embedding 21st Century Problem Solving in K-12
Classrooms, TechTrends, Vol. 60, pp. 565-568.

26

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Concepts, Practices, and Collaboration in High School Students’

Debugging Electronic Textile Projects

Gayithri JAYATHIRTHA, Deborah A. FIELDS?, Yasmin B. KAFAI*
L University of Pennsylvania
2 Utah State University
gayithri@gse.upenn.edu, deborah.fields@usu.edu, kafai@upenn.edu

ABSTRACT

Debugging, a recurrent practice while programming, can
reveal significant information about student learning.
Making electronic textile (e-textile) artifacts entails
numerous opportunities for students to debug across
circuitry, coding, crafting and designing domains. In this
study, 69 high school students worked on a series of four
different e-textiles projects over eight weeks as a part of their
introductory computer science course. We analyzed
debugging challenges and resolutions reported by students
in their portfolios and interviews and found not only a wide
range of computational concepts but also the development
of specific computational practices such as being iterative
and incremental in students’ debugging e-textiles projects.
In the discussion, we address the need for more studies to
recognize other computational practices such as abstraction
and modularization, the potential of hybrid contexts for
debugging, and the social aspects of debugging.

KEYWORDS
computer science education, programming, debugging,
electronic textiles, making

1. INTRODUCTION

Debugging, the process to fix problems in code that prevent
a computer program from functioning as intended, is
recognized as a key computational thinking practice in
engineering and computing (College Board, 2017;
McCauley et al., 2008). In addition to being an important
practice, debugging can also illuminate various areas of
student struggle and provide opportunities for correction and
support (Griffin, 2016). This is evident in studies where
novice programmers’ errors have illuminated
misconceptions about specific concepts such as logical
operators or understanding of control-flow statements (e.g.
Brown & Altadmri, 2014).

Yet, debugging is an issue not just in computer science but
also in engineering education (e.g., Patil & Codner, 2007).
Electronic textiles construction Kits, that include sewable
microcontrollers, sensors, and actuators (Buechley, Peppler,
Eisenberg, & Kafai, 2013), bring engineering and computer
science together and generate, at times, interconnected
problems for debugging. For instance, during the creation of
an e-textile project, problems can occur in the code, in the
circuitry, and in the crafting and physical design itself, and
students need to test and isolate problems, often fix multiple
co-occurring issues that add to the complexity of the project
(e.g., Kafai, Fields, & Searle, 2014). Thus these hybrid
projects provide an opportunity to promote deeper learning
of debugging in engineering and computing, especially if we

consider debugging as a type of in-the-moment problem
solving of projects (not just code) with errors.

In this paper, we investigate high school students’ (14-18
years) debugging in the context of an eight-week long e-
textiles curricular unit that took place within three
introductory Exploring Computer Science classrooms
(hereafter ECS, Margolis & Goode, 2016). During the unit,
students from three classrooms created a series of four open-
ended projects of increasing difficulty. In order to
understand their debugging more deeply, we studied the
problems that students reported they had to debug. Using
end-of-unit written portfolios and interviews where students
reflected on the challenges they encountered while creating
their e-textiles projects, we studied the following questions:
What types of challenges did students face, and in what
content areas as they were making these projects? What
kinds of computational practices did students report in
relation to solving problems that came up? What social
resources did they draw on to debug projects?

2. BACKGROUND

Debugging has been recognized as a key part of
computational thinking for many years (Grover & Pea,
2013). As Papert (1980) noted, “[e]rrors benefit us because
they lead us to study what happened, to understand what
went wrong, and, through understanding, to fix it” (p. 114).
The historical teaching of debugging strategies has focused
on helping students discover their own syntax problems
(e.g., Robertson et al.,, 2004) or providing them with
strategies for fixing and finding bugs (Carver & Risinger,
1987) through a variety of methods, such as debugging
exercises and logs, reflective memos, and collaborative
assignments (e.g., Griffin, 2016). Researchers have also
developed different technical supports in the form of
debugging tools. For instance, Tubaishat (2001) provided
tracing tools, while Thomas, Ratcliffe, and Thomasson
(2004) offered visualizations and Robertson and colleagues
(2004) investigated the timing of interruption tools. Nearly
all of this research focused on on-screen programming since
it was common in introductory programming courses then.
As McCauley and colleagues (2008) noted in their
comprehensive review of debugging research, it is unclear
how findings and strategies developed from these earlier
studies apply to visual programming languages and hybrid
construction Kits such as e-textiles which also involve
collaborative work.

More recently, scholars have started to identify
computational practices in computer science education, a
focus not just on what concepts students are learning but
how they are learning it and what thinking strategies they

27

develop. For instance, in their examination of students
learning Scratch, Brennan and Resnick (2012) identified
four computational practices: being iterative and
incremental, testing and debugging, reusing and remixing,
and abstracting and modularizing—each of which can result
from rich programming experiences. Similarly, Sullivan
(2008) outlined seven types of scientific thinking that
student exhibited while thinking aloud about solving
robotics problems: observing the problem, isolating the
problem, generating a hypothesis, testing a hypothesis,
controlling variables, manipulating variables, evaluating the
solution, and estimating and computing. Together, these
studies suggest taking a broader view of the thinking
processes that debugging involves.

Several studies have shown that e-textiles can provide a
complex context for debugging. The hybrid nature of e-
textiles means that problems can occur in several
overlapping areas of craft, design, circuitry, and coding
(Kafai, Fields, & Searle, 2014; Lee & Fields, 2017). This
means that identifying underlying problems is potentially
tricky. However, prior studies of debugging in e-textiles
have largely focused on areas of circuitry and physical craft,
with only elementary computing concepts appearing in
studies of debugging (see Litts, Kafai, Searle, &
Dieckmeyer, 2016; Fields, Searle, & Kafai, 2016). Lack of
time may be a reason for this since most e-textiles projects
rarely exceed 16-20 hours of time on projects and rarely
include more than one project requiring programming
sensors or actuators. In our study, one goal of the e-textiles
curricular unit design was to engage students more deeply in
computational aspects of e-textiles for more time (roughly
40 hours of class time) with two projects involving coding.

Further, we intentionally looked at whether students
discussed getting help from others in their descriptions of
debugging in an effort to understand the collaborative nature
of debugging. Previous debugging studies have focused
mostly on individuals as if learning to debug was solely an
individual endeavor (e.g. Fitzgerald et al., 2008). Yet
learning in computer science does not happen in isolation.
Kafai and Burke (2014) called for a reconceptualization of
computational thinking as computational participation,
explicitly recognizing the collaborative nature of computing.
As collaboration is recognized as a key computational
practice for learners to develop (College Board, 2017), some
studies have noted the role of others in problem solving with
computers or robotics. For instance, Deitrick and
colleagues’ (2015) analysis of a programming class through
a socio-historical lens wuncovers the intricacies of
collaborative contexts where students, teachers and tools
play a definite role in computational learning. Further,
Jordan and McDaniel (2014) found that peers serve as a
resource for managing uncertainty during problem solving.
Yet much more needs to be understood about collaboration
with debugging, especially in informal or ill-structured
groups (versus pairs or small groups).

3. CONTEXT AND PARTICIPANTS

The ECS initiative comprises a one-year introductory
computer science curriculum with a two-year professional
development sequence. This inquiry-based curriculum has
been successfully implemented with over 20,000 students.

In 2016, we co-developed an e-textiles unit for the ECS
curriculum and piloted it with two teachers, focusing on
teacher practices of making (see Fields, Kafai, Nakajima,
Goode, & Margolis, in press). We revised the unit in 2017
and piloted it with three teachers, this time with a focus on
student learning (the broader focus of this paper).

The revised unit took place over eight weeks and consisted
of a series of four projects: 1) a paper-card using a simple
circuit, 2) a wristband with three LEDs in parallel, 3) a
classroom-wide mural project where pairs of students
created portions that each incorporated two switches to
computationally create four lighting patterns, and 4) a
“human sensor” project that used two aluminum foil
conductive patches that when squeezed generated a range of
data to be used as conditions for lighting effects. Student
artifacts included stuffed animals, paper cranes, and
wearable shirts or hoodies, all augmented with the sensors
and actuators. All the students also documented their
projects in portfolios in which they summarized their
projects, shared challenges that they faced, and reflected on
their learning during the e-textiles unit.

In Spring 2017, three high school teachers, each with 8-12
years of computer science classroom teaching experience,
piloted the e-textiles unit in their ECS classes in three large
public secondary schools in a major city in the western
United States. All three schools had socioeconomically
disadvantaged students (59-89% of students at each school)
with ethnically non-dominant populations (i.e., the majority
of the students at each school include African American,
Hispanic/Latino, or southeast Asian students). In School 1,
Angela taught 22 students (6 girls and 16 boys), in School 2,
Ben taught 36 students (17 girls and 19 boys), and in School
3, José taught 29 students (20 girls, 9 boys). All the students
were of 14-18 years of age. All names of teachers and
students are pseudonyms.

4. DATA COLLECTION AND ANALYSIS
Data for this project include all written portfolios submitted
by consenting students (69 students from 3 classrooms) and
interviews with pairs of students from each classroom (16
students total) discussing problems they encountered while
making their e-textiles artifacts. We began analysis by
identifying debugging episodes that students reported in
their interviews and portfolios. We then grouped these
episodes student-wise (69 students), combining two or more
challenges whenever a student shared the same issue, both
in the interview and the portfolio. This resulted in 210 total
debugging episodes.

We coded the debugging episodes in a number of ways,
drawing on concepts and frameworks from prior studies
whenever applicable. To begin, each episode was classified
by content (crafting, circuitry, programming, and design)
and then sub-classified within more specific areas of these
domains. For instance, we subdivided circuitry based on
codes by Peppler and Glosson’s (2012) research on e-
textiles: connections, polarity, and current flow. For
programming, we drew on Brennan and Resnick’s (2012)
framework of computational concepts: data, events,
sequence, conditionals, logic operators, and loops. We also
included syntax, an issue specific to text-based

28

programming language. However, with very little prior
research done to understand student challenges in designing
and crafting, we needed to develop new codes to categorize
these challenges, including sewing mechanics, physical
construction, and three-dimensional issues of design.
Multiple codes could be used for each episode, since areas
often overlapped (e.g., a problem involving both circuitry
and code). We also included a “general” subcategory in
cases of vaguely described problems.

In addition to analyzing content domains, we looked at
computational practices students exhibited in their
descriptions of the debugging process. For this we used both
Brennan and Resnick’s (2012) framework of computational
practices and Sullivan’s further subdivision of problem
solving with robotics (see Section 2 for descriptions).
Notably, Brennan and Resnick classify “testing and
debugging” as one computational practice. However, while
problem solving their projects, students often reported
practices such as being iterative, so we included all practices
identified by Brennan and Resnick and Sullivan in our
coding of debugging episodes.

Finally, we considered the larger context of debugging,
specifically what resources students used to resolve
problems, including digital tools (e.g., Arduino IDE error
message bar), physical tools (e.g., seam rippers or curved
needles), or social resources (e.g., peers, teachers). Few
students reported the use of digital or physical tools.
However, many students frequently listed collaboration as a
key resource while debugging. Below we share overarching
findings from this analysis, focusing on computational
concepts, computational practices, and collaborative
resources to debug e-textiles projects.

5. FINDINGS

In the following sections, we report our findings under three
categories-computational concepts, practices, and the
collaboration that emerged from student portfolios and
interviews analysis.

5.1. Computational Concepts Involved in Debugging

In earlier studies of debugging with e-textiles, crafting,
circuitry, and simple computational challenges were the
primary areas of debugging (Litts et al., 2016; Fields et al.,
2016). In this study we found similar reporting of problems
that arose in crafting and circuitry, but we also identified two
other areas of debugging that were not discussed in earlier
studies. First, students in our study reported coding
challenges almost as often as crafting or circuitry and this
highlighted some key coding concepts. Second, students
also encountered new challenges in three-dimensional
design. We describe these two areas in more detail below.

Among the 210 total debugging episodes, concepts
discussed were almost evenly distributed across coding
(29%), crafting (30%), and circuitry (28%). Within the
episodes that discussed coding challenges and resolutions, a
wide variety of concepts were reported, ranging from simple
problems with syntax and labeling to more advanced issues
with logical operators and control-flow statements. Forty-
three students across three classes mentioned coding
challenges at least once: a total of 61 episodes. Of these

debugging episodes focused on code, 64% of included
“simple” issues that involved syntax, mislabeling variables
or incorrect usage of constants. For example, some of these
bugs included fixing brackets in conditional statements and
functions, and mislabeling a sensor as “OUTPUT” instead
of “INPUT.” While these are still relatively simple issues,
resolving syntactical and labeling bugs such as these is a key
practice in coding (McCauley et al., 2008).

However, 36% of the coding issues shared revolved around
more complex computational concepts such as determining
mathematical expressions for ranges of sensor values and
managing multiple conditional statements. Consider David
(School 1), who had difficulty determining the most
effective ranges for his human sensor project. This project
included two conductive patches that created a range of
numerical values depending on how hard someone
squeezed. Students had to create four ranges of these values
and program them to trigger different lighting patterns. As
David expressed, “it was harder to think of how big your
range had to be so that it would actually react to how you
want it to be.” After he realized his first attempt at coding
ranges was inadequate, he iteratively tested the sensor, and
represented a sequence of readings on a number line. Many
students struggled with coding the ranges on their patches
and took substantial time to fix them. Other more complex
challenges that students faced included organizing multiple
conditionals, especially if they involved two stages (i.e.,
using “if , else " instead of just a series of “if”
statements), using additional sensors (e.g., light sensor) or
in-built functions (e.g., random number generator). The
variety and relative complexity of coding challenges
reported by students highlight the affordances of e-textiles
to support debugging both simple and advanced
computational coding concepts.

Besides struggles with coding, another new area of struggle
involved designing circuits on a three-dimensional artifact
such as a stuffed animal or sweatshirt, especially common in
the human sensor project. These designs required students to
plan their circuitry two-dimensionally on paper but translate
it onto a three-dimensional item. This posed new challenges
to students. Thirteen of the 69 students (19%) specifically
mentioned this issue within their debugging. For instance,
while making his “Angry Bird” stuffed animal project,
Rodrigo (School 1) realized he had to change his circuitry
once he started working in three dimensions. “l made these
changes because it was difficult planning out a 3D model on
paper and if I hadn’t made changes to the pin numbers, then
the paths would have crossed,” he explained. Photos from
his portfolios are visible in Figure 1, where he showed two
sides of the stuffed animal as well as his final circuitry
diagram highlighting those same two sides (front and
bottom). Though issues of three-dimensional circuitry
design have not appeared previously in work on learning
with e-textiles in K-12 education, it has come up with
university students during clinical interviews (Lee & Fields,
2017), suggesting it may be an area of debugging that
students face while working on more advanced projects.
This also raises opportunities to consider spatial thinking in
e-textiles design.

29

| ‘& \ / y/ S
Sy ‘)} e\ 20 <.

i

200L!

Figure 1. Rodrigo’s Angry Bird project (top left to right
clockwise): Upper view; bottom view (showing
microcontroller); Circuit diagram.

5.2. Computational Practices Related to Debugging

In addition to content areas of debugging, we also sought to
better understand the process of debugging, analyzing this
through the computational practices lenses. Out of 69
students, 60 shared at least one of the four standard
computational practices suggested by Brennan and Resnick
(2012) in their framework. Out of these four practices,
testing and debugging was the most mentioned (47
students), followed by iterative and incremental practices
(35 students). The two other practices, abstraction and
modularization, and reusing and remixing were rarely
discussed. This may be because of how the questions were
phrased in interviews and in the portfolio, which focused on
challenges students faced. For instance, in their focus on
problems, students did not mention remixing designs
although remixing and reusing daily-use items such as
backpacks and soft toys was an integral part of their human
sensor project. Further, though there were opportunities for
applying abstraction and modularity (i.e., breaking down a
project and/or code into parts), this did not seem to be a
conscious way that students thought about this process with
regard to problem solving. However, yet another
computational practice that emerged from student
descriptions was collaboration, which is also presented as a
perspective in Brennan and Resnick’s (2012) framework.
Thirty-six students reported on collaboration as an integral
aspect of fixing errors, leading us to suggest collaboration as
more of a computational practice rather than a perspective
developed, which we will elaborate shortly.

Though all debugging episodes concerned students fixing
issues, in some instances students shared more specific
details about how they identified, isolated, and otherwise
focused on understanding a particular problem. In these 47
instances, we coded for specific areas that Sullivan (2008)
identified. The most prominent of these were observing the
problem (46 students), isolating the problem (43 students),
and generating a hypothesis about the cause of the problem
(35 students). As an example, consider how Alexa and
Antonio (School 2) worked through a series of circuitry
problems in their Pacman-themed mural project (see Figure
2). As Alexa expressed in her portfolio: “[In] our first design
we wanted the playground on the back of project. When we
tried that, the conductive thread crossed each other... We
dealt with our problem by redesigning our project, so that
the playground was in the front and the conductive thread

wasn’t touching.” Alexa and Antonio first observed the
source of the error as the short-circuit (crossed threads) and
hypothesized that the spatial placement of the Circuit
Playground (microcontroller) at the back of their Pacman
mat was causing the short circuit. They were able to isolate
specific locations where these short circuits occurred and
plan their next iteration to fix them.

Figure 2. Alexa and Antonio’s Pacman project

Along with testing and debugging, being incremental and
iterative was another other key computational practice
evident in student narrations. Of the 35 students who shared
about this, 29 discussed incrementally revising their project
design and 10 shared about repeatedly testing their sensor
values and adjusting their project code to suit the varying
values. (Note: we classified repeated testing of a problem
under iteration rather than testing and debugging). One of
the key challenges underlying revisions was translating
project plans from paper representations to physical
artifacts. As previously mentioned, many students had to
revise their project upon realizing that their plan on paper
did not work when sewn in three dimensions. For instance
Alma (School 2) expressed that “[Wlhen sewing [our
project] we realized that everything was basically
backwards” and had to substantially change the placement
of each LED so to have “clean lines” without short circuits.

Besides design translations, the other major area of being
iterative and incremental was in testing the sensor patches.
Here David (School 1) again provides an explanation for
what iterative testing looked like:

So from my last project, it was a human sensor and my
scales were... pretty much wrong to the point where only
one pattern worked... [T]o fix the problem... I slowly
started testing out. So, | touched it. Okay, this is the
values for a light touch, just inputted that. I said, ‘let’s
squeezed it harder.” [sic] I looked at the values, and
inputted that... As Ilooked at the values, I am like, okay,
the range from this to the next pattern, it’s kinda too
small. So | have to make it bigger so that it can be a bit
more sensitive.

This encouraging example of iteration demonstrates the
careful way that some students had to work to program their
sensors. Often their first attempt would result in poorly
thought-out ranges, and, like David, students had to proceed
through cycles of testing and adjusting the range of values
corresponding to squeezing. Though only 10 students
described this particular process, it is a practice that could be
expanded on more intentionally in future iterations of the
curriculum and in debugging pedagogy more generally.

5.3. Collaboration Contexts Related to Debugging
One unexpected finding was how often students’ debugging
involved collaboration with classmates, partners and

30

teachers. Most students (75%) explicitly mentioned help
they received from peers or a teacher in at least one of the
challenges they described (in 36% of the challenges overall).
Unlike an earlier study that observed low peer collaboration
in e-textiles (Litts et al., 2016), this analysis revealed student
engagement with different types of collaborators throughout
their e-textiles debugging, from their immediate partners on
a project, to students at the same table, to the wider class
community.

Students reported different kinds of supports that they
received from peers and teachers across a range of issues—
from identification of syntactical errors to understanding
concepts such as conditional statements. An example for a
simple support includes Ethan’s (School 3) reporting of dim
lights in his quilt project. His classmate helped him locate
and isolate the problem: missing a line in the setup section
of the code that initialized the pin to OUTPUT. Students also
mentioned getting help with more complex struggles. For
instance, Allie (School 2) used her classmates to test the
sensors of her human sensor project, using “different
people's pressure” and changing the ranges in her project.
Surprisingly, students rarely mentioned teacher participation
in debugging (close to 11% of challenges).

Collaboration was mentioned frequently in students’ reports
of debugging although students were graded individually for
this unit. That so much collaboration was evident in these
contexts suggests that there is much more to discover about
unstructured peer-to-peer debugging in students’ e-textiles
design processes and in debugging open-ended
computational projects.

6. DISCUSSION

Our analysis of student challenges and solutions
demonstrates that debugging open-ended e-textiles projects
can provide a rich context for students to experience a range
of computational concepts and practices. Our study noted
promising new areas of conceptual struggles for e-textiles
students, specifically in the domains of coding and three-
dimensional design. We think this is because students were
able to go deeper in these areas with two advanced e-textiles
projects compared to prior studies that only had one such
project (e.g., Fields et al., 2016; Litts et al., 2016). This
suggests that pursuing a series of challenging e-textiles
projects may provide more opportunities for deeper learning
of computing concepts and practices than just one or two
projects. It also raises the potential for supporting debugging
more generally by creating a series of projects in other
computational domains, not just e-textiles.

In addition to conceptual learning, students in this study
reported using certain computational practices such as being
iterative, testing and debugging, and collaboratively
problem solving. Interestingly, within the area of debugging,
students’ reports consistently highlighted the need to
identify and isolate problems, something that should not be
trivialized. Unlike other studies of debugging that focus
solely on debugging code (e.g., Brown & Altadmri, 2014),
students with e-textiles projects had to consider the origin of
a bug from among several possibilities: code, circuitry, craft,
or spatial design. Yet, we also recognize that this study was
limited to students’ reporting of bugs rather than a study of

observing of how they actually solved them. This opens up
the need for deeper research on students’ in-the-moment
debugging to see whether students engage in other steps of
debugging such as manipulation of variables, evaluation of
solutions, and estimation of data.

One other key finding was frequent student collaboration
during problem solving. Students shared collaboration not
only at the level of formal pairs and small groups but within
the broader classroom, turning the class into a community of
learners. The physical layout of the classroom with tables
and shared supplies along with the teachers’ allowing
students to move between tables may have encouraged this
fluid collaboration (Fields et al., in press). More so, these
findings call for a reconceptualization of collaboration in
these spaces to better understand the roles taken on by
different participants. A closer look at these types of settings
may help us understand and classify different kinds of
supports students provide to each other. Such an analysis
could also help us understand the supportive role of teachers
in creating collaborative classrooms, informing the
development of new pedagogical approaches for students
and professional development for teachers.

The interdisciplinary nature of e-textiles provided a unique
opportunity to study debugging in a hybrid context. Further,
the ability of debugging exercises to develop computational
thinking and practices in learners has called for “explicit
instruction in debugging [to] be fundamental to any
beginning programming class” (p. 86, McCauley et al.,
2008). If debugging is a core area of computation, then as a
field we need to look beyond code-only settings of
computation to hybrid settings (including but not limited to
e-textiles) where students are introduced to debugging in
more challenging situations which demand multiple
iterations of revising and testing. Further, more studies of
debugging are needed in many contexts that look at it less as
an individualistic and more as a social practice, moving from
computational thinking to computational participation
(Kafai & Burke, 2014).

7. ACKNOWLEDGEMENTS

This work was supported by grants from the National
Science Foundation to Yasmin Kafai, Jane Margolis, and
Joanna Goode (# 1509245), and Yasmin Kafai and Mike
Eisenberg (#1742140). Any opinions, findings, and
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of NSF, the University of Pennsylvania, or Utah State
University. Special thanks to Tomoko Nakajima for her help
with data collection and to Debora Lui, Justice T. Walker,
and Mia Shaw for their valuable feedback.

8. REFERENCES

Brennan, K. and Resnick, M. (2012, April). New
frameworks for studying and assessing the development
of computational thinking. Annual Meeting of the
American Educational Research Association Vancouver,
BC, Canada.

Brown, N. C., & Altadmri, A. (2014, July). Investigating
novice programming mistakes: Educator beliefs vs.
student data. In Proceedings of the tenth annual

31

conference on International computing education
research (pp. 43-50). New York, NY: ACM.

Buechley, L., Peppler, K. A., Eisenberg, M. & Kafai, Y. B.
(Eds.) (2013). Textile Messages: Dispatches from the
Word of Electronic Textiles and Education. New York,
NY: Peter Lang Publishers.

Carver, S. & Risinger, S. (1987). Improving children’s
debugging skills. In G. Olson, S. Sheppard & E. Soloway
(Eds.), Empirical Studies of Programmers: Second
Workshop (pp. 147-171). Norwood, NJ: Ablex.

College Board (2017). Advanced Placement Computer
Science Principles Course Guide. Retrieved from
https://apcentral.collegeboard.org/pdf/ap-computer-
science-principles-course-and-exam-description.pdf

Deitrick, E., Shapiro, R. B., Ahrens, M. P., Fiebrink, R.,
Lehrman, P. D., & Farooq, S. (2015, July). Using
distributed cognition theory to analyze collaborative
computer science learning. In Proceedings of the eleventh
annual International Conference on International
Computing Education Research (pp. 51-60). New York,
NY: ACM.

Fields, D. A., Searle, K. A., & Kafai, Y. B (2016).
Deconstruction kits for learning: Students’ collaborative
debugging of electronic textile designs. In FabLearn 16,
Proceedings of the 6th Annual Conference on Creativity
and Fabrication in Education (pp. 82-85). New York,
NY: ACM.

Fields, D. A., Kafai, Y. B., Nakajima, T. M., Goode, J. &
Margolis J. (in press). Putting making into high school
computer science classrooms: Promoting equity in
teaching and learning with electronic textiles in Exploring
Computer Science. Equity and Excellence in Education

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy,
L., Simon, B., Thomas, L., & Zander, C. (2008).
Debugging: finding, fixing and flailing, a multi-
institutional study of novice debuggers. Computer
Science Education, 18(2), 93-116.

Griffin, J. M. (2016, September). Learning by taking apart:
deconstructing code by reading, tracing, and debugging.
In Proceedings of the 17th Annual Conference on
Information Technology Education (pp. 148-153). New
York, NY: ACM.

Grover, S., & Pea, R. (2013). Computational thinking in
K-12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Jordan, M. E., & McDaniel Jr, R. R. (2014). Managing
uncertainty during collaborative problem solving in
elementary school teams: The role of peer influence in
robotics engineering activity. Journal of the Learning
Sciences, 23(4), 490-536.

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why
children need to learn programming. MIT Press.

Kafai, Y., Fields, D., & Searle, K. (2014). Electronic
textiles as disruptive designs: Supporting and challenging
maker activities in schools. Harvard Educational Review,
84(4), 532-556.

Lee, V. R. & Fields, D. A. (2017). Changes in
undergraduate student competences in the areas of
circuitry, crafting, and computation after a course using
e-textiles. International Journal of Information and
Learning Technology, 34(5), 372-384.

Litts, B. K., Kafai, Y. B., Searle, K. A., & Dieckmeyer, E.
(2016). Perceptions of productive failure in design
projects: High school students’ challenges in making
electronic textiles. International Conference of the
Learning Sciences, 498-505.

Litts, B. K., Kafai, Y.B., Lui, D. A., Walker, J. T., &
Widman, S.A. (2017). Stitching codeable circuits: high
school students' learning about circuitry and coding with
electronic textiles. Journal of Science Education and
Technology, 26(5), 494-507.

Margolis, J., & Goode, J. (2016). Ten Lessons for CS for
All. ACM Inroads, 7(4), 58-66.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy,
L., Simon, B., Thomas, L., & Zander, C. (2008).
Debugging: a review of the literature from an educational
perspective. Computer Science Education, 18(2), 67-92.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York, NY: Basic Books.

Patil, A., & Codner, G. (2007). Accreditation of
engineering education: review, observations and proposal
for global accreditation. European Journal of
Engineering Education, 32(6), 639-651.

Peppler, K., & Glosson, D. (2012). Stitching circuits:
Learning about circuitry through e-textile materials.
Journal of Science Education and Technology, 22(5),
751-763.

Robertson, T., Prabhakararao, S., Burnett, M., Cook, C.,
Ruthruff, F., Beckwith, L., et al., (2004). Impact of
interruption style on end-user debugging. In E. Dykstra-
Erickson & M. Tscheligi (Eds.). Proceedings of CHI 04
(pp. 287-294). New York, NY: ACM.

Sullivan, F. R. (2008). Robotics and science literacy:
Thinking skills, science process skills and systems
understanding. Journal of Research in Science
Teaching, 45(3), 373-394.

Thomas, L., Ratcliffe, M. & Thomasson, B. (2004).
Scaffolding with object diagrams in first year
programming classes: Some unexpected results. ACM
Inroads, 36(1), 250-254.

Tubaishat, A. (2001). A knowledge base for program
debugging. In Proceedings of the International
Conference on Computer Systems and Applications (pp.
321-327). Beirut: IEEE Press

32

https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

A School-wide Approach to Infusing Coding in the Curriculum

Sirajutheen Shahul HAMEED?, Chee-wah LOW?, Poh-tin LEE?, Nur lllya Nafiza MOHAMED? ,Wuay-boon NG?,
Peter SEOW?, Bimlesh WADHWA?
'Bukit View Secondary School, Singapore
2National Institute of Education, Nanyang Technological University, Singapore
3 National University of Singapore, Singapore
sirajutheen_shahul_hameed@moe.edu.sg, chee_wah_low@moe.edu.sg, poh_tin_lee@moe.edu.sg,
nur_illya_nafiza_mohamed@moe.edu.sg, wuay_boon_ng@moe.edu.sg, peter.seow@nie.edu.sg, bimlesh@nus.edu.sg,

ABSTRACT

This paper shares a school’s journey in the implementation
of a school-wide programme for students to learn and apply
computing over the years in school. The school leaders see
the value of having students learn computing and coding as
it provides students with opportunities to understand how
technology works and applies to solve problems in the
world. The school worked towards the design of a
programme that enables all students to learn coding. The
design of the programme is underpinned by Papert’s theory
of Constructionism which postulates that students learn best
when engaged in concrete experiences of creating artefacts.
In implementing a school-wide programme that would span
over a student educational experience in school, the school
is cognizant of issues of a packed school curriculum and
teachers’ lack of experiences in computing. The school
addressed the issue of a packed curriculum by structuring
time for learning computing in the time table and integrating
with school subjects. Training partners were engaged to
work with teachers in designing and integrating computing
with the subjects to address the lack of teachers’ experience.
Teachers’ capacity continue to be developed as they gain
competence in computing. The school continues to improve
the programme for sustainability and richer learning
experience for the students.

KEYWORDS
Coding, Computing,
Implementation.

1. INTRODUCTION

Computing technology has changed the way we live, work
and learn about the world around us. Beyond being users of
technology, there is a need to understand how computing
technology works and apply this understanding to solve
problems and innovate new ideas that would improve our
lives. Computing technology is transforming manufacturing
with the vision of Industry 4.0 integrating Cybernetics, data
analytics, cloud computing, Machine learning and Internet
of Things to create Smart factories that monitor processes
and make decentralized decisions. The emergence of how
various computing technologies are integrated and utilised
is creating a demand for new skills and capacity to drive the
economy. Hence, there is a need for students to better
understand how computing technology works and harness
it use to improve lives. Around the world, there is a growing
emphasis on introducing Computational Thinking and
coding to students in schools (Brown, Sentence, Crick and
Humphreys, 2014). Countries such as England have made
the teaching of CT skills compulsory in the curriculum and
all students will learn programming (DfE, 2017). Japan,

school-wide programmes,

Korea and Malaysia have announced plans to introduce
programming as part of students’ compulsory education
(Japan Times, 2017; APFC, 2017). However, implementing
programming as compulsory education and the integrating
Computational Thinking into the curriculum is challenging
(Sentence and Csizmadia, 2017)

In our context, we find, teachers lack the content and
pedagogical knowledge of Computing and Computational
Thinking to know how to integrate into the curriculum.
Compared to established fields of study in Sciences such as
Physics or Chemistry, the study of Computer Science in K-
12 is relative new as the computing technology is still
evolving. Teacher training institution does not offer
programmes to train teacher in teaching Computing as a
subject. Interested teachers do not have the opportunities to
learn Computing and pedagogy of teaching Computing.
Teachers need to have a Computing background or undergo
Computing training to teach Computing to students. The
lack of teachers with required skills and content knowledge
impedes the teaching of Computing and Computational
Thinking if all students in a school are to be taught. Second,
teaching Computing and Computational Thinking is still an
emerging field of study in K-12 education settings
compared to tertiary education. At the tertiary level,
students pursue computing degrees which provides
opportunities for them to learn the theory of Computing and
develop the practice over the course of the study. Their
programming skills and craft are developed when they work
on projects and assignments in various topics like learning
programming languages, operating systems, artificial
intelligence, computer networks, data sciences and
databases. Computing covers a wide field of study with
concepts that are difficult to introduce in K-12 settings.
Teachers need to know what topics are relevant and
appropriate to teach the students in K-12 schools. Lastly,
there is lack of the curriculum time and space for schools to
integrate the teaching of Computing and Computational
Thinking. Students in Singapore secondary schools are
required to take the core subjects of English, Mother
Tongue, Mathematics, Sciences, Social Studies, and
Humanities. In addition, there are Co-Curricular activities
which all students are to participate as part of their holistic
education. There are school wide programs in niche areas
of learning such as leadership, entrepreneurship, drama or
environment science with programs. Even if schools want
to introduce Computing to all students, it is a challenge to
find the time to implement the teaching of Computing and
Computational Thinking in a crowded curriculum space.

This paper documents a school’s journey in developing a
school-wide programme — Coding and Computational

33

Thinking infUSed Curriculum (CaCTus) for teaching
Computing and Computational Thinking. The school
leaders and teachers worked together to implement a
school-wide curriculum that introduces students to the
concepts of Computing and Computational Thinking over 3
to 4 years of their studies in the school. The programme is
designed for students to learn and apply Computing
concepts through integration with school subjects that they
are learning in the classroom.

2. SCHOOL BACKGROUND

Bukit View Secondary School (BVSS) resides in the typical
surburban neighbourhood in Singapore. The student
enrolment is 1005 with 61% Chinese, 18% Malay, 16%
Indian and 5% Others (compared to 74.3% Chinese, 13.3%
Malay, 9.1% Indian and 3.3% Others nationally) housed in
25 classes in 2017. About 45% of the students speak
English (compared to 36.9% nationally)# as their main
language of communication at home with the rest using
their Mother Tongue. The profile of the parents’ highest
education attained for Secondary/ITE, Pre-U/Polytechnic
and University are 46%, 25% and 25% respectively
(compared to 26.1, 14.6, 30.7 nationally).

BVSS has offered Computer Studies as an O-Level subject
since 2006. Since 2017, BVSS is only one of 19 schools in
Singapore that offers the new Computing syllabus.

3. DESIGN OF THE CACTUS

CURRICULUM

The school leaders and teachers saw the importance of
learning Computing as it has the potential to develop
problem solving skills for students in the world they live in.
Also, the school leaders saw strong connection of
Computing to other disciplines such as Mathematics,
Engineering, Science, and Design and Technology.
Acquiring skills in computing can be applied in above
subjects. Also, using Computing can help solve problems in
the domains in health care, environment, business, and
engineering. Finding solutions to some of these problems
requires computational skills and knowledge. Above
observations formed basis for setting out following goals of
CaCTus:

e To enable BVSS students to better understand the
fast evolving world due to digitalization.

e To improve BVSS students’ thinking skills in
applying the concepts to solve problems in a
dynamic way.

e Toopen doors to a host of opportunities for BVSS
students in the future, regardless of the career
path.

The design of the CaCTus draws from the ideas of Papert’s
idea of Constructionism (Paper and Harel, 1991). Based on
Piaget’s constructionist theory[] of learning where students
construct their own knowledge from their prior
understanding, Papert extends it by stating that students
learn as they are engaged in meaningful concrete
experiences. These concrete experiences can be in a form of
designing, constructing and programming an artefact like a
robot or building a kit to measure the quality of water in a

pond. Following such an approach, students are participate
in the process of identifying a problem, experimenting with
various ideas, designing, constructing and testing a solution
to the problem. Through these processes, mental models of
the world around them and their naive scientific concepts
can be constructed and refines. Computers and mobile
phones are now part of everyday lives but they operate very
differently from the mechanical devices with gears and
levers. If students are limited to being users of computing
devices, i.e.seeing only printed circuit board with chips and
LED displays, they will have naive mental models of how
the devices actually function. Having primitiveor
incomplete mental models about computing devices could
impede their learning about and with computers in future.
Developing codes and knowing how computing systems are
created to solve problems can help children to construct
mental models of how technology and their different parts
work together. More importantly, students “can use
programs to understand their world, and manipulate their
world” (Guzdial, 2012). In the CaCTus programme, our
goal is not for students to become Computer Scientists, but
for all students to better understand more about the world
around and their thinking processes as they use technology
in concrete ways to solve problems. It is through a
constructionist approach as Seymour Papert iterated that
“computers might enhance thinking and change patters of
access to knowledge.” (Papert, 1980).

In the design of CaCTus programme, the following ideas
guided us:

e Every student in Bukit View Secondary should
have access to the same learning experiences.

e The learning experiences should be continuous
and connected over their stay in the school.

e Students should develop 21% century skills such as
developing critical thinking skills, solving
problems, collaborating with others and
developing creativity.

e Each student should have a rich experience in
using Computing and Coding to solve problems in
authentic contexts.

e There is a diversity of learning experiences for the
students to learn, construct and apply their
knowledge.

Based on above ideas, the school leaders and teachers
worked together with partners in designing rich learning
experiences for students to apply technology in authentic
context to better understand their world.

4. IMPLEMENTATION OF CACTUS

Since 2013, the school had separate enrichment
programmes for students at various levels to learn coding
such as Scratch. The enrichment programmes were
consolidated and reorganized as CaCTus in 2016 for all
students in the school to have a contiuous learning
experience of Computing and coding from Secondary 1 to
3. A school-wide approach was adopted. However,
implementing a school-wide approach competed with the
demands of curriculum and co-curricular activities. To

34

address this issue, CaCTus was structured into the school
timetable with two 40-minute periods each week over a 20
week semester. A modular approach was taken so that all
students were able to participate and experience computing
programmes. Efforts were also made to integrate the
modular activities with the curriculum in subjects such as
Math, Science, Geography and Design and Technology. For
example, Secondary 1 students were introduced to use
Scratch and create a visual simulation of the Water Cycle in
their Science lesson. For Secondary 2 students, drone
programming was introduced to make them understand how
such technology can be used to study geographical features
in their Geography lessons.

Table 1 shows the various modules that were designed for
students in school from Secondary 1 to Secondary 3.

Table 1. Cactus Modules
Programmes

Scratch Animation — Bio Water Cycle
IDA Lab on Wheels
Coding — Spheros Programmable
Robot
Hour of Code by Salesforce
Learning journey to Salesforce
Scratch Coding — National Education
Salesforce talk on Coding
Sea Perch — Collecting data and
analysis of water quality
Drone programming
Coding workshop @ Nanyang
Polytechnic
Learning journey to IMDA"
Advanced Elective Module
Coding workshops @ Nanyang
Polytechnic

*IMDA — Infocomm Media Development Authority

Secondary 1

Secondary 2

Secondary 3

The programmes were designed to provide students
opportunities to learn computing and coding to understand
the world around them. In the Sea Perch (See Fig. 1),
students collect water quality data from the pond and
analyse the collected quality. It is through the data analysis
that students find meaningful interpretations and understand
the chemical content in the water that otherwise would not
be obvious to them. They have the opportunity to observe
and experience how data is collected through sensors,
manipulated and visualized to determine the quality of
water.

In the design of CaCTus, the goal is to provide every student
with several rich authentic experiences in using computing
and coding to solve problems during their school years. The
students’ learning experiences are not one-0ff but continue
to build on their prior experiences as they move to the next
grade. To operationalize CaCTus, the school planners are
cognizant of the challenges in the design and
implementation of the programme. First, there were not
enough teachers to design and run the computing
programmes. Most of the teachers are subject teachers in
Sciences, Mathematics, Humanities and the Arts, and they
do not know much about coding or integrate coding into
their respective subject curriculum. Teachers’ would
typicaly not buy-in into the program if they feel that they

lack the skills or experience to teach the students. Secondly,
with a packed curriculum schedule, it was a challenge to
implement a programme for all students. A typical student
in Singapore secondary school takes 7 subjects. In addition,
each student would also participate in Co-curricular
activities during the school day as well as other school-wide
programmes such as the Applied Learning Programmes
(ALP) or outdoor programmes such as the Outward Bound
School (OBS).

Figure 1. Sea Perch collecting water quality data.

To address the challenge of lack of computing skills among
teachers, the school leaders and core teachers partnered with
technology training vendors, experienced in coding, and
government agencies such as the Infocomm Media
Development Authority (IMDA). The school leveraged on
funding and resources from IMDA to design and run the
programs. In the initial stages of the implementation, the
training vendors designed the learning experiences with a
selected group of teachers. The teachers ensured that the
learning experiences are aligned to the goals and ideas of
CaCTus. Working with different vendors and activities, the
teachers looked at how the various experiences are
connected and applied to the subjects. Efforts were made to
ensure that students’ experiences are built upon and
continued as they progressed from one grade to another. For
example, students introduced to visual programming tools
in Secondary 1, continue to use the tools such as Scratch
and Microbit Block-based programming in Secondary 2.

In the second year of implementation, school leaders
engaged the training vendors to conduct workshops for all
teachers to learn and participate in coding and computing
experiences. During such workshops, teachers built games
such as Tic-Tac-Toe, and explored various ways to program
Microbit board e.g. displaying their name with the LED
display. Teachers also learnt about algorithmic thinking by
creating sequenced codes to control a robot and drone.
Creating these experiences provided opportunities for
teachers to equip themselves for introducing simple
concepts of how these technologies function, to the
students. Eventually, the goal is for all teachers to think
about how computing and coding can be integrated into
their teaching subject areas such as Math, Science or
Humanities. Also, The school worked with industry
partners such as Salesforce, IMDA and Nanyang
Polytechnic for learning journeys and workshops. The

35

exposure to industry and polytechnics is aimed to enthuse
students in seeing the practice of computing outside school.

5. FUTURE PLAN FOR CACTUS

The school’s Applied Learning Programme (ALP) and
CaCTus programme were run as independent modules over
each semester since 2016. In 2017, the BVSS team
reviewed the ALP and CaCTus programmes and saw
synergies in both. Consequently , the school has decided to
integrate both programmes and move into a year-long
programme for each level. The integrated programme has
been named as the Junior OUtstanding Leaders in Energy
for Sustainability (JOULES) programme. It is a distinctive
programme that focuses on Science, Technology,
Engineering and Mathematics (STEM) education. This
expanded 4-year programme provides students with
knowledge and experience in design thinking and coding
for environment and sustainable energy.

JOULES emphasizes on STEM and environmental
advocacy to develop leaders of the future who will continue
to champion sustainable development through the use of
technology. Raising the innovation quotient amongst the
student population is another aim of the programme. It is
also hoped that the enriching experience of the JOULES
programme will inspire their students to pursue relevant
STEM courses in their higher education, and contribute
positively to Singapore and the world.

The student outcomes include the following skills and
dispositions: problem solving, design thinking,
computational thinking, scientific literacy and inquiry, and
mathematical reasoning.

6. CONCLUSION

This paper shares the experiences of designing and
implementing a school-wide approach for all students in the
school to learn and apply computing. The school leaders
recognized the importance for all students to have
experiences in learning computing by structuring
programmes into the time table as a subject and integrating
computing into subjects such as Mathematics, Science, and
Geography. Students could learn to apply coding into the
subjects and teachers could better integrate computing into
their subjects. The school leveraged on training partners to
work with school teachers in the initial phases to address the
lack of computing experience. In the later stages, the school
sought to develop teachers’ competence in using computing

for their subjects. To better sustain the programme and
provide students’ a richer learning experience, the new
programme aims to develop students’ skills in
Computational thinking, design thinking, inquiry and
problems solving. We hope that sharing the school’s
journey would provide some understanding in how schools
can implement programmes in learning computing for all
students in the school.

7. REFERENCES

APFC (2017). Preparing Students for South Korea’s
Creative Economy: The Successes and Challenges of
Educational Reform. Retrieved Feb 13, 2017, from
http://www.asiapacific.ca/research-report/preparing-
students-south-koreas-creative-economy-successes

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S.
(2014). Restart: The resurgence of computer science in
UK schools. ACM Transactions on Computing
Education (TOCE), 14(2), 9

DfE. (2017). National Curriculum in England: computing
programmes of study. Retrieved Feb 13, 2017, from
https://www.gov.uk/government/publications/national -
curriculum-in-england-computing-programmes-of-
study/national-curriculum-in-england-computing-
programmes-of-study

Guzdial, M. (2012, May). 21st Century Literacy includes
Computing for Everyone [Video file]. Retrieved
from https://www.youtube.com/watch?v=mGc6clf _Wt4
&feature=youtu.be&t=16m33s

Japan Times. (2017). Computer programming seen as key
to Japan's place in ‘fourth industrial revolution’
Retrieved Feb 13, 2017, from
http://www.japantimes.co.jp/news/2016/06/10/business/t
ech/computer-programming-industry-seen-key-japans-
place-fourth-industrial-revolution/#. WKG2P_197b0

Papert, S., & Harel, I. (1991). Situating
constructionism. Constructionism, 36(2), 1-11.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. Basic Books, Inc.

Sentance, S., & Csizmadia, A. (2017). Computing in the
curriculum: Challenges and strategies from a teacher’s
perspective. Education and Information
Technologies, 22(2)

36

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Learning to Code—Does It Help Students to Improve Their Thinking Skills?

Ronny SCHERERY, Fazilat SIDDIQ?, Barbara SANCHEZ VIVEROS?
1 Centre for Educational Measurement at the University of Oslo (CEMO), Faculty of Educational Sciences, Oslo, Norway
2The Nordic Institute for Studies in Innovation, Research and Education (NIFU), Oslo, Norway
3 Humboldt-Universitét zu Berlin, Berlin, Germany
Ronny.scherer@cemo.uio.no, Fazilat.siddig@nifu.no, Saviverb@hu-berlin.de

ABSTRACT

Learning to code is claimed to be associated with
improvements in other cognitive skills, such creative
thinking, reasoning, and mathematical skills. Although the
claims surround this transferability of coding skills have
already been made in the 1980s and 1990s, the existing body
of research does not provide clear insights into the transfer
effects of learning to code. The current meta-analytic review
shed lights on these effects. We retrieved an overall sample
of 105 experimental and quasi-experimental studies with
posttest-only or pretest-posttest treatment-control group
designs and extracted 539 effect sizes. A three-level
random-effects modeling approach revealed an overall
transfer effect size of g = +0.49. Differentiating between the
types of cognitive skills (i.e., coding, reasoning, creativity,
and math skills), however, indicated differential effects.
Study and sample characteristics were further examined as
possible moderators. Overall, this study identifies positive
transfer effects of learning to code on cognitive skills.

KEYWORDS
Coding skills, transfer effects, meta-analysis, cognitive
skills

1. INTRODUCTION

Undoubtedly, the rapid developments in technology
have impacted many areas of society. Even in education—a
field that is known for its slow progress—things are
changing: Educational systems around the world include
teaching programs that will help students to acquire skills
beyond literacy and numeracy. Among others, these skills
comprise complex problem solving, global competences,
critical thinking, creativity, digital literacy, and
computational thinking (Binkley et al., 2012; ICILS, 2018).
Interestingly, the latter has recently gained considerable
attention. Bill Gates, for example, established its importance
by stating that “Learning to write programs stretches your
mind, and helps you think better, creates a way of thinking
about things that | think is helpful in all domains”. The claim
that learning to code—a critical step in the process of
acquiring computational thinking skills (Denning, 2010;
Grover & Pea, 2013; Shute et al., 2017)—transfers to other
cognitive skills, however, stands on shaky legs. Scherer
(2016) concludes that studies examining transfer effects
disagree in the extent to which these effects can be
established for specific cognitive skills. Sala and Gobet
(2017) warn against the assumption that learning a specific
skill improves other skills as well. The authors further
propose to examine hypothesized transfer effects meta-
analytically to synthesize the body of existing evidence. At
this point, we notice that the concept of computational

thinking is broader than coding, albeit coding is the essential
part of it (Shute et al., 2017).

Although the discussion surrounding the transfer-ability
of learning to code on other cognitive skills dates to the
1980s and 1990s, the existing body of research abounds in
conflicting findings, and previous attempts to meta-analyse
the transfer effects were flawed (Scherer, 2016). For
instance, Liao and Bright (1991) extracted 432 effect sizes
from 65 studies and summarized them to an overall transfer
effect size of d = +0.41. Although this finding indicates that
positive transfer to other cognitive skills may exist, the
authors neglected (a) the clustered structure of their data set
(i.e., effect sizes are nested in studies), and (b) the possible,
differences in effects between cognitive skills. Later, Liao
(2000) provided an update and presented on overall effect of
d = +0.76, obtained from only 22 studies. Since then, the
critical question whether learning to code improves
cognitive skills has not been addressed explicitly in meta-
analyses.

The present study tests the claim that learning to code
transfers to the acquisition of other cognitive skills.
Synthesizing the empirical evidence on transfer effects, we
take two main steps: First, an overall effect size is presented,
and its variation within and across studies is quantified.
Second, possible moderation effects of selected study
characteristics are explored to explain this variation.

2. METHODOLOGICAL APPROACH

This section describes the meta-analytic procedures,
including the literature search and screening, the sample
obtained from them, and the statistical approaches taken to
summarize the transfer effects of coding skills.

2.1. Literature Search and Screening

Relevant literature was identified in existing databases—
including PsycINFO, ERIC, IEEE Xplore, ACM Digital
Library—next to academic journals relevant to the field
(e.g., Computers & Education, Computers in Human
Behavior), existing reviews and meta-analyses (e.g., Liao &
Bright, 1991; Liao, 2000; Shute et al., 2017), and informal
resources (e.g., ResearchGate, personal contact with
authors, publication lists of scholars). The literature search
was constrained to studies that had been published between
1965 and 2017. After an initial screening of titles and
abstracts with respect to their topic fit (i.e., computer coding)
and the empirical nature of the presented study, abstracts and
full texts were submitted to a more fine-grained screening.
This screening was based on the following inclusion criteria:

(a) Study design and control group: Only studies were
considered with an experimental or quasi-
experimental design and at least one control group

37

(i.e., a group of participants not exposed to the
coding intervention).

(b) Outcomes: Only studies were considered with
performance-based outcome measures.

(c) Study context: Only studies were considered that
conducted the experiment or quasi-experiment in
an educational context.

(d) Sample: Only studies were considered with non-
clinical samples, because clinical samples often
involve participants with conditions that may
interfere with their performance on cognitive skills
tests.

(e) Effect sizes: Only studies were considered that
reported effect sizes directly or provided statistics
sufficient to calculate transfer effects.

2.2. Sample

The initial literature search resulted in 5,193 publications.
As these entries were subjected to an initial screening and
the application of inclusion criteria, more than 80 % of them
were excluded and no longer considered for further coding
and data extraction—overall, 105 studies were retrieved, and
539 effect sizes could be extracted. Of these 105 studies, 89
studies reported interventions implemented in regular
classroom lessons, 8 studies reported interventions as part of
extra-curricular activities; all other studies reported
interventions outside of schools but in an educational
context. The sample of studies spanned all educational
levels, ranging from pre-kindergarten to adult education.
Concerning the coding tools used in the interventions, both
text-based and visual coding languages were used to help
students learn to code. All studies contained cognitive skills
measures that assessed either coding skills or skills outside
of the coding domain. Among others, these skills include:
Creative thinking (i.e., skills related to the originality,
fluency, flexibility, and elaboration of ideas and generating
ideas), reasoning skills (i.e., logical thinking, intelligence,
critical thinking, and problem solving), and mathematical
skills (i.e., understanding mathematical concepts,
mathematical problem solving and modeling).

2.3. Statistical Approach

Given the hierarchical nature of the sample of studies—as
indicated by the availability of multiple effect sizes for
single studies—the statistical approach taken to aggregate
transfer effect sizes had to represent this nature adequately.
Although several approaches exist in the meta-analytic
literature, only few qualify for application in this study.
Because most studies did not report correlations between
multiple outcome variables, we adopted a three-level
modeling approach, allowing for within- and between-study
variation of effect sizes (Moeyaert et al., 2017). This
approach performs reasonably well in the presence of
hierarchically structured datasets with effect sizes nested in
studies (Cheung, 2014).

Besides focusing on an overall effect size, we further
examined the extent to which variation in it could be
explained by possible, moderating variables. Introducing
these explanatory variables extended the three-level

random-effects model to a mixed-effects model (Cheung,
2015).

All analyses were conducted in the R package metaSEM
(Cheung, 2015) based on Hedges’ g, a standardized effect
size representing the transfer effects.

3. RESULTS

This section presents (a) the overall transfer effect size, (b)
effect sizes differentiated by types of transfer, (c) moderator
analyses, and (d) analyses of publication bias.

3.1. Overall Effect Size

The three-level modeling approach resulted in an overall
effect size of Hedges’ g = +0.49, 95% CI = [0.37, 0.61],
suggesting a moderate, positive, and statistically significant
transfer effect of learning to code on cognitive skills. This
effect size showed significant variation within studies (t? =
0.20, 95% CI =[0.16, 0.25]) and between studies (> = 0.28,
95% C1=[0.17,0.39]), suggesting the adequacy of the three-
level approach. Moreover, the overall test of homogeneity
indicated that effect sizes varied, Q(538) =2985.2, p <.001.

3.2. Mixed-Effects Modeling

Given the evidence for significant variation of effect sizes
across studies (see 3.1.), we further examined the extent to
which selected study characteristics and the types of
cognitive skills measures explained this variation. The
resultant findings suggest possible moderation effects by
cognitive skills measures.

3.2.1. Study Characteristics

Study design. Studies with a pretest-posttest control-
treatment group design exhibited a slightly higher overall
effect size (g = +0.50, 95% CI = [0.13, 0.90]) than studies
with posttest-only designs (g = +0.47, 95% CI = [0.30,
0.65]). This difference, however, was statistically
insignificant (Z = 0.25, p = .80).

Randomization. Studies performing a random assignment of
participants to the experimental conditions exhibited larger
transfer effects (g = +0.56, 95% CI = [0.16, 0.95]) than those
without randomization (g = +0.43, 95% CI = [0.27, 0.59]);
yet, this difference was not statistically significant (Z = 1.04,
p =.30).

Other characteristics. Considering further study and sample

characteristics, we did not find significant moderation
effects by the

= Educational level of learners
kindergarten to college/university;

= Type of coding language (i.e., visual vs. text-based
languages);

= Intervention length (in hours);

= Coding context (i.e., coding embedded in the
curriculum as part of regular school lessons vs.
coding as an extra-curricular activity).

ranging from

3.2.2. Cognitive Skills Measures

The overall effect for coding skills was g = +0.75 (95% CI =
[0.39, 1.11]). The overall effect for skills other than coding
was g = +0.47 (95% CI = [0.35, 0.59]).

38

Differentiating between different cognitive skills, we found
positive and significant transfer effects on creativity (g =
+0.73, 95% CI = [0.27, 1.20]), reasoning (g = +0.37, 95%
Cl =[0.23, 0.52]), and mathematical skills (g = +0.57, 95%
Cl =[0.34, 0.80]).

3.3. Publication Bias

To assess the presence of publication bias in the meta-
analytic dataset, we took several steps (Borenstein et al.,
2009):

(1) Trim-and-fill analyses: No further study would
have been needed on the left side of the outcome-
standard error plot to achieve symmetry.

(2) Rosenberg’s fail-safe N: To achieve null effects,
134,706 additional studies with negative effects
would have been needed. Given the size of this
number, it seems unlikely that this many studies
were not identified by our search protocol.

(3) P-curve: The P-curve did not provide evidence for
severe publication bias—a possible file-drawer
effect is therefore unlikely.

(4) Moderation by publication type: Comparing effect
sizes between published studies (k= 62) and ‘grey’
literature (k = 43 effects, including dissertations
and unpublished research reports) indicated
significant effects favoring published studies,
Qm(1) = 19.9, p < .001. The transfer effect for
published studies was g = +0.53, 95% CI = [0.31,
0.76]; for ‘grey’ literature, the effect was lower, g
= +0.25, 95% CI = [0.15, 0.35]. This finding
indicates some degree of publication bias in the
data.

4. DISCUSSION

This meta-analysis tested the claim that learning how to
code improves coding and other cognitive skills. To test
these hypothesized transfer effects, experimental and quasi-
experimental studies presenting computer coding
interventions were synthesized. The aggregated transfer
effect size was moderate, positive, and statistically
significant (g = +0.49). Unlike existing discussions around
the existence of transfer effects from specific domains of
training (Sala & Gobet, 2017)—discussions that called into
question the existence of such transfer effects and thus
transfer of learning in general—the current study provides
evidence that other cognitive skills may indeed benefit from
coding instruction. This finding supports Liao’s and Bright’s
(1991) early and Liao’s (2000) later meta-analyses on the
topic. Our explanation for this supportive finding lies in the
very subskills coding requires: As Shute et al. (2017) note in
their systematic review of computational thinking, the
concept—which mainly comprises coding-relevant skills—
represents a form of problem solving. Even further, the steps
involved in coding (e.g., evaluating information,
representing the problem, testing code or code elements
systematically) align with current models of problem
solving and even creativity (e.g., Scherer, 2016; OECD,
2014).

At the same time, our study showed that these transfer
effects are not uniform across cognitive skills. We identified

stronger benefits for creativity and mathematical skills than
for other skills (excluding coding skills themselves). These
differential benefits may also be traced back to the subskills
involved in them. In fact, there are differences between the
processes creative thinking and, for example, mathematical
thinking entail (e.g., Baer, 2015; Sak & Maker, 2006)—
these differences may provide an explanation of this finding.
To further explore alternative explanations, our future
analyses target possible moderation effects of sample and
study characteristics, including the content domains of the
cognitive skills tests.

Overall, this meta-analysis contributes to the field of
computational thinking in two ways: First, it provides
evidence for the potential benefits of learning to code—an
activity critical to the acquisition of computational thinking.
This evidence substantiates existing claims surrounding the
emphasis of coding skills. Second, it encourages researchers
to take a differential perspective on the transferability of
coding skills by considering multiple cognitive skills as
possible outcome variables at the same time.

5. REFERENCES
Baer, J. (2016). Domain specificity of creativity. New
York, NY: Academic Press.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M.,
Miller-Ricci, M., & Rumble, M. (2012). Defining
Twenty-First Century Skills. In P. Griffin, B. McGaw, &
E. Care (Eds.), Assessment and Teaching of 21st Century
Skills (pp. 17-66). Dordrecht: Springer Netherlands.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein,
H. R. (2009). Introduction to meta-analysis. Chichester,
West Sussex: John Wiley & Sons, Ltd.

Cheung, M. W.-L. (2015). Meta-Analysis: A Structural
Equation Modeling Approach. Chichester, West Sussex:
John Wiley & Sons, Ltd.

Cheung, M. W. L. (2014). Modeling dependent effect sizes
with three-level meta-analyses: A structural equation
modeling approach. Psychological Methods, 19(2), 211-
229. doi:10.1037/a0032968

Denning, P. J. (2010). Great Principles of Computing.
American Scientist, 98, 369-372.
doi:10.1511/2010.86.369

Grover, S., & Pea, R. (2013). Computational Thinking in
K-12: A Review of the State of the Field. Educational
Researcher, 42(1), 38-43.
doi:10.3102/0013189x12463051

ICILS. (2018). International Computer and Information
Literacy Study. Retrieved from: http://www.iea.nl/icils
[12 January 2018]

Liao, Y.-k. C. (2000). A meta-analysis of computer
programming on cognitive outcomes: An updated
synthesis. Paper presented at the Proceedings of world
conference on educational multimedia, hypermedia and
telecommunications.

Liao, Y.-K. C., & Bright, G. W. (1991). Effects of
Computer Programming on Cognitive Outcomes: A
Meta-Analysis. Journal of Educational Computing

39

Research, 7(3), 251-268. doi:10.2190/e53g-hh8k-ajrr-
k69m

Moeyaert, M., Ugille, M., Natasha Beretvas, S., Ferron, J.,
Bunuan, R., & Van den Noortgate, W. (2017). Methods
for dealing with multiple outcomes in meta-analysis: a
comparison between averaging effect sizes, robust
variance estimation and multilevel meta-analysis.
International Journal of Social Research Methodology,
20(6), 559-572. doi:10.1080/13645579.2016.1252189

OECD. (2014). PISA 2012 Results: Creative Problem
Solving: Students’ Skills in Tackling Real-Life Problems
(Vol. V). Paris: OECD Publishing.

Sak, U., & Maker, C. J. (2006). Developmental Variation
in Children's Creative Mathematical Thinking as a
Function of Schooling, Age, and Knowledge. Creativity

Research Journal, 18(3), 279-291.
doi:10.1207/s15326934crj1803 5

Sala, G., & Gobet, F. (2017). Does Far Transfer Exist?
Negative Evidence from Chess, Music, and Working
Memory Training. Current Directions in Psychological
Science, 26(6), 515-520. doi:10.1177/0963721417712760

Scherer, R. (2016). Learning from the Past—The Need for
Empirical Evidence on the Transfer Effects of Computer
Programming Skills. Frontiers in Psychology, 7(1390).
doi:10.3389/fpsyg.2016.01390

Shute, V. J.,, Sun, C., & Asbell-Clarke, J. (2017).

Demystifying computational thinking. Educational
Research Review, 22, 142-158.
d0i:10.1016/j.edurev.2017.09.003

40

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

To Improve the Computational Thinking of Elementary School Students by

Scaffolding

Chien-i LEE, Sheng-chuan CHUANG", Shu-min WU
Department of Information and Learning Technology, National University of Tainan, Taiwan
leeci@mail.nutn.edu.tw, pengin0913@gmail.com, t10455101@stumail.nutn.edu.tw

ABSTRACT

MOE (2016) will bring Computational Thinking ability
into the National Basic Curriculums in order to promote
the students’ problem solving ability is emphasized by
many advanced countries. Although learning
programming design is an important way to develop
computational thinking. However, learning programming
involves many abstract concepts of program syntax. It’s
hard for teachers to solve the problems in class one by one
and provide individual guide which will result in poor
learning aspiration and low learning achievement.
Therefore, this study focused on providing a Scaffolding
Guidance System during the process of solving problems
and aimed to explore the effect of the system design on
computational thinking. The study was bases on quasi-
experimental design, and 48 students from two classes in
an elementary school in Tainan. The 24 students in the
experimental group were taught with the system design.
The 24 students in control group were treated by
traditional instructions. The experiment lasted for eight
weeks and the data were analyzed with ANCOVA
statistical method to explore the differences in learning
efficiency between the system design and traditional
instructions. The results showed that: (1) There were
significant differences between the experimental group
and the control group in learning efficiency; (2) After
receiving the experimental teaching, the low level of
student presented the most significantly different on
computational thinking learning efficiency.

KEYWORDS

Computational Thinking, Visual Programming Language,
Learning Efficiency, Portfolio

1. INTRODUCTION

In 2006, "CT" proposed by Wing won universal attention
and recognition from many countries and scholars. In
recent years, the connotation of various Computational
Thinking has also been proposed and discussed by
scholars, and gradually formed a consensus. (Wing, 2006;
Wing, 2008) identified five core aspects of CT which are
conditional logic, distributed processing, debugging,
simulation and algorithm building. (Brennan et. al, 2012)
use Scratch (designed by MIT Media Lab) -- a
programming environment that enables young people to
create their own interactive stories, games, and
simulations, and then share those creations in an online
community with other young programmers from around
the world -- to develop a computational thinking
framework: computational concepts (the concepts
designers engage with as they program, such as iteration,
parallelism, etc.), computational practices (the practices

designers develop as they engage with the concepts, such
as debugging projects or remixing others’ work), and
computational perspectives (the perspectives designers
form about the world around them and about themselves).

(Lahtinen et al., 2005) indicated that programming is not
an easy subject to be studied. It requires correct
understanding of abstract concepts. Many students have
learning problems due to the nature of the subject. In
addition, there are often not enough of resources and
students suffer from a lack of personal instruction. Also
the student groups are large and heterogeneous and thus it
is difficult to design the instruction so that it would be
beneficial for everyone. This often leads to high drop-out
rates on programming courses in the universities. At
present, there are many difficulties in teaching and
learning activities of programming languages in the
schools. In the process, they encounter complex syntax
instructions, how to implement ideas in programming
languages, and differences in student's level. (Robins et
al., 2003; Lahtinen et al., 2005; Gomes & Mendes, 2007)

Programming itself is a highly logical thinking course
different from the learning of package software. The
current teaching methods will certainly not be able to meet
the learning needs of each student. In addition, due to the
constraints of classroom time, the lecturers did not have
enough time to give individual guidance and provide
immediately feedbacks about all students' questions.
When students encounter difficulties, they often give up
because they can’t get the help. (Gomes & Mendes, 2007)
Therefore, this study developed a "Scaffolding Guidance
System™ for primary schoolchildren. When students
encounter learning difficulties of programming, the
system will automatically provide the appropriate
scaffolding guidance.

2. SYSTEM DESIGN

The Scaffolding Guidance System was built in Linux-
based server, running Java-web-based application at
Apache Tomcat, and recording portfolio with MySQL
database. After logging with identity, the upper parts of
interface are links of programming tasks (including flying
bat, underwater world, monkey banana, whack-a-mole,
and shooting game) and user information. Each task has a
simulation animation on left side, and a main functional
block on right side, including code-comparison analysis,
project-code of user, and prompt of similar project-code.
Figure 1 shows the main interface of system.

41

I/gl x -
< Cclo:

o 4 !
RIS BEHR ﬁ BFIZERE 5 TR Lot s 2 SEHF

ER T task03

A

SR hty
TS

AT

Figure 1. The main interface of system.

The purpose of the system is to parse the programming
task of students, and to produce guided scaffolding to
assist students learning in the system, which provide the
following two functional modules: 1) parsing and prompts,
2) linking with experience. At coding time, students
sometimes forgot or miss some vital blocks so that they
could not accomplish the task. It's helpful that giving
suitable prompts when students fall into troubles. The
module of parsing and prompts will reach the aims that
troubleshoot the above situations. This mechanism is set
by the teacher about how many blocks to complete the task.
When the critical blocks don't exist, what should students
be prompted? Table 1 included below figures out critical
blocks about the task.

Table 1. The fish of underwater world to prompt.
Agent &

Necessary Blocks

Prompts While Missing Blocks

Visualizer
Blocks el il

show

turn (N pick random ED to €D degrees
»

move @) steps

if on edge, bounce
L)
[["whenGreenFlag"],

["ShOW"],

JSON list

["doForever",

[["turnRight:",
["randomFrom:to:", -30, 30]],

["forward:", 10],
["wait:elapsed:from:", 0.1],

["bounceOffEdge"]
1

In additions, to link with experience of students, we use
“Cosine Similarity” to judge similarity of two tasks.
Because each task has several agents, we use agent as
basic unit to compare code-similarity. Table 3 included
below is for illustration of how to calculate similarity of
agents.

Table 3. The similarity of agents.

turn (N | pick random @D to € degrees
‘movemsteps
sy
The fish to swim randomly in the
seabed, it must be placed "turn
right block™ with "random
parameter™ and "move block"
within a "forever block". Then
the fish can swim around.

turn (X @ degrees
move @ steps

Use Scratch's API
(https://wiki.scratch.mit.edu/wiki/JSON) to render
Scratch visualizer blocks into JSON-text-format, where
each block is converted to a specific JSON list. Table 2
included below figures out how to map blocks to JSON.

Table 2. The mapping between blocks and JSON-text.

Agent i r

Fish2

Agent
Blocks
move msteps
» on edge,unce
List [whenGreenFlag, [whenGreenFlag,
JSON doForever, doForever,
N forward:,

(Step1) turnRight;, wait:elapsed:from:,
randomFrom:to:, nextCostume,
T/earl:l':'?erlg:,sed'from' tumRight.,

-elapsed: o randomFrom:to:,
bounceOffEdge] bounceOffEdge]

Combine [whenGreenFlag, doForever, turnRight:,

(Step2) randomFrom:to, forward:, wait:elapsed:from:,

nextCostume ,bounceOffEdge]

42

Vector [A1,A2,Az,A4,As,As, [B1,B2,B3,B4,Bs,Be,
Transform Az,Ag] B7,Bg]

(Step3) =[1,1,1,1,1,1,0,1] =[1,1,1,1,1,1,1,1]
Calculate 14;B;
o similarity =

Similarity \/ n AZ\/ n pe
(Stepd) Yis1 47 [Xisq1 B;

The value is greater than 0.8 mean that these two
agents are similar.

By comparing high similar codes such as similarity > 0.8,
students can observe or practice similar tasks to discover
the logic of their own programs.

3. EXPERIMENTAL DESIGN

This study designed a "Scaffolding Guidance System" to
help schoolchildren of elementary to learn Scratch
programming. When they got stuck on programming,
system will provide suitable scaffolding guidance for
them. Furthermore, investigating further to analyze the
effect of visual programming and the influence of raising
CT.

The quasi-experimental design was used in this study,
which chose two five-grade classes of a primary school in
southern Taiwan to participate this experiment. We
random chose one class as the experimental group, and the
other class as the control group. Students in the
experimental group were enrolled in our purposed
Scaffolding Guidance System into the Scratch-
Programming course; Control group performed a
traditional teaching method. Each group were taught a
total of 8-weeks by the same teacher, each lesson 40
minutes, a total of 320 minutes. After the end of the
programming course, we performed post-test: designing
a computational practice of game. In Additions, to realize
the responses of students in experimental group about
using Scaffolding Guidance System, we performed a
semi-structured interviews with two-groups students
separated to low, middle, and high level respectively
according their previous-semester grade.

About the instruction design, the teacher conduct the
operation of Scratch interface at first-two weeks, and then
the students of two groups have to implement five-tasks
programming-design in the next six weeks respectively.
The experimental-group students will use Scaffolding
Guidance System to learn programming: viewing the
animation about the tasks first, then decomposing the
problems and describing the features of each role in
Scratch, and finally coding. When they got stuck in
programming, system would give them assistance. For the
control-group students, teacher use traditional instruction.

Students involved in the experimental group must
complete the "flying bat" and other five scaffolding guided
program tasks, which are based on (Brennan et al, 2012)
proposing CT framework including these two dimensions:
"computational concept” and "computational practice".
Finally, to assess the performance of CT, this study used
game scenarios to test students' ability to practice. In this

game scenario there are two game agents (parrots and
obstacles, as Figures 2) and a stage design. There are also
having procedural issues in the agents and the stage. For
example, in the agent of obstacle, students are required to
use program blocks to solve the problem of "obstacle
generation and movement".

| Zex |

Figure 2. The evaluation of CT through practicing a
game.

4. RESULTS AND DISCUSSION

Table 4 shows that there was no significant difference of
Group times Grades between two groups, that is, we can
accept the null hypothesis and that meets the condition for
homogeneity of regression so that we can continue to do
ANCOVA.

From Table 5, the results of ANCOVA between
experimental and control group showed that F = 7.062, p
= .011 <.05 reached significant difference. That is, after
adopting different pedagogical methods to conduct
experiments, the results of CT test of students in
experimental group and control group reached significant
differences, indicating that accepting the activities with
"Scaffolding Guidance System" have significant
improvement.

Table 4. The tests for homogeneity of regression.

Sources Type(lll df Mean F p
) SS Squar
e
Group*Grade 333.6 1 3336 125 .26
S 2 9
Error 117296 4 2665
4

p* <0.05, p**<0.01
Table 5. The ANCOVA of two groups.

Group Mean SD N F p
Experimental 59.9583 16.10692 24 7.062 .011"
Control 427083 2414536 24

p* <0.05, p**<0.01

To further understand the impact of the scaffolding
guidance system for students of different levels, the
students in two groups separated to low, middle, and high
level respectively according their previous-semester
grade. Only low level about ANOCVA achieved
statistically significant (as Table 6), which indicated that

43

accepting the activities with "Scaffolding Guidance
System" of low level have significant improvement.

Table 6. The ANCOVA of two groups about low level.

Group Mean SD n F p
Experimental 47.5000 12.29402 8 8.437 .012"
Control 241250 15.81534 8

p* < 0.05, p**<0.01

Finally, by semi-structured interviews with two-groups
students and questions about statistic of missing blocks of
five-tasks, we found that some blocks learned on the
previous task, but when in a different scenario or agent,
students still need to be prompted to complete the task.
This phenomenon is similar to that of (Gomes & Mendes,
2007; Robins, Rountree, & Rountree, 2003): "Students
are often confined to the surface knowledge of programs
and can’t apply what they have learned to new problems."

5. CONCLUSIONS

This study from the CT and learning effectiveness,
different levels of students, and learning portfolio to
discuss the following conclusions:

First, students who accepted the teaching activities of
"Scaffolding Guidance System" performed better than the
ones with traditional teaching. Secondary, for students of
low level achievement, this study provided an approach to
assistant them by using "Scaffolding Guidance System™.
Finally, teachers can analyze the portfolio of students to
discover the learning problems that can’t be found from
the surface information. For the future works, researcher

can be directed towards the fields of automation of system
and adaption of students.

6. REFERENCES

Brennan, K., & Resnick, M. (2012, April). New
frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research
Association, Vancouver, Canada (pp. 1-25).

Code.org. (2017). Computational Thinking. Retrieved
from https://studio.code.org/s/course3/stage/1/puzzle/1

Gomes, A., & Mendes, A. J. (2007). Learning to
program-difficulties and solutions. Paper presented at
the International Conference on Engineering
Education—ICEE.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H.-M. (2005).
A study of the difficulties of novice programmers. Paper
presented at the ACM SIGCSE Bulletin.

MIT Media Lab, Scratch. https://scratch.mit.edu

MOE (2016). 2016-2020 General Information Education
Blueprint. Taipei City: Ministry of Education.

Robins, A., Rountree, J., & Rountree, N. (2003).
Learning and teaching programming: A review and
discussion. Computer science education, 13(2), 137-
172.

Wing, J. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Wing, J. (2008). Computational thinking and thinking
about computing. Philosophical transactions of the
royal society of London A: mathematical, physical and
engineering sciences, 366(1881), 3717-3725.

44

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

A Curriculum and Contents of Programming Education

for Computational Thinking

Hyojin BYUN?, Miyoung RYU 2, Sungwan HAN?"
1Dept. of Steam Education, Gyeongin National University of Education, Korea
2 Dept. of Computer Education, Gyeongin National University of Education, Korea
mydream.bhj@gmail.com, ddochi29@naver.com, han@gin.ac.kr

ABSTRACT

Computational thinking is emerging as a core competency
for creative and efficient resolution of complex problems in
a rapidly changing society. In Korea, software education is
introduced into the 2015 revision curriculum and
emphasizes creative problem solving process through CT
and programming learning. In this study, Scratch was
selected with an educational programming language suitable
for use in elementary school, and programming curriculum
for improving CT was developed and tested by expert group.

KEYWORDS
Educational Programming Language, Curriculum and
Content, Computational Thinking, Programming Education

1. INTRODUCTION

As the role of SW in modern society grows, the necessity of
strengthening SW competency is emphasized. SW is
recognized as a means of solving problems related to human
higher thinking ability beyond SW functional aspect. As a
result, CT is attracting attention as a core competence for
solving various complex problems in the future.

CT is to define a problem from the viewpoint of computing,
to search for the solution to the problem, and to a resolve the
problem through efficient resolution procedures.

In Korea, awareness that computational thinking is the core
competency of the future, the contents of the existing
information-related curriculum were reorganized into
software education contents through the 2015 revision
curriculum.

Therefore, this study aims to develop and present contents
for software education using Scratch in order to acquire CT
through programming and to develop creative problem
solving ability based on it

2. THEORETICAL BACKGROUND

2.1. Programming Education

Programming is a technique for implementing an abstract
algorithm in a specific computer program using a specific
programming language.

In the elementary school, the direction of programming
education is to enhance the thinking ability of the learner's
logical thinking ability, creative thinking ability and
problem solving ability.

2.2. EPL and Scratch

The programming language to be used in elementary school
software education should be a visual environment in which
the expression of grammar and algorithm should be simple.

Scratch is a language designed for programming experience
for children ages 8 to 16. The feature is that it is easy to learn
the programming language itself with a simple grammar, a
block-stacking algorithmic representation, and a variety of
multimedia such as graphics and sound.

2.3. SW education in Korea

In Korea, the term 'SW education' was used in the 2015
revision curriculum, and the software education was made
mandatory for elementary and junior high school students
from 2018. In the 2015 revised curriculum, elementary SW
education emphasizes real-life problem solving based on
information ethics and attitude as a field within practical
subject for 17 hours a year.

3. DEVELOPMENT OF EPL
CURRICULUM AND CONTENT

3.1. Curriculum Development Procedures
The EPL curriculum to improve CT was developed through
the steps shown in Table 1.

Table 1. Procedures of Curriculum Development

-CT concept
Analysis -Software education direction required at elementary level
-Pre-EPL program study
'
Design -Extract curriculum components
9 -Step-by-step learning topic and content selection
]
| Development | -EPL content composition and development |
'
| Verification | -Conduct validation of the curriculum and EPL contents for experts |

3.2. Development of EPL Curriculum

In this study, the programming curriculum using Scratch
was designed as shown in Table 2 to improve CT of
elementary school students.

The elements of the CT concept consisted of sequences,
loops, parallelism, events, conditionals, operators, and data
using Brennan and Resnick's CT evaluation framework. The
execution elements are also composed of incremental and
iterative, testing and debugging, reusing and remixing, and
abstracting and modularizing.

The subject was designed to allow students to access each
category of Scratch sequentially, but to be as close as
possible to the real life.

The learning stage was divided into three stages and the
difficulty level of the learning was adjusted so as to have
hierarchy of learning step by step. Each stage was composed
of six phases and gradually expanding the command
category of the Scratch related to CT.

45

Table 2. Presentation of EPL Curriculum

’ : CcT Block [Contents of learning activit
LevellPeriod Topic Concepts | categories ¢ Y
— [Controlling car motion With
1 Driving EM Ispecific keys
: (Controlling characters with
2 | Hideand Appear E-M.L.“ " hide and show blocks

Drawing shapes E,M,P, Draw a shape using a pen

IShow your dancing to your

4 Dancing EM.LSC berformance

o E, M, LS, S|Use random numbers to follow
5 Catching insects random characters
6 Paint ELp g [Create Paint with multiple

~ [colors as a condition

[Conversation using

1 Send and receive a

conversation EL broadcasting block
2 | animatin F L5, whehreentng sinaon et
, 3 Jump =M, s SE;;E:usrfeigalfthe cond|t-|on is
4 | Rock Paper Scissors E L Cmre]g:ft:sﬁin:%?eusmg the
5 Compare the size of a EL Using List to Compare

number Numbers

: E,M,L, Display two levels of difficulty|
6 Running race s ith two characters running
: Expressing how fast you move
1 Falling apples B M. 5.0 lising variables and t|¥ner
2 clock £ M, s o [Clock representation using

lcurrent time block

3 Put a soccer ball in the Using a video sensing block to

move the ball
8 4 Making pattern EMP (Create patterns using variables
g pi M. P X and y
5 My body grows. E M, Use cloning blocks to express

more and more appearances

Express sprite movement

6 Walk to goal using background motion

-CT Concepts

sequences loops parallelism events conditionals operators data
-Block Categories
M L S P
Motion Looks Sounds Pen Data
E S M
Events Control Sensing Operators More Blocks

3.3. Development of EPL Content

Students will experience Brennan and Resnick's practice
exercises through CT Opening, CT Raising, and CT
Experimentation so that they can expand their CT.

In CT Opening, students use example files to identify and
explore the situation. In CT Raising, students learn basic
contents while learning programming step by step, and
expand the project by using reuse and remixing to CT
Experimentation.

Table 3. Example content

Level 1 — 1% period
Topic Driving
Activity Goals Let's move the car using the motion block.
CT Sequences, events
Plan specific activities
Step Teaching and Learning Activities
. -Using the example file to understand the content
CT Opening -Explore blocks in motion categories
-Think of a situation where you move a set value by pressing a direction
key (up, down, left, and right) through a question.
-Experiment the script and check it.
CT Raising e I
move @D steps
-Complete the script so the car can move in four directions by itself
-Draw a road with Paint, then write a script to allow the car to move
Experi gerntation over the road to reach its destination
P -[Optional Activities] Parking in the parking lot in reverse

3.4. Expert Validity Testing

Groups participated in this study were selected from a field
related to education professionals who have experience of
teaching the EPL. The results of the CVR test are shown in

Table 4, and the validity of the total items satisfies the
minimum value of .62 according to 10 panelists. Therefore,
it can be said that the content validity is secured according
to the curriculum contents and the flow of the example
contents.

Table 4. Expert Review Results

Division CVR
Curriculum development direction 1
Learning level .9
. Programming 9
Learning sequence cT T
. Topic .8
Learning contents cT 9
. Programming 1
Learning method cT 3

4. DISCUSSIONS

As part of software education around the world, there is a
strong interest in coding education, and in 2018, software
education is mandatory in Korea. This is to enable students
to cultivate CT through SW and to efficiently solve various
complex and unexpected problems of the future society.

This study selected a Scratch as an educational programming
language suitable for elementary level, and programmed it
so that CT can be extended through programming education.
17 hours allocated as regular curriculum hours are planned
to achieve the goal of software education by including
content other than programming. So, it is difficult for the
programming education to expand the CT within the regular
course time.

Therefore, the program developed in this study proposes a
method to secure and apply sufficient time through club
activities, after - school activities, camps, gifted education,
etc.

5. REFERENCES

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. Paper presented at annual American
Educational Research Association meeting, Vancouver,
BC, Canada.

C. H. Lee (2015). Direction and Model of Software
Education in Elementary Education, Journal of Korean
Practical Arts Education, 28(4), 207-222.

E. H. Lee, T. W. Lee (2015). Instruction Model for
Elementary School on Programming Induction Education
Using ENTRY, Journal of Korean Association of
Computer Education, 19(1), 43-46.

J. H. Seo, Y. S. Kim (2016). Development and Application
of Educational Contents for Software Education based on
the Integrative Production for Increasing the IT
Competence of Elementary Students, Journal of Korean
Association of Computer Education, 20(4), 357-366.

W. S. Moon (2015). The Application of the Scratch2.0 and
the Sensor Board to the Programming Education of
Elementary School, Journal of Korean Association of
Information Education, 19(1), 149-158.

46

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Comparing with Scratch and Python in CT Concepts

Tae-ryeong KIM, Sun-gwan HAN
Dept. of STEAM Education, Gyeong-in National University of Education
crossallover@gmail.com, han@gin.ac.kr

ABSTRACT

The expansion of software education has given learners the
opportunity to learn CT concepts related to CS through
block programming such as Scratch. However, due to the
nature of EPL, the concept of computer science is limited,
and inevitably the text programming language is learned to
expand CS thinking. In this paper, we will examine the
possibility of using the concept of prior learning after block
programming tools through comparison of basic grammar
examples of Scratch and Python in terms of CT concepts.

KEYWORDS
EPL, TPL, Scratch, Python, CT Concepts

1. INTRODUCTION

Extensive expansion of EPL (Educational Programming
Language) education has resulted in many students
improving their CT competency and related areas. In this
area, Brennan & Resnick (2012) divided the CT into three
dimensions by analyzing the results of the Scratch outputs
made by the students. One of them was CT concepts. These
concepts that can be transmitted in other programming
languages, and it is common in programming languages as
well. If student experience a certain level of EPL training,
they will inevitably go to TPL (Text based Programming
Language) to improve their programming skills (Jun, 2012).
Therefore, From the perspective that transfer mechanism
(Schwartz & Bransford, 1998), we want to create an
opportunity to summarize these concepts as TPL and to
utilize the student's prior knowledge on related concepts. An
example of TPL is Python, which has a high educational
potential among text languages (Grandell, 2006).

2. COMPARISON

2.1. Sequences

In the Scratch, the sequence of blocks directs the operation
of the object (sprite), so the concept of sequence can be
learned without difficulty (Elkin et al, 2014). Likewise,
Python is well suited for students to learn sequence concept
because grammar itself is not only a direct language, it also
provides immediate and visual information as interpreted
language (Yeum, 2008). The sequence concept can be easily
transmitted in text language like Figure 1.

print("Sequence 17)

o print("l ed Language”)
print{"Sequence 2")

0.2

nport turtle
move € steps turtle. forward{100)
0.2 turtle.left(90)

turtle. forward(100)
say Y for © secs turtle,right(90)

turtle. forward(100)

Figure 1. Comparison in Sequences Concept

2.2. Loops

In the sequence concept, the principle of efficiency leads to
repetition naturally. Instead of using many blocks one by one,
students can easily configure the program with several
blocks. Python can easily configure bound loops and
conditional loops too. In particular, it has the advantage of
being able to configure the iterators that make circuit of the
data, as shown in Figure 2.

4 iteration = [‘apple’, ‘banana’, 'cat’]
. i iteration:
move €I steps print(i)
‘wait Qi a=0
pr?n:(g\innditinma\ loops™)
sayforasets a=a+l

Figure 2. Comparison in Loops Concept

2.3. Events

Because Scratch is also intended to interact with the user, it
uses event-driven programming. And this is a fun factor for
learners. So, Scratch supports various event handlers. While
Python’s shell itself functions as an interactive mode with
the user, creating an interactive program is possible a little
later than the order of learning in Scratch. because It needs
to learn how to use functions and libraries in order to create
a practical program with events. Figure 3 shows how the
basic library handles keyboard events.

turtle
ts = turtle.Screen()

when clicked <
ts. title(Event”)
t = turtle. Turtle()

10
(): t.forward(100)

up

= = left(): t.left(45)
— right(): t.right(45)
when space key pressed gameover(): quit()

turn (4 €D degrees

ﬁmﬂ I receive messagel

Figure 3. Comparison in producing Event

ts.onkey(up, "Up")
ts.onkey(left, "Left’)
ts.onkey(right, 'Right’)
ts.onkey{ganeover, "a’)

ts.listen()
ts.mainloop()

2.4. Parallelism

Similarly, the use of parallelism concept is easier in event-
based programming languages. In scratch, it is possible to
experience the parallel form simply by generating the event
several times. However, in the interpreted language, It's not
efficient. Python supports a module that handles different
types of threads in being, as shown in Figure 4. It is only an
example of a low-level representation of related concepts.

_thread

dicked time
random

g

) 5CH_RRiicuns Thv'ead(ﬁabbitAndTurtIe):
as

(a<10):
time.sleepirandon.randint(0,100)/100)

print(RabbitAndTurtle,a)
ar=

;
:

’lmwe steps.

»

turn (4 €8 degrees
S|

_lhread‘start_new_thrsadEThread.E Rabhit ,g)
_thread.start_new_thread(Thread, {"Turtle",))

Input { “Press Key")

Figure 4. Comparison in Parallelism concept

47

2.5. Conditionals

Because complex algorithms can present difficulties for
students, Scratch provides a various conditional block that
can be combined with repetitive structure or event
monitoring, operators, sensors, etc., As shown below
(Dasgupta et al, 2016). In text programming languages,
students can learn conditional grammars without difficulty
(Milne & Rowe, 2002). In view, scratch is more
configurable, Figure 5 shows that basic structure is similar.

when clicked

Cond = inputl_l;"'l_npu‘r_ harB ")

ask [EEI and wait l:'on = 4 :
= print("Condition A7)
Cond == 'B':

;?rint("lﬁiujnditiu:un B")

L;rint["lﬁiujnditiu:una.l-z.)

Figure 5. Comparison in Conditionals Concept

2.6. Operators

Scratch contains arithmetic (including character) operators,
relational operators, and logical operators, which can be
combined in various ways depending on the needs of the
learner. Surely, commercial languages generally support all
sorts of operations on operators. Especially in Python,
almost all operator parts are easier to use because they are
grammatically simpler than other text languages. If doing a
number of complicated calculations, the text language can
be configured more quickly and easily, if you are familiar
with the grammar, as shown in Figure 6,

D Arithmetic =3+ 5/ 2+ 3 ++ 3
& 00T = e
Relational =1 > B
lé??lsﬁ?:t== bin(Ob1101 & Ob1001<<2)
Figure 6. Comparison in Operators concept
2.7. Data

Scratch provides variable and list data types. In most of the
block based programming, variables are used to implement
the scoring function. Also, there is no need to define data
types, which is one of the hardest parts of the students
(Piteira & Costa, 2013). In Python, Because Python is a
dynamic type, students do not need to set the data type like
Scratch. Thus, Scratch learners can easily learn this. It's also
easier to handle data than any other text language (Rashed
& Ahsan, 2012). Figure 7 is one way to define and
manipulate data types.

Yariable = "Data Type”

Lists = [1,2,7ist"]

Dictionary = {1:"dict 1", 2:"d I

t ‘dict 2
SetDataType = set([1,2,3, "set Data Type"])
COSRZIECESN Y 0 || print(Variable[1:6])

Lists.append(”[ist2")

when clicked

Dictionary[3] =

say item | Variable mod @ of NPCWord

)

for @) secs

—

-~

Figure 7. Comparison in Data concept

3. DISCUSSION

I compared Scratch with the Python language, focusing on
the seven concepts that can be found in Scratch. As a result,
it can be seen that the text language can also be structured
easily in terms of Sequences, Loops, Conditionals,
Operators, and Data. However, in terms of Events and
Parallelism, It’s hard to using precedence concepts due to
difference in complexity between EPL with TPL.

Therefore, we propose to use the related computer science
concepts learned in the Scratch as a precedent organizer
form when continuing the learning through the text
programming language education course.

4, REFERENCES

Brennan, K., & Resnick, M. (2012, April). New
frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research
Association, Vancouver, Canada (pp. 1-25).

Dasgupta, S., Hale, W., Monroy-Hernandez, A., & Hill, B.
M. (2016). Remixing as a pathway to computational
thinking. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing (pp. 1438-1449). ACM.

Elkin, M., Sullivan, A., & Bers, M. U. (2014).
Implementing a robotics curriculum in an early childhood
Montessori classroom. Journal of Information
Technology Education: Innovations in Practice, 13, 153-
169.

Grandell, L., Peltoméki, M., Back, R. J., & Salakoski, T.
(2006, January). Why complicate things?: introducing
programming in high school using Python. In
Proceedings of the 8th Australasian Conference on
Computing Education-Volume 52 (pp. 71-80). Australian
Computer Society, Inc.

Jun. W. C. (2012). A Study on Correlation Analysis of EPL
and Programming Ability for the Gifted Children in IT.
Journal of The Korean Assocaition of Information
Ecucation, 16(3), 353-361.

Milne, 1., & Rowe, G. (2002). Difficulties in learning and
teaching programming—views of students and tutors.
Education and Information technologies, 7(1), 55-66.

Piteira, M., & Costa, C. (2013, July). Learning computer
programming: study of difficulties in learning
programming. In Proceedings of the 2013 International
Conference on Information Systems and Design of
Communication (pp. 75-80). ACM.

Rashed, M. G., & Ahsan, R. (2012). Python in
computational science: applications and possibilities.
International Journal of Computer Applications, 46(20),
26-30.

Schwartz, D. L., & Bransford, J. D. (1998). A time for
telling. Cognition and instruction, 16(4), 475-5223.

Yeum. Y. C. (2008). Programming Learning Environment
using a Textual EPL in Informatics Education. doctoral
thesis. Korea University.

48

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking
Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking and
Subject Learning and Teaching
In K-12

49

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Students’ Attitude Changes through Integrating Computational Thinking into

English Dialogue Learning

Xiaojing WENG
The University of Hong Kong, Hong Kong
u3532170@connect.hku.hk

ABSTRACT

Computational Thinking (CT), a problem-solving skill
rooted from Computer Science (CS), is gaining attention
from computer scientists and K-12 educators increasingly.
Language communication skill, in the meanwhile, is one
essential skill developed through the K-12 education, which
will continue to attract attention in the foreseeable future
globally. There is the possibility for students to learn an
effective communication skill while using or improving CT,
given that the interdisciplinary work of integrating language
learning into a CT learning activity has not been fully
discussed in existing literature, this preliminary study, which
is going to be extended to a largescale work in the future, is
important from the perspective of both language and
computer teachers. As an initial step, this research attempted
to obtain insights on developing CT in the context of English
dialogue learning by investigating the attitude changes of
students after they have experienced the integration of CT
into English education in Scratch programming
environment. To achieve this objective, pre/post-lesson
surveys were distributed to nine Hong Kong primary
students who attended the intervention class to study
computer programming by using the graphical programming
language Scratch. The preliminary results show that primary
school students have positive reaction to the introduction of
CT into English dialogue learning through graphical
programming language. Students were more motivated to
learn English dialogue after the class under study; however,
their attitude towards learning graphical programming
language become less positive after the intervention.

KEYWORDS
Computational Thinking,
Scratch, K-12

1. INTRODUCTION

The idea of computing, which refers to all the activities that
require, benefit from, or create computers (Shackelford et
al., 2006), first gained attention from the public as a result of
Seymour Papert’s work in MIT in the 1980s (Lockwood &
Mooney, 2017). However, the concept of CT became
increasingly popular ever since it was refined by Jeannette
M. Wing in 2006 (Grover & Pea, 2013). Wing argues that
CT is a universal attitude and skill that can be applied by
everyone; it is not limited to computer scientists (Wing,
2006).

A huge proportion of CT development programs for young
students in schools, colleges or afterschool clubs have

English dialogue learning,

been conducted in the context of CS subject. This is mainly
because improving students’ problem-solving thinking skills
and learning programming are the major elements of CS
course (Lockwood and Mooney 2017). However, this seems
too limiting. The ability to think computationally has the
potential to benefit students in all courses. Furthermore,
while problem-solving skills and programming are perhaps
the most direct approaches to cultivating CT ability, they are
not the only important elements in CS. There are also still
education objective confusions as well as disagreements on
learning content and the issue of whether CS should be a
compulsory subject in the K-12 curriculum (Armoni, 2013;
Hubwieser, 2012). Taking into account these considerations,
it becomes obvious that CT should and can go further than
to be constrained to computing-related subjects.

Therefore, many researchers have been exploring how CT
can be integrated into other subjects, including Non-CS
STEM (which refers to four subjects including Science,
Technology, Engineering and Mathematics) subjects and the
humanities (Kafai & Burke, 2013; Lee, Martin, & Apone,
2014; Lye & Koh, 2014). As a matter of fact, language arts
can be used as a springboard for the integration of CT into
the K-12 curricula, like what has been proposed by Barr and
Stephenson—computational skills such as abstraction,
algorithm, automation and decomposition can be applied or
enhanced when students are using rhetorical devices, writing
instructions, conducting story reenactments or planning an
outline for a composition in a language class.

Many researchers connecting CT to English start their work
by utilizing models found in writing-related workshops like
composition, journalism, literature or poetry (Burke &
Kafai, 2012; Nesiba, Pontelli, & Staley, 2015; Wolz, Stone,
Pearson, Pulimood, & Switzer, 2011). This strategy is
reasonable because writing for programs is coding in CS,
and since writing and coding are both types of expression
but with different carriers, young people can come to learn
the significance of sequence, structure and clarity of
expression (Burke & Kafai, 2012) from both of them. It is
inspiring to see that there are many positive outcomes of
these practices in terms of students’ perspective towards CT;
however, the depth and breadth of this infusion in the context
of English can be extended further.

Though it seems that no researcher has specifically
conducted an experiment exploring CT ability in English
dialogue learning, the literature on English dialogue is
insightful in showing us the possible ways in which English
dialogue learning could embrace CT. For example, the
literature on Second Language Acquisition (SLA) indicates
that when exposed to questions and answers in
conversations, people understand how different parts of a
sentence works as a unit and can master the vocabularies at

50

mailto:u3532170@connect.hku.hk

the same time (Hatch, 1978). Furthermore, students can be
more creative when they are engaging with topics in an
open-ended, free manner instead of planning the
conversation ahead of time (Andersen, 1983). Besides these
benefits, many other elements of CT can also be employed
in English dialogue learning (as shown in figure 1).

CT Concept & Capability | Language Aris English Dialogue

Data collection Do linguistic analysis of sentences Receive Information

Data analysis Identify patterns for different sentence types Understand information
Data representation Represent patterns of different sentence types Expressidea
Problem Decomposition Write an outhine Listening and thinking

Abstraction Use of simile and metaphor; write a story with branches | Define topic

Algorithms & procedures Write instructions Take tums

Automation Use a spell checker Language checking Apps

Parallelization Digital storytelling

Simulation Do a re-enactment from a story Syntax and vocabulary

Creativity Open-ended answers

Figure 1. Bridging CT, Language Arts (Barr &
Stephenson, 2011) and English dialogue learning.

Our research closely connects CT with the graphical
programming language Scratch in order to give answers to
the following questions:

RQ1: What attitude do students hold towards using
graphical programming language in English dialogue
learning?

RQ2&3: Are there attitude changes of students towards
both English dialogue learning and graphical programming
language learning after students experience the integration
of graphical programming language in English dialogue
learning?

The paper will then be organized as follows. In Section 2,
the research methodology will be introduced, data collection
and data analysis will be presented in Section 3, in Section 4
results of the research will be given, discussion of this
research will be presented in Section 5, and future research
fields in infusing CT into English Education are suggested
in Section 6.

2. METHODOLOGY

2.1. Constructionism as the Theoretical Framework
Constructionism describes the process of gaining knowledge
as “building knowledge structures” (Papert, 1991). Among
many renowned scholars in constructionism, Papert is one
of the most significant representative figures in this school
of thought. He stresses that people gain new knowledge by
engaging in doing and making artifacts, no matter what kind
of the learning circumstances and working entities. From
this perspective, constructionism focuses more on people’s
personal conversation with their own representations,
projects and products rather than the general developmental
rules (Tokoro & Steels, 2004).

According to constructionism, the participants of this study
are assigned to finish a digital artifact individually by
adopting the graphical programming tool Scratch. This is an
example of constructionism practice since by programming
in Scratch students are practitioners of the constructionism
principle -- “learning by making”. In this way, students can
build their CT and English language knowledge structures.

The one-session intervention class was designed under the
guidance of constructionism as shown in figure 2:

TmeMins Teaching Activity

(Guide students to review what theyhave kamned in the last Scratch class, remind students

. of their knowledge of character sets, dialogue and sequence operations in Scratch

1. Chssmom leading-in.

Litfle Squirrel Scmt i studying Scratch and English in his cliss. One day, his English
teacher left a homework and asked them to present a set of English dialogues they have
learned. His teacher promised the best presentercan get an acorn as a reward, how can
Serat obtain the reward?

2. Ask students to think about the possible ways for Scrat to display the English dialogues
(perform short plays, make small videos, ete.).

3. Lzad to the idea that students canuse Scratchasa tool to disphyEnglish dialogues.

Task 1:

1.3 to 4 students forma learning group, and each group needs to writs a set of English
dialogues.

English dialo gue requirsments:

Between the two roles;

No less than two rounds.

2. Modifi the English dialogues between diferent groups, then the teacher confirms the
dialogues and process to the next step.

Dialogue checking critenia:

No speling mistakes;

No grammatical errors;

ezt the dialogue requirements set out in task 1.

10

Task 2:

1. Open the edit area and demonstrate how to create a chameter byusing Scratchi's role
sample library.

30 2. Demonstrate how to use Scmtch's background sample fibraryas background to change
the stage background.

3. Demonstrate how to drag and drop program modules into the programming ara to
implment conditional expressions and dialogus / quastion finct

Task 3: Invite students to show their works through auto-playand look inside the projects,

1o then encourag them to discuss how to improve their creations.

Figure 2. Lesson Design.

2.2. Scratch as the CT tool

As a graphical programming language, Scratch is a popular
product of the Lifelong Kindergarten Group at the MIT
Media Lab. It provides the platform for young children from
8 to 16 to program different forms of projects, including
stories, games and animations (Resnick et al., 2009).
Research has concluded that Scratch can improve students’
creativity, study outcomes and problem-solving abilities
(Chang, 2014), therefore it is well accepted by the public. In
2015, Scratch welcomed its tenth birthday with more than
3,500,000 users and more than 6,000,000 shared projects
(Moreno-Ledn & Robles, 2015) from over 150 different
countries and in more than 40 languages.

CT was defined as a three-dimensional framework by
Brennan and Resnick with respect to Scratch (Brennan &
Resnick, 2012), this framework suggests understanding CT
from different angles, including computational concepts
(sequences, loops, events and so on), computational
practices (experimenting and iterating, testing and
debugging, reusing and remixing, etc.) and computational
perspectives (expressing, connecting, questioning) (Resnick
etal., 2009). With this kind of supporting theories, therefore,
Scratch was employed as the CT instrument to facilitate
researchers’ research design (Burke & Kafai, 2012; Moreno-
Le6n & Robles, 2015; Holt, 2011; Meerbaum-Salant,
Armoni, & Ben-Ari, 2013).

Gaining experience from reviewing other experimental
research, the researcher in this study chose to take the
graphical programming language Scratch as the CT tool as
well.

51

An example of the artifacts in Scratch is shown in figure 3
and figure 4.

Figure 3. Project Example (Scratch visuals).

warhveay clickoed
== ——p—
= ==

Do you

want apples or orange?

)
-

J

— J

Figure 4. Project Example (Scratch coding blocks).

2.3. The Attitude Tests

In this research, the attitude tests were adapted from the 3-
TUM (Three-Tier Technology Use Model) by Shu-Sheng
Liaw (see figure 5) to investigate user perceptions toward
information and Internet technologies. According to the 3-
TUM, there are three different tiers for evaluating attitudes
toward information technology: the tier of individual
experience and system quality, the tier of affect and
cognition, and the tier of behavioral intention (Liaw, Huang,
& Chen, 2007). Therefore, the pre/post surveys cover
questions addressing students’ personal experiences, affects
and behaviors in terms of English dialogue learning and
Scratch learning. The surveys were designed in this study by
using the five-point Likert scale in which respondents are
asked to evaluate each statement by choosing a number from
one to five, where 5 = Strongly Agree, 4 = Agree, 3 =
Neutral, 2 = Disagree, 1 = Strongly Disagree.

The first tier: the tier of The second tier: The third tier:
individual experience and the affective and behavioral
system quality cognitive tier intention tier

Figure 5. The three-tier use model (3-TUM).

However, there are minor differences in the pre-test and the
post-test -- besides exploring students’ attitudes towards
English dialogue learning and Scratch learning, the post-test
also explored students’ attitudes towards the CT-infusing

class (as illustrated in figure 6).

Figure 6. Differences in Pre-test and Post-test.

3. DATA COLLECTION AND ANALYSIS

3.1. Participants

A local aided whole-day co-educational primary school in
Hong Kong agreed to participate in this research from
February to July 2017. Students in this school can have an
extra-curricular interest-oriented CS class weekly. In this
class, students from grade one to grade three will start
learning elementary computer operations; for students in
grade four and above, the CS teacher adopts graphical
programming platform Scratch (Resnick et al., 2009) to
teach them how to program. There were 9 students in the
interest-oriented class took part in this research, their gender,
age and grade information are shown in figure 7.

Students’ attitude towards
English dialogue learning

Students” attitude towards
Scratch learming

Gender Distribution Age Distribution Grade Distribution

= Male ® Female uAge 10 m Age 11 ndms

200

Figure 7. The gender, age and grade distribution of
students.

3.2. Data Collection Process

The researcher reserved fifteen minutes with all the students
taking part in this study before distributing any
questionnaires. During this period, the researcher introduced
the research objectives, background, and process to all the
participants. Brief information about the pre-test and the
post-test was provided, and students’ rights as research
participants were described as well. Students were then
given enough time to finish the pre-test before the
intervention, and the same length of time was offered to
students for the post-test after the intervention. Qualitative
interviews will be conducted to gain further insights in the
future as the next step of our research.

3.3. Data analysis

Both the pre-test and the post-test data were gathered in
Microsoft Excel to provide an overview of the research
results. The data were then compared to see if the CT-
infusing class caused any attitude changes among students.

52

4. RESULTS

As introduced in the methodology, the surveys were
designed by using the five-point Likert scale. Students
needed to evaluate each statement in the survey by choosing
the strength of their agreement from 1 to 5, therefore each
item got a total mark ranging from 5 to 45 points based on 9
students’ responses.

4.1. Pre-test and Post-test Results for RQ 1

RQ1: What attitude do students hold towards using
graphical programming language in English dialogue
learning?

6
5
4
3
B Students
2
1
0
1 2 3 4 5 6 7 8 9

Figure 8. Student responses to the statement “I think
Scratch helped me create my English dialogues.”

6
5
4
3
B Students
P
1
a
1 2 3 4 5 6 7 8 9

Figure 9. Student responses to the statement “I enjoyed the
experience of learning English dialogue with Scratch.”

Five-point Likert scale

Five-point Likert scale

According to the collected answers from the questionnaire
issued after the intervention, 78% of the students strongly
agreed that Scratch helped them create English dialogues.
As shown in figure 8, all the students held a positive
perception towards the role of Scratch in their English
dialogue learning. Furthermore, 67% of the students
strongly agreed that they enjoyed the experience of learning
English dialogue with Scratch. No student gave neutral or
negative feedback about the experimental class experience
(see figure 9). Thus, it is apparent that students held a
positive attitude towards using graphical programming
language in English dialogue learning.

4.2. Pre-test and Post-test Results for RQ 2

RQ2: Do students’ attitudes towards English dialogue
learning change after students experience a class in which
graphical programming language is infused in English
dialogue learning?

40
39
38
37
36
35

| think learning English dialogue helped | |think English dialogue helped me to pa
me to improve my expression ability. rticipatein collaborated learning.

WPre-test 37 40
WPost-test 40 41

Figure 10. Total Likert score across students for the first
tier of individual’s attitudes (individual experience).

| think | am good at learning English dizlogue.
W Pre-test 18
EPost-test 35

Figure 11. Total Likert score across students for the second
tier of individual’s attitudes (affective and cognitive).

| often ask others for help when | come 2 | am willing to spend more time in Englis
cross an English dislogue problem h dialogue learning

EPre-test 41 36
EPost-test 40 40

4z
a1
40
39
38
37
36
35
34
33

Figure 12. Total Likert score across students for the third
tier of individual’s attitudes (behavioral intention).

Based on students’ responses, their personal experience and
affection towards English dialogue learning developed in a
more positive direction after the intervention class (see
figures 10 and 11). What is more, they were willing to spend
more time learning English dialogue than before (see figure
12) as a result of the intervention. However, it is noticeable
that students became less willing to ask others for help when
coming across an English dialogue problem (see figure 12).
Overall, after the intervention, students’ attitudes became
more positive towards English dialogue learning.

4.3. Pre-test and Post-test Results for RQ 3

RQ3: Do students’ attitudes towards graphical
programming language learning change after students
experience a class in which graphical programming
language is infused in English dialogue learning?

53

415

I think Scratch coding helped me to | | think Scratch coding helped me to | | think Scratch coding helped me to
improve my expression ability. improve my collaboration ability. improve my problem-solving ability.
WPretest 42 42 3%
BPosttest 41 41 42

Figure 13. Total Likert score across students for the first
tier of individual’s attitudes (individual experience).

| think | am good at Scratch coding.
®Pre-test 37
W Post-test 37

Figure 14. Total Likert score across students for the second
tier of individual’s attitudes (affective and cognitive).

45

a0
e
30
25
20
15
5

| often ask others for help when lco | | am willing to spend more time in Scr
me across a 5cratch coding problem. atch coding

=

WPretest 39 41
WPost-test 34 35

Figure 15. Total Likert score across students for the third
tier of individual’s attitudes (behavioral intention).

Students” attitudes towards graphical programming
language were much more complicated compared to their
attitudes towards English dialogue learning after the
intervention. In the tier of personal experience, they were
less likely to feel that graphical programming language
helped them with their expression and collaboration ability
after the intervention; however, they thought their problem-
solving ability improved while learning graphical
programming language (see figure 13). Students’ affection
towards graphical programming language remained at the
same level before and after the intervention (see figure 14).
However, in the behavioral tier, students became less willing
to ask others for help when coming across programming
problems and less willing to spend time coding with
graphical programming language after the intervention (see
figure 15). Generally speaking, students’ attitudes towards
graphical programming language became less positive after
the intervention.

5. DISCUSSION

This research has achieved its goal to provide some initial
insights on the integration of CT into English education, and
therefore benefit students from CS beyond the CS class.

Students welcomed the novel practice of utilizing Scratch in
other courses. One of the biggest challenges in teaching K-
12 students is how to hold their attention -- since Scratch is
designed to cater to students’ needs and maintain children’s
interest, students can absorb the knowledge of other courses
being taught through Scratch in a subtle way and they will
not feel bored in this process. It is obvious from the pre-test
and post-test comparison that students became more
motivated to learn English dialogue after the intervention.
Scratch enables students to do visual programming by
themselves, presenting them with colorful Sprites and
offering them the chance to take part in the dialogues
interactively in the simulated environment. As such, Scratch
makes English dialogue learning interesting and different
from what students have experienced in their ordinary
English dialogue learning classes. Meanwhile, students’
attitudes towards graphical programming language became
less positive after the intervention. Since the intervention
only lasted for one session, not much differences happened
in students’ coding ability, it is reasonable that students’
self-evaluation towards Scratch coding ability remained the
same in the pre/post surveys. Students’ declined initiative
efforts and willingness to study more about Scratch coding
after the intervention have great enlightening significance
for the instructional design of the CT infusing class -- when
students’ attention was drawn by the appealing content of
the infusing class, it is easier for them to get frustrated if the
programming tool goes wrong compared with the pure
programming class in which they only have one focus to
concern.

However, limitations exist in this research. This research
only has a sample of nine students, which makes it difficult
to generalize any information collected from the pre-test and
post-test to the average student. Furthermore, the researcher
asked the same students almost the same questions in both
the pre and post surveys (the only difference was that the
post-test asked about student’s perspective towards the
infusing class while the pre-test did not). Without a control
group, this means that some of the changed effects in attitude
might not be due to the intervention but rather due to
students being ‘primed’ by the pre-survey. What is more, the
intervention class was too short to make any influential
changes of students’ CT and English dialogue learning
capability, though this research only involves the
perspective aspect of the participants, more insights would
have been achieved if the intervention were longer.

6. FUTURE WORKS

Future studies on how to integrate CT into English education
are needed from various perspectives. While this study
focused on students’ attitudes, future researchers can go one
step further and apply some valid and reliable scales to
assess students’ learning performance in both CT and
English as a result of infusing classes. With these kinds of
studies, we can have a better vision of what happens to
students when they undergo these infusing lessons and if
students can benefit from this learning.

54

In this research, the researcher adopted Scratch as the CT
instrument in the infusing class, however other graphical
programming platforms including Alice, Game Maker,
Kodu and Greenfoot can be used to promote CT
development in K-12 education as well. Therefore,
researches on the feasibility of different CT tools in
facilitating English education can be an important branch of
both CS and English education research.

Additional, integrating CT with English education is an
interdisciplinary topic which only has a limited literature
support. The work of putting forwards any framework to
guide the following practice in this field is highly needed at
this stage.

Teachers’ professional development and community of
practice on how to teach CT are significant factors that
cannot be ignored. Research on how to better prepare
teachers is bound to have great impact on the classroom
effect of the CT infusing lesson therefore should be
enhanced.

7. REFERENCES
Andersen, R. W. (1983). Pidginization and Creolization as
Language Acquisition: ERIC.

Armoni, M. (2013). Computing K-12 curricular updates: a
necessity, or an unjustified effort? ACM Inroads, 4(4), 20-
21.

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to K-12: what is Involved and what is the role of
the computer science education community? ACM
Inroads, 2(1), 48-54.

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. Paper presented at the Proceedings of the 2012
annual meeting of the American Educational Research
Association, Vancouver, Canada.

Burke, Q., & Kafai, Y. B. (2012). The writers' workshop for
youth programmers: digital storytelling with scratch in
middle school classrooms. Paper presented at the
Proceedings of the 43rd ACM technical symposium on
Computer Science Education.

Chang, C.-K. (2014). Effects of Using Alice and Scratch in
an Introductory Programming Course for Corrective
Instruction. Journal of Educational Computing Research,
51(2), 185-204. doi:10.2190/EC.51.2.c

Grover, S., & Pea, R. (2013). Computational thinking in K—
12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Hatch, E. M. (1978). Second language acquisition: A book
of readings: Newbury House Pub.

Holt, L. (2011). Creating Digital Stories with Scratch to
Promote Computational Thinking. Paper presented at the
Society for Information Technology & Teacher Education
International Conference.

Hubwieser, P. (2012). Computer science education in
secondary schools--the introduction of a new compulsory
subject. ACM Transactions on Computing Education
(TOCE), 12(4), 16.

Kafai, Y. B., & Burke, Q. (2013). Computer programming
goes back to school. Phi Delta Kappan, 95(1), 61-65.

Lee, I, Martin, F.,, & Apone, K. (2014). Integrating
computational thinking across the K--8 curriculum. ACM
Inroads, 5(4), 64-71.

Liaw, S.-S., Huang, H.-M., & Chen, G.-D. (2007).
Surveying instructor and learner attitudes toward e-
learning. Computers & Education, 49(4), 1066-1080.

Lockwood, J., & Mooney, A. (2017). Computational
Thinking in Education: Where does it Fit? A systematic
literary review. arXiv preprint arXiv:1703.07659.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through programming:
What is next for K-12? Computers in Human Behavior, 41,
51-61.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013).
Learning computer science concepts with scratch.
Computer Science Education, 23(3), 239-264.

Moreno-Le6n, J., & Robles, G. (2015). Computer
programming as an educational tool in the English
classroom a preliminary study. In (Vol. 2015-, pp. 961-
966).

Nesiba, N., Pontelli, E., & Staley, T. (2015). DISSECT:
Exploring the relationship between computational
thinking and English literature in K-12 curricula. Paper
presented at the Frontiers in Education Conference (FIE),
2015 IEEE.

Papert, S. (1991). Situating ~ Constructionism.
Constructionism. I. Harel and S. Papert. Norwood. In: NJ,
Ablex Publishing.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,
Eastmond, E., Brennan, K., . . . Kafai, Y. (2009). Scratch:
programming for all. Communications of the ACM, 52(11),
60-67. doi:10.1145/1592761.1592779

Shackelford, R., McGettrick, A., Sloan, R., Topi, H., Davies,
G., Kamali, R., . .. Lunt, B. (2006). Computing Curricula
2005: The Overview Report. In (pp. 456-457).

Tokoro, M., & Steels, L. (2004). A learning zone of
one's own : sharing representations and flow in
collaborative learning environments. Amsterdam: 10S
Press.

Wing, J. M. (2006). Computational
Communications of the ACM, 49(3), 33-35.

Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., &
Switzer, M. (2011). Computational thinking and
expository writing in the middle school. ACM
Transactions on Computing Education (TOCE), 11(2), 9.

thinking.

55

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

£ DBR &% ¢ 24X 8

) |

?%E,E]I*’B%}Eil

AedE R

-ﬁ

LS S L

=2 % |
SR IRE

1“ﬁ“?*i%?ﬁ*i&

/r']‘q—’:‘ J{j"bj

I\:‘I—\A*‘

201621010214@mail.bnu.edu.cn, maxl@bnu.edu.cn, 919706512@qq.com, 201521010214@mail.bnu.edu.cn

&
j\ﬁﬂ"'zgl};i"‘,ﬁr‘l'
BHRETLITEL

Ay

R
B o g AL F 4 0

R B AR BT AR R S EH A\;ff*b ;?bi‘ﬁah;:
Gt B LR o i idde DBR %7 § 155 @~ 5
4 ﬁjlfrré 3 ,_L" ‘fr:?(“ m'}(?—?}: 1ij§§‘d , ’1 :,\.

FRMRELE HRET AR deY B A % ? i
PohoBH AfREFE XL LRGSR .

i4t%

AR Lk RikAE s k0t DBR

1. =143

11, ~#F827917, TV R I 2 EFNE

PEACEE LRGBS 20 F 0 fod

v
w

FEAET B, AR L RN ek S Bed A 0 ehfi2
3 wEA T SrERAT AR o

2006 3% > B UE BT EE LRl
Edgiad iy aRisn ity *u,};imé,;

° ’g— 1l

N R T AR T SV SN -“f—?J L S ‘.‘,.L
Fr B E 2T R kIR AR (Wing J M,
206) 2015 = ’R?%«T—?ﬂr—/ NIF L AL
AERY o qp it B R BSOEFA RS NG
;}g,@c N E'] FhAL o~ sk b ‘IE"’;' TA;F N 1ctb’fr11]p(5<
% > 2015) -

2016 # (B ¢ L L HE A RRIER) C gD
B AHAREOR AP FARELF Limr S
B AT FR] A s % s B HEH L A

fRAS % s hde 1 i fed A dad 4 b2 R
AR S deF A R (A H
2016) -

12. BP 4+ EL 204 2K5 a4
THEAEL Y A AR Y BAYER
WARFT MR R F 0 ¢ E A i Lk R X gk

N
e

—

T

P E @R LA RART AP E ke

LR R AR RS ks 3 EEFIE ¥ -
;E,‘ Il %ﬁ}_rrﬂ Y &;}»; 54+ a iR ,a‘_rﬂf‘.,,u ég‘pn —)['r
P F 55 B F A Fiifockd ktes > B2 i B
ﬁbi FEAMEBIERE $= 5k [FE 4R
i~ { pd P IAEd E YRy PR

Bo Bl AP At g ka2 Lh i

#EF o

2. F?E]'G'{E

BYOR LB ARG PRI T ok %
A HARPBIEAELADLE S TP f Y
M,a_micaﬁﬁ)\ C g, 7{\4-‘;:,&_9 oy iE g g F
2 ¥ E ;ﬁi.g»armm%ﬂ’w SRR frE AR DL R AT
Fehe AT o RIFE R LG L H Kk %\ Hoooad
;’L;it‘igﬁa-ﬁ“fmﬁﬁfi%“jtg%'li-&rw Z HF 45+ F

R L) A

EEICE Y SO PSS S ¥ TS
P A P I

@8 amm s it i

. i'%’rm—v i+ ﬁ\ui’ﬁ wRE 9

§ax i‘»j;ﬁ-'i.a‘ﬁmw 2a

#?

Ao sk deie ?

CRBAF F——REH R AL FE
o EHd A E R RF AR ES
iiﬂ%<5%%ﬁ*>%ﬁ
AR S e A e T mf*
ALY foE & 0 LR F] f%j* S E R L) A
b feinie 4 o ge A ERABADPCP F oo B
3(Wik AR) kAR R 2 B vt R LA
Mo AP RSN G EZH A fRLIFE BRI

ﬁi»g&ﬁ%%%%wﬁwaﬁo

3.2, # ﬁ:?ﬂf——llf’rr;.;(‘rl-ifl,f,,;,J-#M

ﬁﬂwa#dﬁﬂ

LB R R e g~ 2
- g‘)v}i’z,\,}]\

E

e
=s N

,‘

[RAA] ﬁﬂ\i/-:{
“gar BRI e R VA J‘},;T?,'L‘I. B AL

B f AR RidAe e

(o8 R) - P HFivf s LB PR DE P
FrogtR B § Al g R R AR
7 12 ’%ﬁigirﬁu&ﬂfruv*ww—ﬂﬁi1511+m &
P KRR SRR RS R R o

HE LRI T (T

33. XLt ——tF L 8 Xl i fet
ALY RN ORED R ES
KIPEwm o T E4A AT o BHEHEIFREL
HiEgagitidde; T KFa g 0 a2

E R LT T

SERE2
SR
o T 4 Al

it

W4 Y B

56

o

EFA L S B TR LM P e B
B gm0 - AR R RSO AEE 2
& ehig Az -

3.3.1L ﬁ-’a{"*mf’f‘;

AT ke (DBR) > £ p end BB LfFm Y >
iﬂhﬂiﬁsiﬁm%nra’ ggzk,»igjg\ﬁ\)k N
ek hF B RIT > R KT LB RS THR
SR R R P feIis (EaE), 2008) o P L & T

1¢:_|_~ i _'L‘J ‘J:’FB"'?"’j\lﬁﬂ;_'_-in:
Rike D E Ky FATBw (%2 20 2007) 0 A 07
?’rii—éfﬁ S E A E sk W;\» R

’*fﬁf}‘“ DBR ¢3¢ » ikt 2 A Wrefu (A9 &
'\°ﬂ%’34*%F m&#ﬁﬂwﬁhméimaﬁ
4 # - 4 DBR eugfz» ges ° T

AR A

)L R
’)\

'J"TL_":;’*.%TL s B H e s EmRC A AR > 2
AR AF DL ARG 0 B AET] e E L AR
TR ERa 2o RAELANAT SE F e
3.3.2. K FE LKA

P AP AR TP FNES LA 2 A KE
75“‘{; £$g;1§££5;_} » 4 B KRBT ﬁ\“p ;g‘/?;?{ilr-;ll o

(Dgerizgo=e > @rizsAfahxsdlaz;t
g ‘@i pE—EZLARA—EZ4FR T4 R
AT Y RAPBRE > REFEL AR PR
Lizhaad awatiLaan g o

(QiEit F4 L dofeds ML |PELH B Aot > A3 % -
EHL R

KFA~E2REFP FHRSEL DL FHR
L F ERJRAIL KL ALAS I A B AT B TR chig
Ao e E A RFRMKFFIEER DL L > R EL L
TSI KA L O A AL R T A
o Ha gt ek R e

B)& RFE2RLLAFL S FHRAL AL
F A4 FET TEK TR > T Ut (F gt Mﬁé‘;

frid 425 {4&; WreFeA SR KO i F 4 e iT et
L2 v AL feRE FdaETEh 1% s

g5 A e ERAE R LA Lo

A1 g R4

15 & & #=
1% &
LR RR
KR
AR
fe
(A= EER R 2
P E 4 BRI EANEA G BT K% Rk
PPt E 2 0 Bk AR L) F B T
EHERFROELTFE, EheniER i Bbiman £ 2

[o|

ﬁ»ﬁ&ﬁg&mﬁﬁ

£
A 4 P & &L A

TER 3
FE;"F 5 _%th,fr.;lék {.é‘ (10 A:\)

Ll

% &) 5 ¥‘r7fp ’ *2 PLFTYs e (10 A7)

I RH R R AR g K o (20 A7)

A
woagy | L LESHITAAES Lo 3
s W B F R v iR A o (50 A)

GYR A B+ 5 > LHEFNA 2 pimn

A FEP G XA LAREE A kR
dfw»ﬁ*%ﬁiPﬁ’tb*ﬂﬂﬁ4%%E&ﬁ
HAELAR T E R A BV A

RIS A S E R AT RS

RIFA B 2 FAofh B & A g = F e B0 4 %
i gL v, B9 g d 50 o G o
100% o x4 = [+ % chiz B IR chi L9 = ko
ZRAPHEGTLE LARSLT Tk ddmc T 060
e £ g ,irui:» EETE SIS B L S sl T EF O ol o
* g “KMO 4 Bartlett hzf 254227 > 2 KMO g %
OB%’%JOJ’#Hgijﬁ%ﬁ%ﬁﬁ&o

333, HFLRIEELAGES YLHELRLE
ﬂé;ﬁ'—i/{-,im—— .B/L';/,, ﬁi ‘Q ‘I_T__}ﬁ{}?_]_ “ﬂg ’3’-9}'7“ =
k 1"'\ ﬁ* > #E" ?\?*w” r’f‘J—— ‘E;s/n ﬁ}_% ‘:.'\' IF 1/{ PR 3_

FIMUTITF o @Pg iz 4 @/ﬂ\ TiE4 o A&
El’l'—}'_é% /»\ﬁ'*rﬂﬁ\ﬂ*#u FEEL LEL EFFLTHEITD
FiE4s (@) xR o Q]‘\—?‘*‘,‘lj’&rwk*ﬁ*‘—/‘
FES R s AR A B KRsekp B 2 F
Firfhang £ % ’iiﬁx%zb%kpoa‘u;%:,klrwm;}g,
A G F R WF LB R B AL
Sk PRk R f LY T4 2R dEY TR hE
S o B E N;“,,Lc@;}iﬂij‘rﬁiim;\lf%g; Fid

BARREE M EEFERELA LT 52 ek TR
G E c(OAF L HER o EFIEEOT A
3 -xdH5HER

4, KERB

41, HEHHABTL K ETEAH

AT YRR LB ARERY TR kA (3
FEAR) o AP 73 Photoshop & ’J’ﬁ-i" o d\zﬁ}i}f
FRBERNEPS ¢ b FEF T Hirig g ot
LCRE AR K e AT RE 3;&:&%5"?@

FEARAIEAAE Y EFoERFS X
112 ¢

42. F-HEFLE

421, KEF FuH

L)F#r %
FRP G R FEOMA S TR A R HF I

57

FlEPAEY B g AR L CEET i haan
Bebrigzdad - f_ﬂ; I et B4 R E K
XEA AL EF L ES hiE s A fROLE > B A
Eﬁb”ﬂvﬁﬁ“p aT,ﬁgbﬂ’d?ﬂf

422. KER =4—€' Iz R
-GN PR N sV U LTSS o
it Agde 2 3.

A3 §E Rk EaET bt fRid e

g ARG T4 %

FHEE o F A AKE P ik A Mo A R 5
E4 SRR ORBIEALFFRIITE] E RS
Fko
A4 "RESFZBET TEIE
60 A~
> % ., = | 60-70 | 70-80 | 80-90 | 90-100
A #x 14 56 36 4 2
BAY | 125% | 50% 32%14 3.6% | 1.79%

R $4 50

BIMF G H ol M P g0
S PR R
b B 18 08 2] o il - 20
A (de® B¢)%deim e iF?

L H R

FIxFEA: _r:]fmf£ TfRPRA % ER

S
B P Hixz4

T EESE s m e
T HEE ﬁ‘ =

G SR g R SR

L5 5 it

lim%€w-5°#
BN T A e E A R
“A,\ﬁi;" E’f”é_-&'ril_}i/“]'%\%

BA A L
(e & i3 i gt o Fl'g 3+ F % & &
A rdAE: U FE ke | (- R G LA
7RG HEFEIERT F| B I8 E B P

WA AT R | HRPATE BE

$HEEE: R RAE P2

A M4 4R
A MEMTT S L AR ' R

Phizstf: OR* i
(20T 84 @iFEEY
" PSD 5 o 4k (Fid AE
PEE 0 B AR ST BE G|
@iz % 17 Foirik i+ L e foid N
o H LT 2 4edr s b
BT

ROEE G R

Wh A o HEIE

gk it WALE 2 TRkt | ie F (T gk it
l3ad R

frm s HAS g XS 2
1% AN 7 ==
b 3: 242 02 FFS TR I b ki
3 4P A %
IE AT F S KGR 2
e}
R BRpLTSLE £ Tl
423. REZHL G AP
(W% =it
S ERRARELDER KRG FAERRE
iﬁ L E s > AN B E - R B AP iFG AR
I T HERES - H - HAEEEH L 2D
mjfioiﬂ‘i?#"ﬁ "Eé‘y\‘léﬂkge“i)ig%‘ﬂ
b B A g 4 {7;,3»’;,4\3‘»«?@\,;4; RORFE4
AR FigkAs EE R B DBtk INP F M E
1S ML A EL 0L ﬁw’%'lcf‘*'—’f? o fEad

EYE

A Gk FRF R kg 0 BikdeZ 4704 T hE A
bt 62.5% > 80 A ,u'r chib v 94.64%, fE5-chf £iF

(27 e AL

BT RF LR IS F o E d g o &
KELBY R4t OF 2% 75T (FR8+H
LM dEs AmAEL £TES B4 2

g i5e > @ 2 32 (FAE *I“"fr"‘ﬁ AL s d
KIS g L2 R ——*;L(ﬁx‘*mlk"_—-;«ﬂ,/y\#l?]‘mvk it
igect o @DhEs RMigser o TG
R ER LA LT A R d e BAAD
BHEREFIBD 2ok P08 e FmMEL N
e feX LiF XM Adse o LRTF B
AHVEREA R E S N B A R DA ¥4 d (498
gt it 47 o

43, ZHKEFXBZ A2k

431 s DBR* & RAKELE

B ¥ - fRELB? AmaEaL £ 44 DBR ¢
o CR AT 2 M E SR R R AR RSy
SERRY S S LSRR StUEE T 3 LR

T

ﬂJ J\L\

(DEF 5 - $hende ¥ LpS ehegi2 gt

Det %4 £FE4 3 A E 2 GRS fons il m
BT LS T E4 L L E L TR e fomp]
”ﬁﬂm%%“ﬁéﬁéﬁﬁﬁaiﬁﬁ’giﬁg
sidAee 4 &2 Mg e 3 R SR LB e A2

@@ﬁﬁWj&xiziﬁ%ﬂ’%&ﬁQ?%ii
BEHLFfoFENnT P & aey;w#/ﬂt.ieu;é;

53

%%w’&ﬂ”ﬂa F o= o
®¥:%#¥iﬂﬁiiﬁmiw

TR AT AR KRS B
“*’%J“—%%iiﬁﬁﬁﬁgﬁgmpﬁ,z
A * 33 L-""l" BB EHE S B E o] 8] R
HiiT iyfip B+t _,1,_,,8.3"-3% F N ’ﬁ._’x—’:h}:
R AR frF AR BEANKE RS HHLE
T3 KFLE > FHAPISEG - AP F LR
ik Fh b2 F o

432 =HK¥ TR 28 2 447
(DA B L RHEIR 3 i kT
Flk L ¢ AP R4 330 > o ehddE L WGP A

/TR At LR PR AT R
Aot k.

zz’}% %;‘v-’ /Z%ﬁ*
HrEA R BB im?riiﬁio

58

Mt esERkg 0 B LA S HFELARIR Y
it bw gy L——J—fg—;_—gr N VET RN W
it B R R g s
A5 E R L+t g
HERAKGE | WF | HE Sig=)

al 0.000**

a2 0.001**

LA a3 0.004**

a4 0.001**

a5 0.000**

bl 0.000**

5 b2 0.035**

- b3 0.000%*

b4 0.000**

cl 0.000**

c2 0.650**

W c3 0.000**

c4 0.225%*

c5 0.014**

* A 0.05 kK T (=)t 5 EF4p X
() TE 5k 4R 2 R

Eodd - HRFLBY 3LOPIE F 45 %5 =
iiﬁﬂbvwﬂ&voldwt’i“gﬁﬁii
B 4 gt gm e Hnﬁzﬁméoj 2@
UG R RLEVE RN L Gy o Zo 4

B T HTFA T et E AR # SIREE e

M’Jiﬁféiim&ﬂk% ﬁmx1m1%%
Hh%ehivg > a L AR Fehidfe 22 Rm A+ E

AR F R E e

(3)//\ xtw’ﬁ‘ B % —)-F]‘

P

VIS T3
En
)

»Vv

BLARRIRS 3R A AR EFE Y o F4 e
kot wrgaep o FRFEL FEEFRA - F

ZHERFIBLM D A TS T ST EEF S 0 T0-
90 A\ﬁﬂi%é}i@}ﬁi‘g 5 00 &1t mlFé}zEﬁTi@ﬁ 5

¢ g 50% o

5. FT K%

(1) s i3 L Rikfed kst F 5 0 ARIFHE L
FAEELFTOEREAN § ~E/H K~ f2h

FLEERAR AP E L AR L EF Feno

(2)3%(”")“IJ g avEfE R % RBE AR D

EBEHB o T T4 RS I?I‘TPL'!:)—* 34 ehIm
A0 X 4T AREGEE 4 LA A aug e
s HEIEL L T

(S)T%r‘%{}{iiﬁ; m“’:ﬁ"AE' NN ;}”g;ji-lm;

BELARAT H2EF LR DI o HKITF ALK

KRR A) FAORS M GMEL ML

TR 3 e AT 0 IR 7R B e A fodles o

@)+ 5o s 8- ﬁftm,ru G- B o= S

P PS iE Ra AR e

A e ek

Wing J M(2006). Computational thinking[J]. Acm Sigcse

Bulletin, 49(3):3-3.

REE ez £(2015). 5 ¢ AR g 2

grt B8 s 7[]]. ¢ it g7 A&7, (8):80-86.

AR ¥ (2016). & ¢ B L Rk TR

poge A RkagT 2] ¢f B® VKT,

(12):1-3.

& 3£ 4](2008). A 7 ke g

s [J]. M FTHK, 18(5):5- 11.
2 Zqey| ik 4 (2007). AT KA FFE T —RT HA

FRg - PRrEN] ¢t gFT AL, (10):13-17.

59

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Promoting Computational Thinking and Collaborative Skills

in Primary Robotics Classes

Hyungshin CHOIY", Jeongmin LEE?
1 Chuncheon National University of Education
2 Ewha Womans University
hschoi@cnue.ac.kr, jeongmin@ewha.ac.kr

ABSTRACT

This current study reports our attempt to design and
implement a course to promote computational thinking and
collaborative skills for primary school students in Korea. We
have incorporated Wedo 2.0 into fourth graders’ curriculum
in various real world problem solving contexts. This paper
reports the students’ activities, learning outcomes in terms
of computational thinking and collaborative/communication
skills.

KEYWORDS
Computational thinking, Bebras tasks, Collaborative skills,
Robotics Classes, Primary Education

1. INTRODUCTION

As computational thinking(Wing, 2006) is widely
recognized as the core competency in software-embedded
society, various educational attempts are being made to
promote primary students’ computational thinking skills in
Korea. These efforts include educational programming such
as Scratch programming, physical computing with robotics
and microcontrollers, and unplugged activities.

It is claimed that computational thinking can be promoted
by computer programming because it provides kids with
debugging and troubleshooting chances where they receive
quick feedback (Bers, 2018). Furthermore designing and
programming robots to function offer tangible objects for
kids to play with and observe so that debugging becomes
more visible. It is often neglected that, however,
computational thinking is a problem solving skill and
therefore students should apply computational thinking
skills in authentic problem situations while collaborating
with their peers.

This current study reports our attempt to design and
implement a course in primary education in Korea.
Specifically we aimed to investigate how the current course
design of primary robotics activities impacts on students’
computational thinking and collaborative/communication
skills.

2. CONTEXT & METHODOLOGY

2.1. Participants and Research Procedure

In the current study, 75 Korean fourth grade school students
participated in the robotics classes. Robots programming
classes were designed as a subject integration project. The
same modules were carried out in four different classes from
the 2nd week of September to the 1st week of December
2017. The pre-CT Bebras tests and pre-tests of
questionnaires were given before the first module and post-
tests were given after the 7" module. We have selected 59

students as final research subjects after removing incomplete
responses. The participants were 31(52%) boys and
28(48%) girls.

2.2. Measuring Instruments

In order to investigate the effects of the robotics class we
look into two main areas: cognitive and social. To measure
cognitive skills we focused on students’ computational
thinking and incorporated Bebras tasks(www.bebras.org).
The Bebras tasks consisted of authentic problems used to
measure students’ CT transfer. We selected 6 items from the
Korean Bebras pilot test conducted in 2016 (Park & Jeong,
2017). In addition, to measure social skills we concentrated
on collaboration and communication skills. Collaboration
skills were measured using the 5-Likert scale by Yoon and
Kim (2011). The instrument consisted of 9 items and
coefficient alpha is .780. Communication skills were
measured using communication the 5-Likert scale
questionnaires by Choi and et al. (2013). The instrument
consisted of 5 items and coefficient alpha is .845.

2.3. Data Analysis

SPSS was used for the data analysis. First, we conducted a
matched pair t-test to discover if robotics programming
education improved students’ computational thinking,
collaboration, and communication skill.

2.4. Robotics Class Design

As Table 1 indicates, we designed the robotics class
including 7 modules, and each module took 2 hours. The
modules were designed to help 4™ graders solve problems in
authentic scenarios such as earthquake, rescuing people,
recycling, and food deficiency situations. The primary
students act as researchers in a future disaster research center
who need to solve the incurring ‘real-world” problems. For
each module, students were urged to work together as a team
of two acting one as a designer and the other as an engineer.
The designer designs the robot and the engineer creates
programs to solve the problems. The team members were
encouraged to switch the roles back and forth allowing them
to be able to perform two roles. In addition, as students build
collaborative robots they work as a team of four members,
and combine two robots into one or synchronize robots’
behaviors.

60

http://www.bebras.org/

Table 1. Robotics class modules’ themes
Module
1 Disaster Robots Introduction

Themes

Designing Rescue Robots

Future Food Problem Solving Robots
Building Earthquake-resistant Houses
Recycling Helper Robots
Collaborative Robots

~N OO O B~ W N

Designing Future Robots

‘
Bl B

Figure 1. Collaborative rescue robots

3. RESULTS

3.1. Cognitive : Computational Thinking skill

A paired samples t-test showed a statistically significant
increase in computational thinking from pre-test M= 1.85,
SD= 1.06) to post-test (M= 2.47, SD= 1.24), t(58)=-3.636,
p<.05.

3.2. Social : Collaboration/Communication skill
Collaboration skills significantly increased from pre-test
(M= 3.79, SD= .51) to post-test (M= 4.03, SD= .48), t(58)=
-4.247, p<.05. In addition, communication skills also
significantly increased from pre-test (M= 3.46, SD= .61) to
post-test (M= 3.76, SD= .58), t(58)= -4.425, p<.05.

4. CONCLUSIONS & FUTURE STUDY
This research reports our design and implementation of
fourth graders’ robotics classes to promote their
computational thinking and social skills. As our findings
indicate, the robotics programming classes positively
impacted primary students’ computational thinking skills.
Although the pre-test results of Bebras tasks were relatively
low the post-test scores were significantly improved. In
order to investigate students’ persistent development of CT
skills, a series of design-based research will be conducted.

In addition, the robotics programming classes positively
impacted on primary students’ perceived
collaborative/communication skills. The robotics modules
were designed for students to collaborate in a group of two
(module 2-4) and four (module 6-7) to solve authentic
problems. This provided the students with opportunities to
work together and communicate to achieve the goal.

5. ACKNOWLEDGMENT

This work was supported by the Ministry of Education of the
Republic of Korea and the National Research Foundation of
Korea. (NRF-2016S1A5A2A0392687)

6. REFERENCES
Bers, M. U. (2018). Coding as a playground. New York:
Routledge.

Choi, Y., Noh, J., Lim, Y., Lee, D., Lee, E., & Noh, J.
(2013). The Development of the STEAM literacy
measurement instrument for elementary, junior-high, and
high school students. Journal of Korean Technology
Education, 13(2), 177-198.

Park, Y., & Jeong, I. (2017). Assessing elementary school
students’ computational thinking skills on Bebras tasks.
The Korean Association of Information Education
Research Journal, 8(1), 27-31.

Yoon, H., & Kim, S. (2001). The effects of cooperative
learning applying Jigsaw Il on learners’ self-regulated
learning, achievement, self-esteem & cooperation. Studies
on Education of Fisheries and Marine Sciences, 13(2), 194-
211.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 19(3), 33-35.

61

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking
Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking and
loT

62

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

A Design-based Approach to Implementing a Computational Thinking

Curriculum with App Inventor and the Internet of Things

Chi-hung TSENGY", Mike TISSENBAUM?", Wen-hsuan KUAN?, Feng-chih HSU?, Ching-chang WONG*
1 Massachusetts Institute for Technology
2 University of Taipei
SCAVEDU Education, Taiwan
4 Tamkang University, Taiwan
chihung@mit.edu, mtissen@mit.edu, whkuan@utaipei.edu.tw, jesusvictory777@cavedu.com, wong@ee.tku.edu.tw

ABSTRACT

The growing ubiquity of everyday devices connected over
the Internet, known generally as the Internet of Things (10T),
has opened up new avenues for students to explore their
worlds and think and create computationally. Combining
IoT with mobile technologies (such as smartphones),
enables students to move their designs and computational
thinking out of traditional classroom settings and into the
real world. This article outlines a design-based IoT
curriculum that connects Taiwanese students with the
personally-relevant issue of air pollution. The curriculum
employs student-driven smartphone application design,
using MIT's App Inventor, with Wi-Fi enabled 0T devices
(LinkIt 7697 Wi-Fi/BLE MCU board). This paper reports on
changes to the curriculum based on a preliminary pilot and
observations of student engagement during the most recent
enactment.

KEYWORDS

Computational Thinking, App Inventor, Internet of things,
Curriculum design, air pollution

1. INTRODUCTION

1.1. Internet of Things: The Next Sphere of Digital
Empowerment for Learners

As Asoton (2009) so clearly highlighted, the increasing
ubiquity of our everyday objects connected through the
Internet, commonly termed the Internet of Things (1oT), is
changing our daily lives in profound ways. This persistent
connectivity is even reaching into our home. From our
refrigerators, to our lightbulbs and thermostats, even our
home entertainment systems are all increasingly connected
to the Internet and controllable through mobile applications.
Smart hubs like Google Home or Amazon Echo, are acting
as "digital assistants" that allow you control your home
appliances by simply talking to them. However, most of
these systems are black boxes to users. We do not know how
they work, what they do with our data, and generally cannot
customize them for our own needs. Similar to the call for
computing education to embrace mobile computing as a
means for empowering students as creators and not mere
consumers of our digital futures (Tissenbaum, Lee, et al.,
2017), there is a growing need to consider how to effectively
integrate 10T into educational designs.

1.2. Making Computational Thinking Meaningful
The continued focus of computing education with learning
the fundamentals of computing (e.g., loops, conditionals,

functions, variables, and data handling) first proposed by
Wing (2006) and others, risks disconnecting what students
learn from how they might apply it in their own daily lives.
This separation of learning from contexts threatens to make
learners feel that they do not need to learn computing,
because they cannot see how it will apply to lives or their
futures, a challenge commonly faced in math and physics
education (Williams et al., 2003; Flegg et al., 2012). It
therefore becomes critical for education designers to
understand what current issues may be of interest to learners,
and how they can develop educational interventions that can
connect them to computing education.

For instance, air pollution has become a rising problem in
Taiwan recent years. This problem is keenly understood by
everyone in Taiwan and is the topic of science and other
disciplines within K-12 education. One source of data for
understanding the air pollution status in Taiwan is the
readings provided by government air quality stations.
However, even within a small geographical region like
Taiwan, the air quality can vary significantly, and the
government stations alone are not robust enough to capture
the variances. The increased availability of low cost 10T
devices and peripherals, coupled with Internet connectivity
offers new opportunities for the public to design and build
their own sensors, and to collectively share that data to
public or private servers (Chen et al., 2017). The
convergence of personally meaningful context and low-cost
technology provides the ideal context for designing
computational curriculum that can engage students in a
personally meaningful way.

1.3. Reducing Barriers for Computational Thinking

While engaging students in loT-focused computing
curriculum may provide new ways for making computing
personally meaningful, it is not without challenges. Most
programming languages require arcane syntax and grammar,
which is a significant barrier for young learners wishing to
engage in computational practices (Maloney et al., 2004). If
our goal is to have students feel empowered to develop
computational solutions to real-world problems and become
excited about their ability to do so, we need to reduce these
barriers to entry. In response, researchers have developed
block-based programming environments, in which users
assemble programs by snapping "blocks" of code together.
These blocks-based languages have been shown to support
novice programmers to more easily develop relatively
complex programs in the domains of games (Brennan and

63

Resnick, 2012), 3D animations (Dann, Cooper, Pausch,
2011), and computational models (Begel & Klopfer, 2007).

MIT's App Inventor is an example of a blocks-based
programming environment that allows users to build fully
functional native apps for Android phones and tablets.
Because App Inventor is focused on mobile applications, it
allows the programs that young learners build to move off
their computer screens and into their lived lives. When
coupled with sensors and other 10T devices, App Inventor
can open exciting new possibilities for students to
experience, understand, and interact with their physical
worlds. While the promise of youth developing
transformational interventions using IoT is exciting, the
technical complexity required to actually develop these
interventions is a clear barrier.

2. METHODS

2.1. Developing a Low-barrier 10T Curriculum for
Taiwan through App Inventor

In response to the challenges of designing a personally
meaningful computational thinking curriculum for
Taiwanese students that does not require complicated pre-
existing programming knowledge, we developed new loT
extensions for App Inventor. Below we discuss the
development of the new loT functionalities for App Inventor
and the successive iterations of our air quality curriculum.

2.2. Why Wi-Fi not Bluetooth

There has been significant prior work focused on using
Bluetooth to control robots or devices (AlHumoud et al.,
2014). However, compared with Wi-Fi, the range Bluetooth
can cover is much smaller, making it mainly suitable for
spaces about the area of a classroom. When it comes to
larger spaces, such as a playground or even a campus,
Bluetooth does not have the range to support communication
between devices. In this curriculum design, students' air
quality monitor systems could be 50 to 500 meters away
from each other, well beyond the range of Bluetooth or
Ethernet cables. In these cases, we recommend using
development boards that are Wi-Fi enabled (such as the
Linklt 7697 used here).

While there are many prototyping boards options, embedded
boards - boards that have all the necessary parts for
controlling other devices already built into them (Barr &
Massa, 2006) - are particularly useful for educational
purposes. Embedded boards are significantly cheaper,
smaller, more portable, and have lower power consumption
that full-fledged computers. It is also fairly easy to power
prototypes developed using embedded boards using small
portable power sources (e.g., AA batteries or power banks)
(Tseng et al., 2017).

By coupling these embedded boards with mobile
technologies, we can extend their capabilities in ways that
would be prohibitively complex on their own. For instance,
voice recognition is relatively simple to implement with
smartphones (similar to Google Assistant or Apple Siri).
However, this kind of functionality is extremely difficult to
implement on embedded boards alone. Combining the two
naturally complements the affordances of each and allows

us to envision more complex and engaging educational
designs.

2.3. An Authentic Problem: Taiwan's Air Pollution

The design of this camp is focused on the current air
pollution problem in Taipei, which has become an
increasingly serious health threat to everyone living there.
Among all pollutants, fine particulate matter (PM2.5 -
particles that are less than 2.5 micrometers in diameter), are
particularly serious as they can penetrate the alveoli (the gas
exchange regions of the lungs) and even pass through the
lungs to affect other organs. PM2.5 have been shown to
cause serious illness and increase cancer rates and is directly
related to a range of serious health problems, such as asthma,
cardiovascular disease, respiratory diseases, lung cancer,
and premature death (Chen, 2017). According to Taiwan
Environmental Protection Administration (2018), a person's
respiratory system can be seriously affected when the PM2.5
level is above 50 pg/m3. Given the seriousness of the
problem, and its direct connection to the population of
Taiwan, the subject matter was one we believed participants
would be able to directly connect to.

2.4. Participants and Setting
This work was designed as a summer camp taking at three

different high schools in the same week. Each camp has 30
students randomly separated into 12 to 15 groups
disregarding gender or prior programming experiences. The
camp took place over five 6-hour days (9:30 to 16:30 each
day). In each camp, one expert instructor conducts the
curriculum and three TAs are present to work with students
and collect observations. At the end of each day, the
instructor and TAs debriefed together to exchange
information about interesting and unexpected events.

2.5. Data Collection
Observations during camp sessions were collected by the

instructors and TAs, debrief sessions with the instructors and
TAs, and the students' final products.

3. CURRICULUM DESIGN

This curriculum was implemented using a design-based
research approach, which employs iterative cycles of design,
deployment, observation, and redesign (Barab & Squire,
2004).

3.1. Linklt 7697 Wi-Fi/Bluetooth MCS Board

For 10T connectivity we used the LinklIt 7697, which is an
Arduino compatible development board (2018). It supports
Wi-Fi and Bluetooth Low Energy connectivity. With its
relative affordable price (about 15 USD) and the support of
the open source community, Linklt 7697 board is relatively
easy for beginners to get started with. Students can quickly
build and test their designs without any complicated setup.

In this camp, we combined the Linklt 7697 to a PM2.5
sensor as a prototype for students to collect PM2.5 data and
to further explore the physical world.

64

Figure 1. Prototype of the air pollution monitor system,
including Linklt 7697

To make the hardware setup easier, we used an extension
board to connect the air quality sensor, removing the need
for students to use a breadboard and messy wires. This was
a suitable approach for a camp, but for a longer-term
intervention, it might be better for students to have more
hands-on experiences building breadboard circuits.

3.2. Curriculum Content
Below we describe each day of the five-day camp.

Day 1. Basic Understanding of Mobile Programming.
The camp started with an introduction to the App Inventor
platform and having students install the Android emulator
on their PCs. Using a set of tutorials, students developed a
basic understanding of the AIA environment and its
components (e.g., Buttons, Textboxs, Images, Webviewers),
and how to build apps to complete certain tasks (e.g., to have
users input two numbers into Textboxes to calculate the area
of a rectangle, and how to show error message if either one
Textbox is empty).

Day 2. Get into Mobile Phone’s Functionalities. On Day
2, using the premise of game design, students learned how
to integrate multimedia, and sensing functions in their apps.
Students had to make a virtual ball on the screen roll
according to the phone’s orientation (utilizing the
orientation/accelerometer sensor). We also introduced the
Map and location sensor components, having students build
a location-based app to detect their location.

Day 3. Basic Understanding of Circuits and MCU
boards. On day 3, students began working with the LinklIt
7697 MCU board to control several electrical components,
such as LEDs, potentiometers and buttons. In the afternoon,
students built a light-controlled LED, in which the LED
intensity was affected by the ambient light condition using
the photoresistor.

Day 4. Receive Data from MCU Board to Show on the
App Screen. On day 4, students built the main components
of their air quality monitoring systems. Students learned
how to control the MCU board through their mobile phone
through Wi-Fi, how IP connections work, how to send their
air quality sensor data to the server, and how to retrieve data
from other devices and show it on their phone's screen.

Day 5. Demo, Share and Feedback. On the fifth and last
day, students finished their monitor system and tried to add
more functions to it, such voice control or using different

color LEDs to indicate the air quality. In the afternoon, they
presented what they had built and learned during the week
to the larger group. As a follow-up reflection, students were
asked to discuss and write down what they could add to
make their projects to make them better. Some of this
discussion was/will be used to improve subsequent iterations
of the camp.

The prototype of our air pollution monitor system uses a
Linklt 7697 MCU board, extension board and an air quality
sensor (can detect PM10, PM2.5) (Figure 1).

Students then designed their own interfaces based on what
they learned over the first three days. Each group came up
with different ways to present their data: one team used
Google Chart API to visualize the hourly PM2.5 status
updates, while others simply showed the readings on the
screen (Figure 3).

DM HAN
BN

AL

(PM109)

(PM25)
(CO0.7)
(NO 1.93)
(NO2 2)
(O3 28)

Figure 2. Examples of student representations of air quality

4. OBSERVATIONAL STUDY

During the one-week camp, almost every group of students
from the three high schools finished building their air
pollution monitor systems, sent data to the server and
reviewed all the air quality sensor data installed within the
campus. From our observations, about half of the students
resisted or paid less attention at first because they felt that
mobile and loT programing was too difficult to learn.
However, with the help of AIA and the easy-to-connect
hardware, these students began to explore more of the AIA
functionality on their own. This exploration was clearly seen
in their final project presentations. All the students were
visibly excited when they successfully sent data to the server
and were able to view their surrounding campus' overall air
quality. Many students expressed the idea that this data was
really meaningful and impacted their perceptions of the need
to understand and care for the environment in the future.
After the camps were over, we randomly selected several
students from each camp and quoted their feedback below:

“It’s really exciting when I see the data jumping on the
screen.”

“Now I know what the difference is between Wi-Fi and
Bluetooth.”

“I can prepare a mask before I go to school if the app tells

me today’s air condition is not good.”

65

The results of this first full implementation of the camp was
extremely encouraging and will further design iterations for
year two.

5. DISCUSSION AND FUTURE WORK
This paper described the design and development of a one-
week 10T curriculum with high school students which aimed
help them in developing their identities as computational
thinkers. This iterative work built on a previously piloted
version of this camp held across three high schools in Taipei
city, Taiwan. By reviewing the observatory results and
student’s projects, we saw that overall, students were
motivated and connected to the work because the topic was
connected to their daily lives.

Building off our current run of the camp, we have some
thoughts on how to extend and improve the curriculum. For
students who want to explore further, it might be fruitful to
provide them with opportunities to try out other making
skills that connect to this topic, such as how to use 3D
printing or laser cutting to fabricate an exterior case for their
air pollution monitor system to provide better protection.
Another option for student exploration could include
opportunities for students to add additional sensors to
expand their device's functionality. For instance, they could
add temperature, humidity and wind direction sensors to
provide a more comprehensive analytics results. They could
also add multi-color LEDs to indicate different air quality
conditions or extend their mobile apps to provide a pop-up
notification when the air quality condition is bad.

Building off these insights, in future camps we will design
more inquiry activities for students to design and build with
AlIA and 10T devices, allowing them to explore their
surrounding environments through computational means.
Future iterations of this camp will also involve more
students and will employ a pre/post survey to collect more
detailed quantitative and qualitative findings. Through this
work, expect to have a more comprehensive understanding
of how students become computational thinkers through
participation in this camp, and how it may affect students'
computational thinking skills, eventually their future study
and career pathway choices.

6. REFERENCES

AlHumoud, S., Al-Khalifa, H. S., Al-Razgan, M. & Alfaries,
A. (2014). Using App Inventor and LEGO mindstorm
NXT in a summer camp to attract high school girls to
computing fields, 2014 IEEE Global Engineering
Education Conference (EDUCON), Istanbul, 2014, pp.
173-177.

Barab, S. & Squire, K. (2004). Design-Based Research:
Putting a Stake in the Ground. Journal of the Learning
Sciences, 13(1), 1-14.

Barr, M. & Massa A. J. (2006). "Introduction".
Programming embedded systems: with C and GNU
development tools. O'Reilly. pp. 1-2. ISBN 978-0-596-
00983-0.

Begel, A. & Klopfer, E. 2007. Starlogo TNG: An
introduction to game development. Journal of ELearning.

Chen, L.J., Ho, Y.H., Hsieh, H.H., Huang, S.T., Lee, H.C.,
& Mahajan, S. (2017). ADF: an Anomaly Detection
Framework for Large-scale PMZ2.5 Sensing Systems.
Accepted to IEEE Internet of Things Journal.

Chen, L.J., Ho, Y.H., Lee, H.C., Wu, H.C., Liu, H.M, Hsieh,
H.H., Huang, Y.T., & Lung, S.C. (2017). An Open
Framework for Participatory PM2.5 Monitoring in Smart
Cities. IEEE Access Journal, 5, 14441-14454.

Flegg, J., Mallet, D., & Lupton, M. (2012). Students'
perceptions of the relevance of mathematics in
engineering. Intl. Journal of Mathematical Education in
Science and Technology, 43(6), 717-732.

Lee, C. H., & Soep, E. (2016). None But Ourselves Can Free
Our Minds: Critical Computational Literacy as a Pedagogy
of Resistance. Equity & Excellence in Education, 49(4),
480-492.

LinkIt 7697 Development platform. Retrieved from https:/
/docs.labs.mediatek.com/resource/linkit7697-arduino/en

Location Aware Sensing System. Retrieved from

https://pm25.lass-net.org/

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., &
Resnick, M. (2004, January). Scratch: a sneak preview
[education]. In Creating, connecting and collaborating
through computing, 2004. Proceedings. Second
International Conference on (pp. 104-109).

PMZ2.5 concentration indexes and activity advices. Retrieved

from http:
/ltagm.epa.gov.tw/tagm/tw/fpmi.aspx
Tseng, C.H., Wong, C.C. & Kuan, W.H. (2017).

Implementation of a map route analysis robot: combining
an Android smart device and differential-drive robotic
platform. MATEC Web Conf, 95 (2017) 08005.

Wagner, A., Corley, G. J., & Wolber, D. (2013). Using app
inventor in a K-12 summer camp. Proceedings of the 44th
ACM technical symposium on Computer science
education, pp. 621-626.

Williams, C., Stanisstreet, M., Spall, K., Boyes, E., &
Dickson, D. (2003). Why aren't secondary students
interested in physics? Physics Education, 38(4), 324.

Wing, J. M. (2006). Computational
Communications of the ACM, 49(3), 33-35.

thinking.

66

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking
Development in Higher
Education

67

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

The Use of Computational Thinking to Advance Learning

in the Pre-university Subject of Digital Literacies

Ildiko VOLCZ
University of Technology, Sydney, Insearch
ildiko.volcz@uts.edu.au

ABSTRACT

This paper describes how elements of computational
thinking are employed to advance student learning and
engagement in the Digital Literacies subject of the
Foundations Studies of the University of Technology,
Sydney. This study does not focus on enhancing technical
coding skills, rather it takes the conceptual view on
computational thinking and investigates how aspects of it
can be used to further students’ academic skills and develop
their abilities to solve complex problems in collaboration
and with the use of technology.

This paper will also reveal 115 students’ responses of the use
of computational thinking elements in project-based
assessment.

KEYWORDS
Computational thinking, Digital Literacies, project-based
learning.

1. BACKGROUND

The UTS Foundation Studies Program is offered in Australia
by Insearch to international students; the academic entry
level requirement is completion of Year 11, with an English
language requirement of IELTS overall 5.5 and a minimum
of 5.0 in writing. The course is designed to develop students’
academic and language skills to prepare them for a
university education.

The student body represents a diverse population in terms of
gender, country of origin and also use of technology. There
is great fluctuation in the composition of nationalities from
semester to semester: in some semester there is
approximately 40% Chinese and 40% Nepali students, in
other semesters, 75% of the students are from China. The
rest of the student population is generally from Indonesia,
India, Korea, Laos, Malaysia, and Vietnam. Therefore, the
curriculum has to be flexible enough to cater for students
with different skill levels while aiming for consistent
learning outcomes.

The composition of the cohort that provided information for
this paper consisted of 75% students from China, 7% from
Indonesia as the second biggest group of students, 2% from
Korea and 2% from Hong Kong; the rest of the students were
from Nepal, Myanmar, Pakistan, Nepal, Malaysia.

The cohort represented 55% male, 45% female students;
55% studying Business, 13% Communication, 10% Design,
6% Engineering.

2. INTRODUCTION
The aim of the UTS Foundation Studies is to provide
preparatory education to international students for university

courses. The role of the Digital Literacies subject in the
program is to equip students with the technical conceptions
and skills to become efficient users of digital and online
resources. The subject employs a number of computational
thinking principles and elements ranging from simple
coding activities to complex project-based collaborative
learning assessments. This paper will describe how
computational thinking is applied in this subject.

3. COMPUTATIONAL THINKING

3.1. Definition of Computational Thinking

There are numerous definitions of computational thinking
(CT); one of the widely applied description by Jeanette M.
Wing (2011) states: “computational thinking is the thought
processes involved in formulating problems and their
solutions so that solutions are presented in a form that can
be effectively carried out by an information-processing
agent”. Hemmendinger (2010) describes it as: “Teaching
computational thinking, however is something else; not to
lead people to think like us — which is pretty varied anyway.
Instead, it is to teach them how to think like an economist, a
physicist, an artist, and to understand how to use
computation to solve their problems, to create, and to
discover new questions that can fruitfully be explored.”
These definitions suggest that computational thinking skills
go beyond Computer Science and can be applied to non-
computing subjects. DeSchryver and Yadav (2015) argue a
that computational thinking skills (as strategies for problem
solving in data-mediated, technology-rich learning and work
environments) coupled with the use of new literacies skills
(strategies to negotiate, generate, and communicate meaning
among myriad encoded digital forms) enhance creative
thinking skills (cognitive activity comprising various
subsets of these component thinking skills that are mediated
by the more aesthetic components of traditional creativity).
There are various calls for opening up CT elements to
learning that is not computer dependent.

The heightened need for including computational thinking
in K-12 curriculum that is supported by government bodies:
England added Computational Thinking and Computer
Programming in the national curriculum of primary and
secondary education (Department for Education England,
2013), while Australia puts emphasis on STEM (Science,
Technology, Engineering and Mathematics) subjects in their
curriculum, as Chang (2015) states: “The new curriculum
echoes successful programs implemented in the United
States such as Code.org and “Hour of Code”, with the
support of Google and Microsoft, including the United
Kingdom who introduced coding in primary schools last
year.” As CT skills will advance in K-12 education,

68

university preparatory courses will also need to incorporate
elements of CT.

3.2. Elements of Computational Thinking

Just as there are numerous definitions for Computational
Thinking, there are also a wide range of ideas on the
components of it. Gouws, Bradshaw & Wentworth, (2013)
developed a Computational Thinking Framework (CTF) to
assist in developing educational materials. According to
their framework, the followings skill sets are required for
computational thinking: Processes and Transformation,
Models and Abstraction, Patterns and Algorithm, Tools and
Resources, Inference and Logic, Evaluations and
Improvements. The levels of these skills are described as:
Recognise, Understand, Apply and Assimilate.

Weese (2017) describes the elements of computational
thinking as: Algorithmic Thinking, Abstraction, Problem
Decomposition and Control Flow.

According to Barr and Stephenson (2011) the core
computational concepts are: data collection, data analysis,
data representation, problem decomposition, abstraction,
algorithm and procedures, automation, parallelization and
simulation.

Garcia-Pefialvo and Mendes (2018) describes computational
thinking as “an active problem solving methodology where
the students should use a set of concepts, such as abstraction,
patterns matching, etc., to process and analyze data, and to
create real or virtual artefacts”.

Code.org (2014) illustrates the process of computational
thinking in 4 steps: step 1 - decompose, step 2 - patterns, step
3 - abstraction, step 4 - algorithm.

Reviewing the definitions and descriptions of the
components of CT skills one can deduct that some common
ingredients are: problem decomposition, patterns matching,
abstraction and algorithm creation.

4. COMPUTATIONAL THINKING IN

THE SUBJECT OF DIGITAL LITERACIES

The aim of the UTS Foundation Studies’ Digital Literacies
subject is to equip students with the skills and knowledge to
become efficient users of digital devices and applications for
academic purposes. The subject employs the components of
computational thinking to enhance students’ abilities to
tackle complex issues and solve project-based problems in
collaboration with others. Other than technical capabilities,
the main skills that pre-university students develop in this
course are conceptual skills and problem solving abilities.

4.1 The development of CT skills

In the Digital Literacies subject students first complete an
unplugged activity developed around the four elements of
computational ~ thinking (problem decomposition,
abstraction, patterns matching and algorithm creation). The
main aim of this learning activity is to enable students to
become familiar with the concepts of CT. Through this
exercise students develop their knowledge to recognise and
understand the process of computational thinking.
Following this unplugged activity, in the next two CT
activities students work individually to apply their
knowledge to practical exercises. They complete two “Hour

of Code” tasks: Minecraft as a beginner coding activity on
code.org and to understand programing logic they use the
lighbot.com mission. The Hour of Code game is used in the
subject to inspire students and raise awareness of the
importance of programming, but not to teach students
technical coding as concluded by Du, Wimmer and Rada
(2016). Light-bot.com is applied in the course as a sound
resource to teach students conceptual skills and abstraction,
as assessed by Gouws, Bradshaw & Wentworth, (2013)
Lightbot has a 74% overall CT score, although, the program
is weaker in the areas of recognising patterns and creating
algorithm.

4.1.1. Feedback from the students on these activities
55 students completed an evaluation survey of the lesson and
the majority of the students (83%) enjoyed the activities and

rate them 4+ stars.

1 L s B 2 Aok
ewe Lesson ratings o

2%]

S mERS e

! PEA

4 Jodokoks
18%

Figure 1. Student rating of Hour-of-Code lesson

The word cloud below serves as a summary of the students’
comment on the lesson.

us eful
ClaSS information B e
bﬁcaﬁiglyl s contamsrlew

lnterestlng e e""””"hﬂi o computer

dlgltal bOUthCh future improve

fine finally make games
kn W rules |, t never eag?,%ﬁ‘ﬁ; skill
OL concept
advance similar noticed
practicing e literacies

like fun e rn’ﬁnuablecme e
f Cll Everyone
e SiEes ills friends

= thi
s B Padlgt kind listen ~ wonderful lots thlnk
Visual o tired website picture elolidencs
introduce practice

subject lesson®» befoldodue
CREATE g“’e“h cassmate YY1 OT€© work just
techno]ogy 8 Fele teacher nowledge

theories B2PPY |earned

Figure 2. Student comments of Hour-of-Code lesson

4.2. Project-based assessment details

Once students have completed these activities, they progress
to the assimilation level of the CT skills and are engaged in
a 6-week-long project-based learning assessment. In this
assessment students need to employ their CT skills to
decompose the complexity of the task, recognise patterns to
find similarities within and among tasks, use abstraction to
focus on the main issue and create an algorithm to identify
details of the process.

The assessment is a collaborative task where students create
a 5-minute movie that tells an inspiring story around a digital
literacies topic. The project has three deadlines that are set
in order to assist students to keep on track with the project:

69

in week 2 they need to submit a story brief that includes the
elements of their short story, in week 4 they do a movie pitch
to build anticipation and create excitement about their film
in class and in week 6 they submit the final, edited movie.
Concurrently, students will acquire skills in the areas of
visual literacy incorporating camera angles, shots and
staging; in audio editing to record and combine audio tracks
and in movie editing to comply a short video.

4.3. Computational Thinking Process in Project-
based assessment

Students are required to use the process of CT to complete
the assessment. They need to apply the components of CT to
create the collaborative project. This experience will assist
them in developing their conceptual understanding and
team-based problem solving skills.

4.3.1. Decomposing the Problem

The first step when starting an assignment is to break it down
into smaller, more manageable tasks where each part can be
solved independently of each other. Consistently, that is the
very definition of decomposing the problem (Weese, 2017).
To provide scaffolding to students in the decomposing
process, the project-based assessment has defined deadlines
to meet, such as the story brief and the movie pitch. These
deadlines create the skeleton for the project and assist
students with breaking the assessment into smaller tasks and
allocate those to group members. Students need to decide on
activities that need to be completed as a group and assign
tasks to individuals to contribute to the final product.

This part of the assessment provides the students with great
learning value in developing their conceptual skills and
understanding the steps in starting an assignment.

4.3.2. Recognising Patterns

During the decomposition stage students will come across
tasks that are similar in nature. According to Code.org
(2018) pattern is a theme that is repeated many times.
Students in this assessment are particularly encouraged to
look for patterns when they create their shot list, so scenes
that are similar can be organised accordingly. Identifying
patterns can be applied to most of the technical parts of the
project, such as audio and video recording and editing.

Another example for pattern recognition in the project-based
assessment is the use of camera angles and shots to underpin
the tone of a scene. For example, to convey emotions
students use close up shots to show character’s facial
expressions; or to illustrate that a character is inferior they
use high camera angles. This kind of pattern of shots and
angles are used throughout the movie to support the story.

4.3.3. Abstraction

Abstraction refers to the general representation of a complex
problem. According to Wing (2008) “The abstraction
process - deciding what details we need to highlight and
what details we can ignore - underlies computational
thinking”. The abstraction process allows students to gain a
better understanding of the problem they are faced with. It
allows them to investigate the core of it without focusing on
unnecessary details. It helps them to concentrate on the main
idea see what the more important parts of the project are.

In the movie assessment students are required to use
abstraction for their movie brief and pitch. In the movie brief
they need to outline the main parts of the story, using the five
elements of a short story: setting, characters, conflict, plot
and theme. They are not required to work out the plot
structure in details, rather to provide an overall impression
of their story. This abstraction provides the students with
two main benefits: form the main idea for their movie and to
be able to express themselves in a prompt format.

In the movie pitch the group needs to present their movie
idea and a trailer (advertisement of their movie) to the class.
The aim of the movie pitch is to generate anticipation and
interest in their movie. The groups are required to use
abstraction and present their idea in a way that provides
enough information for the audience to understand the story
without getting into lot of details. Creating a trailer for their
movie is an excellent example for students to develop an
understanding of abstraction.

Abstraction as well as problem decomposition teaches
students to gain an overall view of an issue and develops
their conceptual thinking skills. However, these two
elements of CT differ. With problem decomposition one
breaks through the complexity of a project and creates
smaller, more manageable tasks, while with abstraction one
gains understanding by removing unnecessary details. For
example, when a student is assigned the role of an actor in
the group that is problem decomposition, but when that
student is trying to understand the personality of that
character is abstraction. By reflecting consciously of the
similarities and differences between problem decomposition
and abstraction students are supported in developing a better
understanding of both.

4.3.4. Algorithm

Algorithm refers to solving a problem by developing a set of
steps taken in a sequence to achieve the desired outcome
(Katai, 2014). The project-based assessment does not focus
on developing technical step-by-step instructions for
creating a movie, rather it aims to provide the students with
the steps to confidently undertake any future projects in their
university studies.

At the end of the project, students are required to reflect on
the process, identify and evaluate steps that they took in
creating their final movie. This assessment hopes to provide
the students with the algorithm of successfully solving the
challenges of complex, group assignments.

44. Feedback from students on the use of CT elements
115 students filled in the final survey after the completion of
the project. Their response on the use of CT skills in the
project-based learning was very positive, approx. 85% of the
students agreed or strongly agreed that they have acquired
skills that they will use at university, skills that will help
them in to do well in other subjects, and skills in problem
decomposition.

70

End of project survey results

m | will use the skills | learnt at
s0 university

m The skills | learnthelped me to do
better in other subjects

I gained skills to identify and carry
out smaller tasks in a project

il -
0+ T

Strongly Agree Agree Neutral Disagree

Strongly Disagree

Figure 3. Student feedback on the use of CT elements in
project-based assessment

5. CONCLUSION

Computational thinking skill development exercises being
incorporated into K-12 Australian curriculum. Therefore,
university preparatory courses need to provide similar
opportunities for international students to gain knowledge
and skills in CT.

Computational thinking components are being used in non-
STEM subjects. In this paper, a case of using CT elements
in a project-based assessment is presented. It is found that
many elements of the CT process can also be applied for
project-based learning. Feedback from the students who
completed the assessment favours the incorporation of
computational thinking into curriculum.

6. REFERENCES

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to K-12. ACM Inroads, 2(1), 48.
http://dx.doi.org/10.1145/1929887.1929905

Chang, O. (2015). Australian schools are scrapping history
and geography and replacing them with coding classes.
Business Insider Australia. Retrieved 24 January 2018,
from https://www.businessinsider.com.au/australian-
schools-are-scrapping-history-and-geography-and-
replacing-them-with-coding-classes-2015-9/

Code.org. (2014). Code.org:Anybody can learn [online]
Available at:
https://studio.code.org/unplugged/unplug2.pdf [Accessed
24 Jan. 2018].

Department for Education England. (2013). National
curriculum in England: Computing programmes of study -
key stages 1 and 2. Ref: DFE-00171e2013. Retrieved
from:

https://www.gov.uk/government/publications/national-
curriculum-in-england-computing-programmes-of-study

Deschryver M. D., Yadav A. (2015). Creative and
Computational Thinking in the Context of New Literacies:
Working with Teachers to Scaffold Complex Technology-
Mediated Approaches to Teaching and Learning. Jl. of
Technology and Teacher Education (23), p411-431.

Du, J., Wimmer, H., & Rada, R. (2016). “Hour of Code”:
Can it change students’ attitudes toward programming?
Journal of Information Technology Education:
Innovations in Practice, 15, 52-73. Retrieved from
http://www.jite.org/documents/\VVol15/JITEv1511Pp053-
073Du1950.pdf

Garcia-Pefialvo, F. and Mendes, A. (2018). Exploring the
computational thinking effects in pre-university education.
Computers in Human Behavior, 80, pp.407-411.

Gouws, L., Bradshaw, K., & Wentworth, P. (2013).
Computational thinking in educational activities.
Proceedings Of The 18Th ACM Conference On Innovation
And Technology In Computer Science Education - Iticse
'13. http://dx.doi.org/10.1145/2462476.2466518

Hemmendinger, D. (2010). A plea for modesty. ACM
Inroads, 1(2), 4.
http://dx.doi.org/10.1145/1805724.1805725

Katai, Z. (2014). The challenge of promoting algorithmic
thinking of both sciences- and humanities-oriented
learners. Journal Of Computer Assisted Learning, 31(4),
287-299. http://dx.doi.org/10.1111/jcal. 12070

Weese, J. L. (2017). Bringing computational thinking to K-
12 and higher education (Order No. 10271485). Available

from ProQuest Dissertations & Theses Global.
(1925537965). Retrieved from
http://ezproxy.lib.uts.edu.au/login?url=https://search-
proquest-

com.ezproxy.lib.uts.edu.au/docview/1925537965?accoun
tid=17095

Wing, J. (2011). Computational thinking. 2011 IEEE
Symposium On Visual Languages And Human-Centric
Computing (VL/HCC)., p3,
http://dx.doi.org/10.1109/vlhcc.2011.6070404

Wing, J. (2008). Computational thinking and thinking about
computing. Philosophical Transactions Of The Royal
Society A: Mathematical, Physical And Engineering
Sciences, 366(1881), 3717-3725.
http://dx.doi.org/10.1098/rsta.2008.0118

71

http://dx.doi.org/10.1145/1929887.1929905
https://www.businessinsider.com.au/australian-schools-are-scrapping-history-and-geography-and-replacing-them-with-coding-classes-2015-9/
https://www.businessinsider.com.au/australian-schools-are-scrapping-history-and-geography-and-replacing-them-with-coding-classes-2015-9/
https://www.businessinsider.com.au/australian-schools-are-scrapping-history-and-geography-and-replacing-them-with-coding-classes-2015-9/
https://studio.code.org/unplugged/unplug2.pdf
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://www.jite.org/documents/Vol15/JITEv15IIPp053-073Du1950.pdf
http://www.jite.org/documents/Vol15/JITEv15IIPp053-073Du1950.pdf
http://dx.doi.org/10.1145/2462476.2466518
http://dx.doi.org/10.1145/1805724.1805725
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/1925537965?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/1925537965?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/1925537965?accountid=17095
http://ezproxy.lib.uts.edu.au/login?url=https://search-proquest-com.ezproxy.lib.uts.edu.au/docview/1925537965?accountid=17095
http://dx.doi.org/10.1109/vlhcc.2011.6070404
http://dx.doi.org/10.1098/rsta.2008.0118

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

FLERMRE

& * Scratch 2 i&

B e gk g

¥ S R A

e

TR A T ? KT TPk ST AT
}é‘ 5% gt'i?(B
yangcw@mail.ntcu.edu.tw » chenghsuanli@gmail.com » kbc@mail.ntcu.edu.tw » ian@wedtech.com.tw

#e
AFEF AR P DGR -
FwEAeY %k F 1 E L Scratch A1 B % KT
S FE AN KEER T ;%E—‘fm#&J g4 4

£ R* Scratch z. @& & A%k

FE LB Y Ao
M4 F
FH L Scratch s &H®: s B E KT o

1. w3

FIREP E @*’9 v e FEE R R B Rk
g ds + pﬁizsbmﬁﬂ—-ﬁiﬁrni
LI EComputatlonaI Thinking ; ¥4 % R4ad
TRy ea- L T @%&vmﬁﬁ’jﬁ'ﬂ“‘
A E FenE 4l A {J’i B 4 R Ise% & % ch (Wing,
2006) » 45 1 T e e Y 0 AT F A SBE # h
A A o edp e T LB L L Py | R E
i# B A % (Computational Thinking) % 4 - &2 2%
Wing #74p i B L a7 Wk AT Nodp M A S i
e pomn gt B L;’;‘ a4 OREFES %D
AN AR E Y R HEFE LA m**’ 43 ;¢ (Lye &
Koh, 2014) - s X+ HE 7 R HEFY § 2 s%—iﬁ-\.
%’ ’f\T'F\:B ‘«"@ﬁ*/i—mu 4 (m % [Eilaﬁ “\ B

2012) > # "JE;@%E;“T:K“E%ﬁi L*T#% 4 5ug g R
apEd o e 5B R AT N K AR~ Hedh ¢

4o g 10741 F%:‘.h R » &r/-;”i-ﬂl’ SERER

€ % 16 B B R_(Schoolnet, 2015)

FTRAEELAAART AKX T Ay EL L BV
@amaméﬂ*ﬂﬁ»x%ﬁé’wﬂwﬁﬁﬁﬁ
FEIRNKRFTEKE kA LAY E Y ﬁ‘“# v e d
R f S S R e Sk A AL
B RE YR LR KRB
U Py
P ®wE1 L@ * MIT B3 2 Scratch » ¥ i {7 %
B 5o 52t Scratch 2 38 B L ik F 6 14 hdk
*ﬁﬁ%

21 5L EBA G

Google (2010) MAEE LRI AR g 2 S
HRER AT RS - FEF AOHH (S LFE
E) BARIEMEE > VR A F L . Google T
BFE RS L 11 BRA
Algorithm Design (/& & /2% 3)
Data Analysis(3 424 17) ~ Data Collection (#

‘%—*

» B

. Abstraction (4% % it)

)

FHACH R 0510 e 3 o

’

~ Automation (p #i-) ~

~

Data Representation (F#1# 7=) ~ Decompositon (4 f#)
Parallelization(-T 73+ %) ~ Pattern Generalization (- #&
it) ~ Pattern Recognltlon (#5583) ~ Simulation
() -
Brennan & Resnick (2012)# ' TDIA (three- dimensional
intergrated) » 2 A= Be R > A B ELELME 1B
BT HEFEEE S FES T 2.5 ?hi
%EEE@‘Wﬁﬁ%%‘ﬁ“ﬁﬂé‘ﬂﬁE%%
EPrERE PR B 3 FEART I A v
~ F 4t 5 Zhong ~ Wang ~ Chen & Li(2016) |4 1 :c p
TDIA ch2% 48 > 22 TDIA - 5 = B % & > (@ P i@k 5
AE LB LEEME P g d BB
TiE~FEEEEFES TR 2EERE CE
BRF PR EE el A
i~ /?J;éf‘ffﬁ cBEHART L AlEEAE S RAB L
Fhetw s FE LAY - BTG LY R 3R A8
2o LS FF RN F G I A R o
AP RGP F AR TP EHE A
#E %imiﬁ v REBRERM TREFRET%R
2.2. @45 #e 7V g gL £Y Scratch
Scratch &_d Jir 4 =1 & Fusi4 3 % 2 (MIT Media Lab)
e £z saF| @y (Lifelong Kindergarten Group) #1F#
R AR R o B B s 3u i 0 Scratch
TRl R F AR LT 0 Gk “fa&h%’af—’rﬁ_@ i
T & xr(MIT 2007) - B w & F 3F @? Scratch
xim HE Y o ol 42 (2008) Bk F R
* Scratch KE N E S R AR AN 4 ﬁ«grsx,,\ £
B ¥ o Calder(2010):% 5 Scratch it #% = B 48 /%
i—u 4 » 4v 5 #eI® P2 4 o Tanrikulu ¥2 Schaefer (2011)
Ty SRR scratch & & E Lo ~ 2 H S
é‘p’ﬁ*'“ PR EEEFRNA (24 F 0 2013) o
AT %E Scratch & FANK I KE - FI g2 b
; at;*s@ﬁif’ BYFEE L AL o

3. By

31 B

AFPT 29 %> E e H SRR P HE L
MY ME A F - EsFd o fEAcs 49 4 B ok
A 45 4 s monfE A 44 HENARF e ik F ik
S E G R KE (100) R P L RF -
(60 4 48) cruplsk (v pllisim) o

32 71 E

ARG FR Y chiit A 47808 5 SPSS(Statistical Product
and Service Solutions) 18.0 & %A o W ¥ & T #&
FAFL 302 > F AP HE A x o

’

’

72

3.2.1. Scratch

AR E B4 321 F BB 2 Scratch > Scratch 4
TR iR B SR iR R 5§ - ﬁg]ﬂjib 5 &
AR o T o Scratch plag g g
IR E B E CERERF ?;:z-?g;am.v
%ﬁiifﬂMﬁﬁ@’mmy

Scratch efg A 7 it £ 4~ 5 10 Bagw] @ &7~ F 2~ o
Boofpdl -85 R 2L EFX TR (IR
A& 0 ARy € B Scratch ehig it ff A 7 a3 7 AR5
:”ﬁﬁ’T&fﬁﬁ FELARY o

322 FELBKHH

AL RY B R R AR KHM R
Scratch 2 %% 1 £ » £3+7 B H ~ » ﬁf}{?;ﬁi&v?
FAAEE LML (R B B R E
EF2mE R ﬁﬂ%ﬁ“z’ BBl v & Scratch %% > %
v ERY > Y EELLagmE o

K iHHE AN AR K 3 & - BH A AT 1wy
AT S R pﬁtfifﬁ’m 5 100 ~ 45 :
1L A3 BT s LR AME S
ﬂm’uﬁﬁﬁii%@%iﬁﬂbiﬁ&f
* g4 B 4 B Y i o (10 min)
2. N EBEZEAGEY LA 0 & foscratch ¢
ik eofe s 4 A - (10 min)

3. Scratch =73t Are Z 2B Eir > A#HE
e FRBER AL ﬁﬁ%@*’#ﬂﬁﬁﬁ
b3 ‘v EAAEER (W 4iEE) > ERMF TR
B3 REW 0 B S R P R D E A 0 R
Bavd SEppanR ¥ K o (60 min - R TR
2 17)

4. PIAAGZE A R F R OD AR -
(10 min)

5. H®p—whp& s XL o (10 min)

ME A pEd A G0 o H A ie B (Loops) :iE
R AT EE Y PRI A R

B £ hfe 1T ERA P £ k5l x
£ o

Foowmir o Blig £ A AR }%U%fr
scratch eh74 5 B * o
MmsPEFAE RhEgE o ALY A Bk a
if]&%ufzi‘z-%d‘fﬁ‘éizi%o
L pra %t BEH 4IRS (F2) BBELH
NI (e B) o 4Bl 1 AT e

Ry S ABEEIED

Scratch G- (IRARTURETEMRIVE LD « BHERT -

Zet

| TR TR
PRI TR TR)

FLEFI s KE B
R BEFERGFHL A
#3 (@) > XRES P pdiR .
FroEir R 2B EA AW G
ik b TR RTE TP g R
pi2dpd B -FESCFEFE

~

—‘J-_;;_ o A _Qq_‘iraﬁ 4 ,Ij}rn1§$g['} y 4 B

BHREFF O -

R 0 1
e,

= MR- EHIREGE | TRETH T
LRI WI-BE
HITARAER | SRR (Ghp!
% AR - LR RLITR

3 BERANDAL - LIARHE IS

(_-ﬁi geEmens ERET
N R cvner (S
oz ¢S oo

hi}

7010 -

@) R ARSI T
Sound Liray

B}

AR R L S T

Yo w ol
[N

T
e R

gL

5

N

73

=

B2 »rmwTSE . BB N WERITE-R - TR
W8

AT
<@ a0
= 3
WEBE L S TR YNGR Y .
2 UL ESENEmATEE = &

= agm E%
=22
B3 PR E Y L e %
A4 FWEIE T AR A s o 110 i e

wER AL AR Pl SRR XS BR
PR F R T UEAFAR R Y > o] 3T e
R ERE REZERRIEERE L AE g Y
AR BB LEARE BFAE AV EEE L
323 FE L BiFE 1 L
rEEY B t’!”’f-f‘_l EAEBREEY L g_#“%%
(Internatlonal Challenge on Informatics and Computational
Thinking)z# 4827 p ShiR4L > w2 {5 &2 26 48> A
AR FE R e RGP P EE L M
A2 8 e nfapms
4. FIREEHS
1. AFFPshiss @ SHEA TR
fsdek 12 £ 2> d £ 27V LEFHS 0014
cEMFAR VP EAET &RILESE e &
Scratch i& & .‘L.f‘:é‘.:kﬁ:?zﬁ v e B HE Ak

2 1 plsk T Aot it B

T B $odh
#i # wEL 2
TPl A B 51.378 45 18.586 2.771
Gpl~ B 55911 45 16.080 2.397
S fHE S th A
N cg HER

B om- 7 BEE ¢ N (%
5l e £)

4533 11.927
B E} (P) <0.05%

-2.550 44 .014%*

2. @#* Scratch 2§ T1 2 » FiEp %@ 5 L
Ayt 2R EE LA b 2

B~ @FH2E > d Fokens &7 o0 L&k
AP AR EFE L AOKE TR LT Y A

3L o

3. HigbhhELRER IR A Y- Lhg s
AN E P 6 R 2ot o KARSE

F2 &2 pﬁffi’l‘?’gl\?svz?lfsr’“rpmﬁ“lw%
@d.— PRI S EFEE o 2MEE YT R T
ESE B <A RN Wb A e ’;ﬁ’;;_'rﬁ
%4#%77}5 ?é%?g‘LLJ";.Q;SUF%ﬁio

4 LFFRI G 0 AT R ANKEER N
ForiEo hER Y M WA A AR
AL L AmAE Y At 1E‘—'H)§>La"}‘a L=
ERA KT uf{mﬁﬂa,&‘aﬁﬁi PR
WAz T g2 LB F Lo

5 ®Rk#

B S8 & % 106-2511-S-142 -005 -MY3 44 &
AL U RHERY KA R &
ARAF L FL A% o
6. 3R

1 % % (2013) - # ~ Scratch ﬁi;‘ KEHRY 2 pAox
n;;-,"—:?ﬂ,;\; K2 *’“"N,l’jﬁg_ v P%%EAF*V' o A 2 b
€5 -9(1)1-15-

EEEA R RA R LT (2012) o i’?}*hﬁ,]i%éﬁ”ﬁ‘;

A:&"-J-—‘g«@q N B L—%‘f 31%,&\3 . F\» %Eﬁ*ﬁ—i g
FEomRD (L84) o il ?“ﬁﬁgv+i
A ERIREA NS HTRY + § (GCCCE2012) -

AL ABER B o
4. (2008) - Scratch #z;Vz& 3%t £ %8 4 B4E
ﬂ*\h&h/u45$ AR b 2

S EEEFTARTRKEALF AT R EA LS

~

R
° .a} \\am\ﬁh

#e3sl (2014) - Scratch 2544 4] &
€ R I

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. Proceedings of the 2012 annual meeting of the
American Educational Research Association, VVancouver,
Canada.

Calder, N (2010). Using Scrathc: An Integrated Problem-
Solving approach to mathematical thinking. APMC,
2010,15 (4) ,9-14

Google(2010). Exploring Computational Thinking [Web
message]. Retrieved
fromhttps://www.google.com/edu/computational -
thinking/

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 41, 51-61.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York, NY: Basic Books, Inc. Wing,
J. M.. Computational Thinking [J]. Communication of the
ACM, March 2006/Vol.49, No.3: 33-34

Schoolnet (2015) Computing our future: Computer
programming and coding Priorities, school curricula and
initiatives across Europe. Retrieved from
http://fcl.eun.org/documents/10180/14689/Computing+ou

RyEmP P olE -

74

r+future_final.pdf/746e36b1-ela6-4bf1-8105-
ea27c0d2bbe0

Tanrikulu, E., & Schaefer, B. C. (2011). The users who
touched the ceiling of scratch. Procedia-Social and
Behavioral Sciences, 28, 764-769.

Wing, J. M. (2006) Computational thinking. Commun.
ACM 49, 33-35.

Zhong, B., Wang, Q., Chen, J., & Li, Yi. (2016). An
Exploration of Three-Dimensional Intergrated
Assessment for Computational Thinking. Journal of
Educational Computing Research, 53(4) 562-590.

MIT (2007).Scratch: imagine, program, share. Retrieved
from https://scratch.mit.edu/

75

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking and
STEM/STEAM Education

76

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

A DSML for a Robotics Environment to Support

Synergistic Learning of CT and Geometry

Nicole HUTCHINS", Timothy DARRAH", Hamid ZARE, Gautam BISWAS"
Institute for Software Integrated Systems, Vanderbilt University
Nashville, TN USA
nicole.m.hutchins@vanderbilt,edu, timothy.s.darrah@vanderbilt.edu, hamid.zare@vanderbilt.edu, gautam.biswas@vanderbilt.edu

ABSTRACT

Synergistic learning of computational thinking (CT) and
STEM has proven to be an effective method for enhancing
CT education as well as advancing learning in many STEM
domains. Domain Specific Modeling Languages (DSML)
facilitate the building of computational modeling
frameworks that are directly linked to STEM content, thus
making it easier for students to focus on concepts and
practices. At the same time, teachers can more easily relate
curricular content to the model building tasks. This paper
discusses the design, development, and implementation of a
robotics DSML to support a middle school geometry
curriculum.

KEYWORDS
DSML, robotics, STEM, geometry

1. INTRODUCTION

Recent developments show how computational tools have
influenced research and practices in mathematics and
science education (National Research Council, 2012). In
parallel, rapidly evolving educational technologies have
influenced pedagogy and curriculum development,
primarily by integrating computational tools into the study
of STEM disciplines (Grover & Pea, 2013, Hutchins, Zhang,
& Biswas, 2017). While the limited availability of skilled
teachers, financial constraints on educational institutions,
and the inertia in changing current curricular practices has
impeded the introduction of Computer Science (CS) courses
into middle and high school classrooms, curricula supported
by educational software that exploit the synergies between
STEM and CT and integrate with current K-12 curricula
have found success (Basu, Biswas, & Kinnebrew, 2017;
Jona et. al., 2014, Sengupta, et. al., 2013; Weintrop, et. al.,
2016).

In the past, model-based design has been employed to
facilitate a necessary convergence among physical processes
and software control design, thus supporting many Cyber
Physical System (CPS) applications (Jackson &
Sztipanovits, 2008; Jensen, Chang, & Lee, 2011). In this
paper, we extend this design process to Open Ended
Learning Environments (OELEs) and focus on the design
and integration of curricular scaffolding in OELEs to
support student learning in STEM and CS domains.

This paper outlines the development of a WebGME design
studio centered on the application of a domain specific
modeling language (DSML) for robotics to support a middle
school mathematics curriculum. To do so, we analyze the
literature and establish curricular and software requirements,
describe the design and development of our WebGME

design studio, and conclude with case studies from a
usability study.

2. BACKGROUND

To implement a set of learning tasks, while assuring well-
formed model realizations (Jackson & Sztipanovits, 2008),
we conducted a thorough analysis on the DSML design
requirements in combination with the curricular needs of a
middle school mathematics classroom. Here we cover four
topic areas that directly relate to our research.

2.1. Computational Thinking (CT)

Following Wing’s call for the increased introduction of CT
in classrooms (2006), significant work was completed
towards an applicable definition as well as an outline of key
concepts and practices that can be used to assess learning
gains in CT. The Royal Society defined CT as “the process
of recognizing aspects of computation in the world that
surrounds us and applying tools and techniques from
Computer Science to understand and reason about both
natural and artificial systems and processes” (Royal
Society, 2012). In Grover and Pea’s systematic review
(2013), the authors listed essential CT constructs and, for the
purposes of our work, we have focused on flow of control,
decomposition, efficiency and performance constraints, and
debugging.

To facilitate CT and the acquisition of basic geometry skills,
appropriate scaffolding must be incorporated into the design
of the DSML. Significant success with synergistic learning
of CT and STEM disciplines through the use of block-based
DSMLs (Hasan & Biswas, 2017) has supported increased
integration of this style of programming at the K-12 level
and we seek to extend this effort through the use of a DSML
created in a model-based design environment such as
WebGME. In our platform, CT provides the framework for
building computational models or algorithms to define and
debug the movement of robots. The metamodel and model
building visualizer described in Section 5 provide a level of
curricular abstraction that eliminates many of the burdens of
text-based programming. In addition, our model-based
design environment is supported by a necessary utilization
of CT constructs, such as debugging and problem
decomposition.

Furthermore, our robotics platform provides multiple
representations with the utilization of a physical robot (as
opposed to a virtual sprite), a physical coordinate plane, and
a bird’s eye view of the grid space with several overlays
(e.g., movement traces, lines, points, etc.). Abstraction is
provided in the model building visualizer that the student
uses to construct their command sequence. As pointed out
above this combination of representations and abstractions

77

is desired so that a student is fully capable of systematically
processing their solution or debugging a problem utilizing a
CT approach (Basu, Biswas, & Kinnebrew, 2016).

2.2. General Robotics Courses

Many schools offer after school programs or summer camps
using VEX® or LEGO Mindstorms® robotic kits. These kits
come with a substantial amount of supporting information
and resources including forums, tutorials, and fully
executable curriculum sets. Hendricks et al. (2012) and
Panadero et al. (2010) report an increase in computational
thinking activities and learning outcomes when students use
these Kits. Other robotics courses offered as summer camps
have been successful in increasing student engagement,
motivation, teamwork, critical thinking, and problem
solving (Darrah, Kuryla, & Bond, 2018; Goldman, Eguchi,
& Sklar, 2004; Ansorge & Barker, 2007), all directly related
to the application of CT constructs in a STEM domain.

2.3. Robotics in Mathematics

Barreto & Benitti (2012) noted that activities which integrate
robotics into a math or science classroom should “possess a
high-level of structure that helps the robot to correctly guide
the activities and the students through them,” and that self-
directed activities that “promote personalized
comprehension of STEM concepts through experimentation”
showed significant success - and added support for our
approach in this domain as design space exploration activity.
Our DSML has been highly scaffolded as a means of
supporting these robotic integration requirements. In
addition, the experimentation requirement is further
supported through the display of curricular feedback
following the execution of a robot sequence, to be described
in Section 6.

Two recent studies were carried out by researchers from
NYU that explored the use of a robotic agent to teach
geometry to middle school students (Muldner, et. al., 2013;
Girotto, et. al., 2016). Their environment consisted of a
projector, a LEGO Mindstorms® robot, and two iPods for
communication. These studies highlight the effectiveness of
atangible learning environment (TLE) in terms of delivering
a much richer learning experience than traditional classroom
methods. Moreover, TLEs have found considerable success
in fostering creativity (Goldman, Eguchi, & Sklar, 2004), a
benefit to our design space exploration approach, while also
increasing motivation (Windham, 2007).

2.4. Domain Specific Modeling Language (DSML)

Van Deursen defines a domain specific language as “a
programming language or executable specification
language that offers, through appropriate notations and
abstractions, expressive power focused on, and usually
restricted to, a particular problem domain” (2000).
Typically, DSMLs are developed to facilitate the work of
domain experts in application tasks. But they can also play
an important role in helping learners focus on domain
concepts when building models and solving problems in the
domain. In our work, the DSML developed allows a student
to define a set of instructions for a robot to solve middle
school mathematics problems that are centered on concepts
derived from coordinate geometry and solving path planning
problems.

The benefit of developing a DSML is the affordability it
creates in curricular implementation and expansion.
Students can “express and develop solutions ... at the level
of abstraction of the target domain,” “build programs that
are concise and self-documenting,” and “verify and validate
models and results generated from the models” (Hasan &
Biswas, 2017). This provides a highly structured
environment that enables the student to experiment with
various solutions in a self-directed manner. This structure
comes in part by how the model building environment is
presented to the student (visualizer), how the model blocks
themselves appear (decorator), and how the model is
executed on the robot (communication plugin), to be
detailed in Section 5.

Jackson and Sztipanovitz (2008) highlight three applications
of DSML syntax: model transformations, correct-by-
construction, and design space exploration. In the context of
an educational setting, students engage with a robotics-based
design studio to learn mathematics and CT concepts by
performing tasks with their robots. The syntax our DSML
most closely supports is the notion of design space
exploration. This enhances “the expressiveness of
metamodeling constraints” and the ability “to project
behavioral properties on the syntactic level” (2008). Our
robotics DSML supports model building and problem
solving with robotics in a way that students can seamlessly
learn domain and CT concepts and practices.

As it relates to our DSML development, we aimed to
simplify the interactions between the robot and the students,
so they may focus on learning the required mathematics and
geometry concepts and applying them to planning and
problem-solving tasks. An added goal is to provide for easy
exploration within the domain, so that the open-ended nature
of the learning is retained, and students can learn through the
direct application of CT practices such as model
construction and algorithm development.

Finally, as an educational product, it is imperative to
understand the ramifications this implementation has on
teacher curriculum development and productivity in the
classroom. In Tennessee, the licensure and examination
process does not require any assessment of computer science
or CT knowledge (The Praxis Study Companion, 2017). As
such, we assume limited CS experience of middle school
mathematics teachers. To account for this, our DSML can be
tailored at the classroom level to account for the capabilities
of the teacher. This flexibility eases the transition from
learning the system to learning the instructional material the
system delivers.

3. CURRICULUM DEVELOPMENT

Understanding how students conceptualize, acquire, and
retain geometric concepts must be understood in sufficient
detail before designing a curriculum in conjunction with a
TLE. Burger and Shaughnessy (1986) concluded that there
are five major stages to student’s understanding of geometric
concepts: visualization (pure visual reasoning), analysis
(based on visualization), abstraction (understanding the
properties), deduction (formal reasoning), and rigor
(comparing different systems). Students are not typically

78

exposed to deduction or rigor until a high school geometry
course.

We focus primarily on visualization, analysis, and
abstraction by introducing a new concept with a description,
graphic, and how this topic is relevant in a student’s
everyday life. Then we provide a set of problems in which
the student must give the robot the correct information so it
can achieve its goal. Geometric properties and definitions
are introduced with their respective problems, and students
are required to not only demonstrate mastery by generating
the correct command sequences, but also with summative
assessments at the end of each module. Below is a sample
curriculum outline that is well suited for middle school
geometry:

1) Coordinate Plane (Axis definitions, Points)

2) Lines (Properties, Line segments, Slope, Midpoints)

3) Shapes (Properties, Squares, Rectangles, Triangles)

4) Path Planning (Shortest path reasoning, Manhattan
distances, Straight line distances)

As described in the introduction and requirements, our goal
with the development of a robotics DSML was to provide
the basis to enable an engaging, applicable curricular unit for
a middle school mathematics classroom that connects the
computational modeling task to modeling and problem
solving in geometry. Our new learning environment
promotes knowledge acquisition through a hands-on, visual-
feedback approach that is consistent with the design of TLES
(Darrah, Kuryla, & Bond, 2018) and linked to the
visualization, analysis, and abstraction stages of geometry
understanding described by Burger and Shaughnessy. Our
development of a model via WebGME (given the abstraction
afforded in the DSML) with the added benefit of watching a
real-life robot complete the programmed paths allows for
easy applications of CT and geometry constructs and
students will be more motivated by the experience.

As it pertains to CT learning gains, our curriculum is most
applicable to the assessment of students’ knowledge and
abilities in implementing algorithms, understanding and
addressing efficiency and performance constraints, and
debugging. These practices, as defined by Grover and Pea
(2013), are utilized in each curricular task designed to target
the elements provided in the curriculum outline, above, as
students are required to use our scaffolded DSMLs in a
sequential order given physical and command constraints of
the robot in order to complete each task. We surmise that the
repetitive use of these practices to solve geometry problems
will enhance students CT abilities for these practices.

4. ENVIRONMENT

With the establishment of our system requirements, the
second step in our process was to design and develop our
system environment. Our robot operates on a 7ft by 7ft
platform that has been sectioned into a 10x10 grid. The robot
is equipped with sensors that allow it to track its location on
the grid. As such, if it is told to move forward by 3, the robot
will travel forward until it has reached the third black line
that is perpendicular to the direction the robot is moving. A
video camera set-up is centered above the grid as shown in
the figure. The video feed generated can be used by the

student or a teacher to track the robot as it moves along a
path and verify the correctness of the path.

4.1. Robot

When activated, the robot starts a TCP server to
communicate with the WebGME plugin and opens a serial
port to communicate with the Arduino MCU. It manages
these processes on separate threads. The main thread
manages the various modes the user can utilize to control the
robot, such as manual mode, sequence mode, or GME mode
(the mode used in conjunction with this paper). The MCU
runs one program that takes input from 3 IR tx/rx modules
(line following sensor) and its output controls the motors. It
communicates with the SBC as well to provide feedback for
received commands and for mode switching. Figure 2
provides an overview of the modular system architecture.

The robot communicates with WebGME using the cross-
platform socketio library. The plugin generates a JSON
formatted string that is parsed within a minimal Flask web
server running on the robot. Upon receipt, the Arduino MCU
executes the command sequence and signals to the RCM
when it is finished.

TCP Sacket
]

Camera.

. Student builds command sequence
. Runs plugin

Sequence sent to robot

. Sequence is parsed and deployed

. Robot moves

What's Depicted

* Major software components
+ Major hardware components
+ Communication protocols

U oB W

Figure 2. System Architecture

5. META-MODEL

As previously described, the utilization of a DSML provides
curricular benefits in that it is constructed at a suitable level
of abstraction to allow the learner to focus on what is
important, and abstract away other CS details (e.g. syntax
concerns). Through the analysis of geometry and CT
requirements, our meta-model (Figure 3) was developed
based on the implementation of four goals:

1. a scaffolded, curricular driven approach that focuses
student actions on the concept(s) being addressed:;

2. a simplified integration of robotics and mathematics

that makes it easier for the teacher to follow the student

work and assess it;

scalability in the classroom context; and

a systematic, stable connection between the robot

environment and modeling environment that is easy to

understand.

pow

The students’ problem-solving tasks (e.g., building shapes,
following paths) are scaffolded, as exemplified through the
four available commands. The reduced set of commands
allows students to focus on the planning and computational
components of their activities. In addition, the organization
of the commands and sequences showcases the model’s
potential scalability and ease-of-use for the teacher.

79

Figure 3. Robotics Meta-Model

5.1. Decorator

The target audience for this activity includes middle school
students that may not have any programming experience. As
such, the visual component of the environment may play a
role in the motivation and buy-in of students, regardless of
their capabilities, which is directly linked to positive
learning outcomes. A Decorator is a component of the
WebGME Design Studio that alters the way a node in the
model looks in composition view (the student’s view).
Figure 5 provides a zoomed-in image of relevant decorator
components. Students can select the next command in their
sequence via a drop-down menu located on the current node.
When a command is selected, the transition between the two
nodes is automatically created. In addition, each node
contains the command name, attribute value, and an image -
not only allowing for multimodal learning acquisition, but
also easing the debugging process described in Section 2.2.

O . b—wl»*::f H:T"] »_
Start

Figure 5. Model Decorator

5.2. Plugin

The final component needed to configure our WebGME
design studio is the plugin that coordinates the compilation
and delivery of the sequence of commands implemented by
the student to be executed by the robot. In other words, the
JavaScript plugin sends the visually represented sequence of
commands to the robot in a machine-readable format. In the
making of the plugin, we defined three requirements:
Parsing the student defined command sequences into a
standard structure, validating the sequence alongside
reporting the errors, and finally, sending the commands to
the robot.

Upon starting a session, the plugin connects the editor
environment with the robot using the parameters defined in
the “Connection Parameters” node. This is achieved through
a one-to-one socket connection, which remains open until
the user ends the session. To make sense of the visual chain
of commands the plugin starts by querying the sequence to
find the start node. It then records this block and its relevant
attributes. Next, the outgoing connection is followed to
similarly parse the next blocks until the stop command is
reached. This information is then stored in JavaScript Object
Notation (JSON) format and sent to the robot by emitting a
submission event that the robot is listening for. The robot

then parses the sequence and executes the commands as
detailed above.

6. Implementation

Following the development and design of the robotics studio
and accompanying geometry curriculum, we had three
middle school students complete the designed tasks as a
means of testing the system and getting feedback on ease-
of-use and system benefits or drawbacks. In this section, we
present an application of our system in a classroom
environment and demonstrate the use of the robotics design
studio as a tool to complete a sample path planning module
at the middle school level.

6.1. Sample Problem Set
A subset of the curriculum described in Section 3 includes
three general problems:

1) Identifying the axes and positive or negative values

2) Plotting points given (x,y) and deriving (x,y) from a
set of points

3) Path planning with multiple points, calculating the
shortest Manhattan distance

Figure 6 illustrates the visual interface that provides the
instructions for each task along with the overhead webcam
feed in conjunction with the WebGME design studio. In this
assignment, students are tasked with finding the most
efficient path the robot can take ensuring stops at the police
station, the fire station, and the courthouse prior to ending
its trip at the post office. Typically, this type of assignment
at the introductory level is distributed as on paper, limiting
the multi-modal approach to learning that may benefit
certain students.

Robot Grid Space

Figure 6. Virtual Interface for Example Path Planning Problem

The direction the robot is facing, its current location, and
number of spaces moved are displayed at the top of the
information section which helps the student during the
solution construction process. The problem is given below
that, along with various hints that are given at predetermined
times.

In the scenario shown in Figure 6, the student first identified
the coordinates of all locations the robot must visit. When
all points are correctly located, their coordinates are shown
on the video feed. From the image provided, it can be seen
that the student then completed a shortest path problem in
which they generated the correct command sequence for the
robot to visit all locations, starting at the Amazon warehouse
(2, —2). The automatic feedback response of “Nice Work!”
is shown — demonstrating the successful completion of the
task

80

In Figure 7, the solution to the above problem is shown.
Upon closer inspection, the distance values can be seen as
well. Sequences can become significantly long, making the
debugging process difficult should an error occur in the
robot’s path. The availability of the command name and
attribute value as text on the node as well as images of blocks
allow for an easier analysis of the complete path during the
debugging process.

Figure 7. Student Solution to the Path Planning Problem

6.2. Case Study: CT Gains

For our usability study, students were asked to complete a
pre- and post- challenge. The challenge contained two parts:
the first included a debugging task in which they were asked
to analyze a given robot sequence and improve the efficiency
of the sequence while also ensuring the end location was
correct. This challenge component was designed to assess
student abilities in the CT constructs of flow of control and
debugging. The second task involved the development of a
sequence that would allow the robot to draw a given shape
with the minimum commands possible in the grid space
depicted in Figure 1, thereby assessing student
understanding of efficiency and performance constraints as
well as another application of flow of control. This pre- and
post- nature of the challenge was implemented to identify
potential improvements in applying these CT constructs.

S1is a 13-year-old middle school male student and S2 is a
14-year-old middle school female student. Both students
identified as having little to no experience with the listed
geometry concepts and practices and both identified as
having some previous programming experience using block-
based programming languages. For the purpose of this case
study, we will focus on student work in part 1 of the
challenge.

In the pre-challenge, S1 and S2 failed to debug the given
path in Part 1 in a manner that provided the fastest path for
the robot to complete the task. In addition, both S1 and S2’s
robot sequences could not make the robot arrive at the
correct location, indicating that both students struggled to
debug the entire algorithm. However, S1 and S2 were able
to identify two of the five identified errors indicating that
they had a preliminary understanding of flow of control.

Following the geometry assignments, S1 and S2 completed
the robotics post-challenge. This time, S1 was able to
identify three of the five identified errors and the final
sequence allowed the robot to finish at the desired location.
It should be noted that the student drew a path on the given
image of the grid that accounted for the two missing errors
in the algorithm, but those errors were not identified in the
algorithm. As S1 was able to identify the most efficient path
in the image, we believe it may be necessary for us to assess

how we described the challenge in order to be as clear as
possible on how each student should define his or her
response.

S2’s approach to Part 1 of the post-challenge changed
significantly from the pre-challenge. In Part 1 of the post-
challenge, S2 drew her robot’s shortest path sequence on the
grid provided, with dots along the grid indicating that she
was counting various path options (an action she commonly
did with her finger via the virtual interface during the
geometry assignments). While her new path followed the
expert model path between a few specified target points, a
few sub-paths were significantly different than the expert
model path. However, her final path was shorter than the
given problem to debug and one away from the shortest path
possible. Given her search-based, debugging approach in the
post-challenge, it can be seen that her utilization of CT
constructs improved.

6.3. Case Study: Geometry Gains

Our final student, S3, reported significant experience with
block-based programming environments like Scratch and
Netsblox. S3 achieved a perfect score on the CT related
questions of the pre-challenge. A key point here should be
made - S3 is younger than both S1 and S2, who report no
experience with DSMLs, and outperformed them both on the
pre-challenge, supporting our hypothesis that DSMLs are
linked to the utilization of CT strategies when solving
problems. During the geometry tasks, S3 initially struggled
with the coordinate plane unit, including the identification
of quadrants and moving the robot to desired x, y points on
the plane. However, this student made use of the system
feedback given. After repeating similar tasks, the time spent
solving coordinate plane tasks decreased. Based on these
observations, it can be seen that while learning gains in CT
could not be measured due to the perfect pre-challenge
score; abilities in geometry improved.

7. Results and Future Implications

This paper details the theoretical and systematic design and
development process of a robotics DSML for use in a middle
school mathematics classroom. Through an analysis of
curricular and software requirements, our group
implemented a robotics design studio using WebGME that
allows for an applicable and scalable robotics activity to
support CT and STEM learning. In addition, our usability
studies indicate potential CT learning gains acquired
through the completion of the geometry curriculum in our
environment. The potential benefits of integrating robotics
into other STEM classrooms has not been actualized to the
extent that it was theorized by renowned educational theorist
Seymour Papert (1993). The application of this highly
scaffolded DSML in a middle school classroom may allow
for a fruitful analysis on the level or extent of programming
needed to not only advance CT learning and understanding,
but also ensure the successful delivery of relevant STEM
content.

8. Acknowledgements

We would like to thank Patrik Meijer, Taméas Kecskés, and
other collaborators from Vanderbilt University for their
numerous contributions. This research is supported by NSF
grant # 11S 17359009.

81

9. REFERENCES

Anderson, J.R., Boyl, C.F., Corbett, A.T., Lewis, M.W.
(1990). Cognitive Modeling and Intelligent Tutoring.
Artificial Intelligence - Special issue, 42-1.

Ansorge, J., Barker, B. (2007). Robotics as a Means to
Increase Achievement Scores in an Informal Learning
Environment. Journal of Research on Technology in
Education, 39-3.

Basu, S., Biswas, G., Kinnebrew, J.S. (2017). Learner
modeling for adaptive scaffolding in a Computational
Thinking-based science learning environment. User
Modeling and User-Adapted Interaction, 27(1), 5-53.

Basu, S., Biswas, G., Kinnebrew, J. (2016). Using multiple
representations to simultaneously learn computational
thinking and middle school science. Proceedings of the
30th AAAI Conference on Atrtificial Intelligence.

Benitti, F. & Barreto, V. (2012). Exploring the educational
potential of robotics in schools: A systematic review.
Computers & Education, 58(3), 978-988.

Burger, William F., Shaughnessy, J. Michael:
Characterizing the van Hiele levels of development in
geometry. Journal for research in mathematics education,
p. 31-48. (1986)

Darrah, T., Kuryla, E., & Bond, A. (2018). Improving STEM
Education with an Open-Source Robotics Learning
Environment. Proceedings of the Hawaii International
Conference on Education.

Girotto, V., Lozano, C., Muldner, K., Burleson, W., Walker,
E. (2016). Lessons Learned from In-School Use of rTag:
A Robo-Tangible Learning Environment. Proceedings of
the ACM Conference on Human Factors in Computing
Systems.

Goldman, R., Eguchi, A., Sklar, E. Using Educational
Robotics to Engage Inner-City Students with Technology.
(2004). Proceedings of the 6th International Conference on
Learning Sciences, 214-221.

Grover, S. & Pea, R. (2013). Computational Thinking in K-
12: A Review of the State of the Field. Educational
Researcher, 42(1), 38-43.

Hasan, A. & Biswas, G. (2017). Domain Specific Modeling
Language Design to support Synergistic Learning of
STEM and Computational Thinking. In Proceedings of the
International Conference on Computational Thinking
Education.

Hendricks, C., Alemdar, M., Olgetree, T. (2012). The
Impact of Participation in Vex(R) Robotics Competition
on Middle and High School Students’ Interest in Pursuing
STEM Studies and STEM-Related Careers. American
Society for Engineering Education.

Hutchins, N, Zhang, N, & Biswas, G (2017). The Role
Gender Differences in Computational Thinking
Confidence Levels Plays in STEM Applications. In

Proceedings of the International Conference on

Computational Thinking Education.

Jackson, E. & Sztipanovits, J. (2008). Formalizing the
Structural Semantics of Domain-Specific Modeling
Languages. Software & Systems Modeling, 8(4), 451-478.

Jensen, J. C., Chang, D. H. Lee, E. A. (2011). A Model-
Based Design Methodology for Cyber-Physical Systems.
Proceedings of the IEEE Workshop on Design, Modeling,
and Evaluation of Cyber-Physical Systems.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K.,
Weintrop, D., & Beheshti, E. (2014). Embedding
computational thinking in science, technology,
engineering, and math (CT-STEM). In future directions in
computer science education summit meeting, Orlando, FL.

Muldner, K., Lozano, C., Girotto, V., Burleson, W., Walker,
E. (2013). Designing a Tangible Learning Environment
with a Teachable Agent. Artificial Intelligence in
Education.

National Research Council. (2012). A framework for K-12
science education: Practices, crosscutting concepts, and
core ideas. National Academies Press.

Panadero, C., Villena-Roman, J., Delgado-Kloos, C. (2010).
Impact of Learning Experiences Using LEGO
Mindstorms(R) in Engineering Courses. Proceedings of
the IEEE Global Engineering Education Conference.

Papert, S. (1993). Mindstorms: Children, computers, and
powerful ideas (2nd ed.). New York, NY: Basic Books.

Royal Society. (2012). Shut down or restart: The way
forward for computing in UK schools. Retrieved February
4, 2017, from https://royalsociety.org/topics-
policy/projects/computing-in-schools/report/

Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., & Clar,
D. (2013). Integrating computational thinking with K-12
science education using agent-based computation: A
theoretical framework. Education and Information
Technologies, 18(2), 351-380.

The Praxis Study Companion - Mathematics: Content
Knowledge. ETS, 2017.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-
specific languages: An annotated bibliography. Sigplan
Notices, 35(6), 26-36.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,
Trouille, L., & Wilensky, U. (2016). Defining
Computational Thinking for Mathematics and Science
Classrooms. Journal of Science Education and
Technology, 1-21.

Windham, C.: Why Today’s Students Value Authentic
Learning. (2007). Educause Learning Initiative -
Advancing Learning Through IT Innovation.

Wing, J. (2006). Computational thinking. Communications
of the ACM, 49(3), 33-36.

82

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Introducing Computational Thinking Across the Curriculum with Virtual Reality

Merijke COENRAAD¥*, David WEINTROP
University of Maryland
mcoenraa@umd.edu, weintrop@umd.edu

ABSTRACT

Computational thinking is increasingly important within
modern society. It is essential that K-12 students are
introduced to the powerful ideas of computational thinking
and given opportunities to develop their computational
thinking practices. Virtual reality (VR), a technological tool
with increasing prevalence in society and schools, has the
potential to widen computational thinking exposure for
students not only in STEM environments, but also across the
curriculum. Virtual reality is an engaging medium that has
been shown to increase student learning. In this paper, we
argue that virtual reality can serve as an effective means for
helping students develop computational thinking practices
related to systems thinking, data practices, and modeling. To
do this, we present virtual reality-based lessons used in a
classroom and show how they promote the development and
use of computational thinking practices. These lessons are
accompanied by findings reporting students’ impression of
virtual reality use within the classroom. The contribution of
this work is in showing how virtual reality can serve as a
possible means to integrate computational thinking within
existing classrooms, thus giving students added exposure to
these essential practices.

KEYWORDS
Computational Thinking, Virtual Reality, Computational
Thinking Across the Curriculum

1. INTRODUCTION

The focus on computational thinking has expanded over the
last decade. While the central ideas of computational
thinking have been around for decades (Papert, 1980),
Wing’s (2006) call for the importance of computational
thinking has renew enthusiasm for the idea. In response to
this call, educators at all levels have increased focus on
computational thinking both within computer science
courses and in other subject areas. With the acknowledged
need for further computational thinking education and the
expansion in the number of subjects that can incorporate
computational thinking, new learning opportunities are
being continuously developed. As the number of jobs
requiring coding and technology is expected to increase over
the next decade, a growing need to educate students in
computational methods has emerged, especially within the
Science, Technology, Engineering, and Mathematics
(STEM) fields (Weintrop et al., 2016). At the same time that
computational thinking education is increasing within
schools, virtual reality equipment is becoming more
affordable (Greenwald et al., 2017) and, therefore, more
available to schools. Researchers have long found benefits
to using VR and virtual environments including increased
interest, motivation, and learning (Limniou et al., 2008).
With its ability to “improve learners’ ability of analyzing
problems and exploring new concepts” (Pan et al., 2006,

p.20) and equipment being more available, VR could be a
conduit for teaching computational thinking practices within
a variety of subjects.

In this paper, we argue that VR can serve as one potential
way to introduce foundational computational thinking ideas
and practices to learners. We will discuss the benefits of
incorporating VR into the classroom and explore ways that
such inclusion could serve as an opportunity for the
development of computational thinking. We will present VR
as a mechanism for students to engage with computational
thinking through examples of lessons that have been taught
using VR and potential computational thinking practices that
can be developed using similar lessons. Data from students
reporting their impressions of VR will also be presented. The
importance of computational thinking education is clear, our
focus must now shift to methods through which
computational thinking can be brought into the classroom.

2. BACKGROUND

2.1. Computational Thinking

Wing (2008) defines computational thinking as “taking an
approach to solving problems, designing systems and
understanding human behaviour that draws on concepts
fundamental to computing” (p. 3717). It focuses on how not
only computers, but also humans can think and solve
problems, specifically detailing the concepts that are used in
problem solving and interactions, not the software or
hardware that are developed (Wing, 2006). Computational
thinking shifts the focus of computing from emphasizing
computer programming skills to focusing on the principles
of computing (Wing, 2008). This shift in emphasis does not
seek to redefine the discipline of computing, but rather to
help clarify the importance of computing and the knowledge
one needs to effectively use it, drawing it out of a focus
solely on computer programing and making connections
between the existing principles of computing and themes
that exist within current curricula (Henderson, Cortina, &
Wing, 2007).

Computational thinking is ubiquitous in the modern era.
According to Henderson et al. (2007), “computational
reasoning is the core of all modern Science, Technology,
Engineering and Mathematics (STEM) disciplines and is
intrinsic to all other disciplines from A to Z” (p. 195). It has
changed the way that work is completed, no matter the field
(Barr, Harrison, & Conery, 2011) and these changes create
a need to introduce computational thinking into classrooms,
preparing students to be a part of the modern workforce
(Weintrop et al.,, 2016). Although the number of
undergraduates who are exposed to computational thinking
has already increased, bringing computational thinking in
the K-12 realm would have a greater impact on the number
of students who are reached (Settle et al., 2012) and
exposure to computational thinking early will help students

83

to have greater success when taking later computer science
and computational thinking courses (Grover & Pea, 2013).
Computational thinking activities allow “computational
representations to make significant shifts in the way students
learn, think, and practice science and mathematics” (Orton
et al., 2016, p. 706), making them extremely important for
K-12 students. The growing importance of computational
thinking is signaled by its inclusion in the Next Generation
Science Standards and points to the connection between
mathematics, science, and computation (NGSS Lead States,
2013). Barr et al. (2011), argue that computational thinking
is essential skills across K-12 curricula. They describe the
importance of data collection, analysis, and representation
within social studies and language arts for the analysis of
historical events and linguistic patterns, algorithms and
procedures for the writing of instructions and decomposition
supporting the development of outlines, and simulations
enabling reenactments for learning across the humanities. It
might often be associated with STEM fields, but
computational thinking can be applied to any content, as
argued by Orton et al. (2016), by “having students employ
these practices to various problems in diverse content areas,
we can reinforce the broad applicability of these skills while
both providing students concrete contexts to employ them”
(p. 710).

Within this paper, we will use the computational thinking
taxonomy developed by Weintrop et al. (2016). In this
framework, computational thinking is broken into four
separate, yet interconnected categories: data practices,
modeling and simulation practices, computational problem
solving practices, and systems thinking practices. The
taxonomy acts as a guide for teachers as they incorporate
computational thinking into classrooms, allowing for both a
deepening of content understanding and an authentic
environment in which to learn computational thinking
practices (Weintrop et al., 2016). This paper focuses on three
of the taxonomy’s categories: data practices, modeling and
simulation practices, and systems thinking practices. Data
practices include the collection, creation, manipulation,
analysis, and visualization of data. Modeling and simulation
practices consists of using models to understand concepts,
find and test solutions, and assessing, designing, and
constructing models. The category includes working with
both models that others have generated and student created
models. Systems thinking practices pertain to the
investigation of a complex system as a whole, examining the
relationships within a system, thinking in levels,
communicating information about a system, and defining
systems and managing complexity in order to examine
individual parts of the system and how the system functions
in its entirety (Weintrop et al., 2016). This taxonomy is
useful for this work because the taxonomy’s goal is “not to
radically change the existing practices of experienced
teachers; instead...[it] serve[s] as a resource for augmenting
existing pedagogy and curriculum with...computational
thinking practices” (Weintrop et al., 2016, p. 129).

2.2. Virtual Reality

According to Huang, Rauch, and Liaw (2010), “virtual
reality (VR) is understood as the use of 3D graphic systems
in combination with various interface devices to provide the
effect of immersion in an interactive visual environment™ (p.

1172). There are many different types of VR: virtual
environments include those on desktop computers controlled
by mice and keyboards, projection based VR systems that
project on an image at room scale, and head mounted visual
displays (Greenwald et al., 2017; Limniou et al., 2008).
Many have discussed the potential and success of VR due to
its engaging nature and ability to transport students to
locations where they cannot physically travel, whether due
to physical, time, or money constraints, to rare experiences,
or to gain access to experts (Greenwald et al., 2017).
Especially since VR has had previous success in education
and training environments, the increased availability of VR
in the internet-age is only expected to bring it further success
and new users and creators (Greenwald et al., 2017).

Virtual reality has the potential to enable learning
experiences not possible with other, low-tech methods
(Greenwald et al., 2017). This ability provides students with
an immersive experience in an environment with which they
can react, giving virtual environments the potential to lead
students to knowledge construction (Winn, Windschitl,
Fruland, & Lee, 2002). Multiple studies have shown that
participating in VR activities increases student knowledge.
For example, Limniou et al. (2008) demonstrated through
chemistry and the observation of molecules that
participating in 3D animation environments within a room-
based VR projection led students to better comprehend
molecular structure and changes based on chemical
reactions as compared to students who used a desktop based
2D animation. The VR experience allowed students to
develop a better sense of the volume of objects within a
space. A second example can be seen with Merchant, Goetz,
Cifuentes, Keeney-Kennicutt, and Davis (2014), who found
that games, simulations, and virtual world were all
successful in increasing learning outcomes. Even desktop
virtual environments, although they are not fully immersive,
enhanced learner engagement. Pan et al. (2006) describe the
successful use of virtual reality in a number of different
contexts including the use of synthetic characters to train
students in group work, simulate peace keeping missions,
and promote and enable storytelling. In all, participation in
VR can lower the cognitive load that users are experiencing
because the simulation is so real, enabling more learning to
occur (Huang et al., 2010). Virtual environments can also
support experimental and constructivist learning. Students
are drawn to VR because it provides them with the
opportunity to have first-person experiences. Students report
feeling as though they are inside the phenomena being
studied. This allows students to build their knowledge based
on personal experiences (Limniou et al., 2008).
Constructivist experiences occur by students situating
themselves within a real situation and doing a realistic task,
interacting with objects and events within virtual worlds,
and using characters and avatars to learn through role
playing (Huang et al., 2010).

For the purpose of this paper, we will be discussing the use
of a stereoscopic, head mounted VR system. This means that
users use VR goggles that block out the classroom
environment and “provide to the eyes of the viewer two
different images, representing two perspectives of the same
object, with a minor deviation similar to the perspectives that
both eyes naturally receive in binocular vision” (Limniou et

84

al., 2008, p. 585). The use of full immersion increases the
benefits of VR by elevating interest and motivation while
encouraging observing from various perspectives, active
participation, and the asking of questions (Limniou et al.,
2008). This leads “immersed students [to] learn more than
non-immersed students” (Winn et al., 2002, p. 497).
Immersed students also feel as though they are more
“present” to the learning environment, leading them to take
longer to complete the task and to say more as they are
working. The immersion is especially beneficial when
encountering concepts that are supported by the ability to
look around and examine the surroundings (Winn et al.,
2002).

3. METHODS

Alongside exploring potential instructional opportunities
around bringing computational thinking into classrooms
through VR, this paper presents data related to students’
experiences of using VR in their classrooms. The data was
collected by a teacher in the middle school of a Pre-K — 8
religious school in the Northeastern United States. The
mission of the school includes serving immigrant families
resulting in a diverse student body with 70% of students
receiving financial aid. After participating in classroom
lessons using VR technology for a year, students were asked
to complete questionnaires asking about their experiences
with the technology. Altogether, 65 students participated in
the study: 22 6" grade students, 29 7" grade students, and 14
8™ grade students.

The lessons that students participated in were taught by
multiple teachers across subjects including science, Spanish,
social studies, and religion. Virtual reality was used within
the existing curriculum to enhance understanding of topics
already present and gave students proficiency both as
participants in lessons and acting as the guides leading other
students on VR trips. A subset of these lessons are presented
in this work. For teacher-led activities, the lessons generally
took place during a single 45-minute period while student-
led activities were usually part of larger projects that allowed
students more time to find their VR component and present
it to the class. While computational thinking was not a focus
of the instruction, in this paper we highlight potential
synergies and design opportunities for this integration.

Students used handheld Mattel ViewMaster headsets with
Asus ZenFone 2 devices (Figure 1). Most VR experiences
were facilitated through the Google Expeditions App, but
students also participated in a few activities facilitated by
Google Street View and YouTube. After multiple exposures
to the VR technology, students completed an end of the year
survey detailing their impression of the technology and their
learning from it. The survey that students completed was
hosted online and students were asked to complete it as part
of their end of the year activities. Students were aware that
their teacher would see their responses and that aggregate
data from the survey would be shared with the grant agency
that funded the purchase of the VR equipment for the school.

Figure 1. Mattel ViewMaster headset with Asus ZenFone 2
on the Google Expeditions platform

4. INTEGRATING COMPUTATIONAL

THINKING AND VIRTUAL REALITY

Within the classroom, VR has the potential to engage
students in computational thinking. Due to the unique
perspectives and interactions enabled by VR, students are
able to view places and interact with objects not typically
accessible to K-12 students, creating opportunities for
developing important computational thinking practices. In
this section, we detail potential ways to integrate VR and
computational thinking across the curriculum. We conclude
with a brief report of student perception on the use of VR in
their classrooms. While VR technology was used with
students throughout the school year and in a variety of
subjects, here we present lessons from the science, Spanish,
and social studies classrooms. These lessons are intended to
demonstrate how students used VR equipment within the
classroom and the computational thinking development that
can occur through these lessons. This is not an exhaustive
list of potential ways to integrate computational thinking via
VR but serves as a demonstration of what it could look like
to blend the two.

4.1. Computational Thinking in Science Class

VR was used to investigate both the cells and systems of the
body during a 7" grade life science course. While studying
the parts of a cell, the teacher guided students on a virtual
tour of the cell through the Into the Cell Google Expedition
(Figure 2). Each student received a VR device and was able
to look on his/her own as the teacher led students through
the series of computer generated images. Students were
asked to identify various parts of the cell as the teacher
pointed them out and the class together discussed cell
functioning. Students were given time to use their devices to
look around the image and work on their own to explore how
the various parts of the cell come together and exist in
relation to each other. In later classes, the teacher referred
back to the VR experience, giving students the opportunity
to recall their observations and apply them to their learning
throughout the unit.

Figure 2. Into the Cell virtual expedition.

This lesson demonstrates a possible use of virtual reality to
engage learners with modeling and simulation practices

85

including using computational models to understand a
concept, using computation models to find and test
solutions, and assessing computational models (Weintrop et
al., 2016). Although students are not able to create models
within the virtual environment, they are able to think
critically about the bounds of model, assess what is included
and excluded, discuss how the technology represented the
phenomena, and answer questions through scientific inquiry
gaining information from the model. Within this specific
lesson, the use of models in VR allowed students to better
visualize a cell while discussing the various parts of cells and
their interactions. The ability to examine cell structure from
all angles allowed students to instigate shape, proximity, and
size in a way that is not possible through basic images.
Further, students were better able to examine the
relationship between parts of a cell. In this way, the VR
context enabled new ways of learners engaging with the
computational thinking practice of using computational
models to understand a concept. As one student stated,
“[virtual reality] helped me learn, because when we read
straight from the textbook you can’t really visualize what
you are reading. However now with the virtual reality you
can.” Another student commented on how VR “helped me
see the world in a different way...i never actually knew what
was inside a cell, but [with virtual reality] i felt like i was
living a part of that world.” These virtual, computational
models were pedagogically useful in their ability to explain
the relationship between parts of a cell and allowed students
to use and interpret scientific models.

In a later unit, students used VR to study the systems of the
body. Students were responsible for working in small groups
to complete an in-depth study of one body system and
present it to the class using VR to demonstrate their findings.
To conduct their research, students used the VR devices and
the Google Expeditions platform. The expeditions that
students selected used computer graphics to demonstrate the
various body systems from inside the body and used images
to move through the system. Some of the expeditions that
were selected also allowed students to demonstrate how the
body system worked by demonstrating functionality based
on their purpose, such as showing the spread of viruses. This
activity provided opportunities for students to engage in
systems thinking practices such as investigating a complex
system as a whole, understanding the relationships within a
system and thinking in levels (Weintrop et al., 2016).

Although the ability to develop systems thinking practices
by studying the systems of the body and their interaction is
possible through other methods, VR acts as an excellent
conduit for this knowledge. Systems thinking practices
include the ability to both view a system as a whole rather
than simply as individual parts as well as to think in levels
and move between different perspectives on the same system
(Wilensky & Resnick, 1999). Virtual reality excels in
supporting such practices as it allows for both an in-depth
study of a system as a whole and studies of individual pieces
and how those pieces interact. As with the use of VR in the
study of cells, VR allows students to enter locations they
would not be able to such as inside the lungs or the middle
of the digestive system. With their 360 views of each of
these parts, students are able to look at individual elements
separately to investigate the behaviors they promote, two

important parts of systems thinking (Weintrop et al., 2016).
Overall, systems thinking learning can be enhanced by
studying those systems through VR and the unique views it
enables.

4.2. Computational Thinking in Social Studies Class
While studying the American Civil War (1861-1865),
students in the 8" grade used VR to visit Smithfield
Plantation in Virginia. A plantation is a large farm or estate
that grows a single crop. In the United States during this
time, slaves were the primary form of labor on plantations.
This virtual field trip allowed students to explore a
plantation as part of their learning about life in the South and
slavery. Prior to this field trip, students had spent time
studying the development of slavery in the United States and
life in the northern United States.

Using the Google Street View platform, students were given
five minutes to “walk” around the plantation and make
observations. After the time spent investigating the
plantation individually, students shared their discoveries
with the class and the entire class was given time to find the
locations discovered by classmates. The following day,
these observations were used as the class continued to talk
about life on plantations and students were able to reference
the physical landmarks of the plantation they saw as well as
the differences between the plantation house and the cabins
and quarters visible from the roads.

Since the taxonomy was created for use with mathematics
and science courses, we diverge from it slightly while
talking about social studies, but it still serves as a useful
resource with regards to discussing computational thinking
across subjects, especially with respect to the treatment and
analysis of data. New technologies have enabled not only the
collection of data to change, but also how those data are
viewed and the connections that are made with them.
Students need to learn to draw meaning from data rather than
expecting the data to come with clearly visible patterns or
conclusions (Lehrer, Giles, & Schauble, 2002). Visiting a
plantation through immersive digital representations as seen
in VR allows for an extension of concepts and data
previously presented through less interactive forms like
lectures and textbooks. This new context allows students to
experience and engage with a new representation of data that
they have seen previously. The context of VR can enable
new ways to manipulate, analyze, and visualize data, all of
which are valuable computational thinking practices. As a
student noted, the use of VR demonstrated “how connected
you can really be with the real world.” Virtual reality allows
students to experience data in a completely different way
and deepen their engagement with it. This experience
develops computational thinking practices related to
interacting with, communicating about, and drawing
meaning from data, all mediated by a technological
platform.

A second computational thinking in mathematics and
science taxonomy category this lesson links to is systems
thinking, although in this case, we are exploring a social
system rather than a scientific one. Asking students to
explore the plantation was part of a larger instructional goal
of helping students understand Southern society during that
period and the role of slavery in the culture. Through

86

immersive experiences such as these, students could
investigate different dimensions of the culture and explore
the relationship between slaves, slave-owners, industry, and
the economic factors that contributed to the Civil War,
viewing the various levels of the system and gathering
information that can be used to discuss the relationships
within the system and the system as a whole.

4.3. Computational Thinking in Spanish Class

In Spanish class, students used VR to visit Spanish speaking
countries throughout the year. Classes visited Hispanic
neighborhoods in the United States, Latin American
countries, and Spain. While completing a Spanish culture
unit that included study of the regions of Spain, 7th grade
students had two opportunities to use VR. First, the teacher
used VR in a series of stations that introduced some of the
best-known landmarks of the country. The class concluded
with a full class discussion of the similarities and differences
between the sites themselves and between the sites and the
United States. Later, students created a presentation about
one region of the country and selected one major landmark
that represented the region to share via VR. After working
on the project for a week, students shared their presentations
with the class in a gallery walk fashion, leaving their
presentation and VR destination for other students to
discover as they walked around the classroom.

The opportunities for computational thinking within this
lesson are very similar to those experienced in the social
studies lesson. Students are able to utilize data practices by
making connections between what they had learned
previously, viewing it represented in a new manner, and
potentially treating the images that they are viewing as data
themselves for data analysis. Additionally, students are
experiencing a social and cultural system, employing the
systems thinking practices to understand relationships and
think in levels. The presentation of these computational
thinking practices in Spanish class serves as yet another
context for learners to develop these skills.

4.4. Student Impressions of Virtual Reality

Students recognized VR as a productive learning tool within
their classrooms. Using a five-point Likert Scale, 94% of
students agreed or strongly agreed that VR helped them
learn, with a mean score of 4.33 out of 5 (SD .64). According
to one student, “it made my understanding of the place better
because we didn’t have to hear about it we could see the
place ourselves.” Alongside this perceived learning utility,
students’ reported increased feelings of engagement and
connections with course material through the VR
environment. Ninety-two percent of students agreed or
strongly agreed that they felt more engaged in classes
because of VR (Mean 4.48 out of 5, SD .64) and 97% agreed
or strongly agreed that they made connections between what
they were seeing the viewer and what they learned in class
(Mean 4.50 out of 5, SD .56). When asked how VR helped
them learn, students highlighted the engagement that they
felt using the technology. Students stated that they were
“really engaged because it was like we were really their and
it was very interesting” and “[virtual reality] helped [me]
become more focused and involved in a lesson.” Students
also showed enjoyment from using VR calling the
experiences “truly awesome” and “really enjoyable” while

requesting the use of VR more often and in more classes.
Given this reaction to the use of VR in the classroom and the
opportunities for it to serve as a context for the development
and employment of computational thinking practices, the
partnering of the two provides a productive means by which
to introduce students to computational thinking across
contexts.

5. DISCUSSION

Virtual reality has the potential to be a powerful tool for
bringing computational thinking into the classroom, both
within and beyond STEM subjects. The unique views that it
allows, along with the increased engagement and learning
that the environment brings, create a medium with great
potential for computational thinking. The lessons in this
article demonstrate a few of the ways in which VR can be
used to situate computational thinking across the curriculum.
This work aims to help start the discussion regarding VR as
a conduit for computational thinking. By viewing social
systems through a systems thinking lens and using three
dimensional models as a context for learners to explore ideas
and engage with data, students have the ability to develop
computational thinking practices, no matter the subject they
are studying.

Virtual reality demonstrates the breadth of computational
thinking and shows how it can be experienced beyond
computer science classrooms. Further, the flexibility of VR
to fit across the curriculum provides a mechanism to show
how computational thinking can serve as a set of cross-
cutting practices without disciplinary constraints. Given the
possibilities for incorporating computational thinking in the
humanities, more work needs to be done on defining what
computational thinking looks like in these contexts and how
it differs from the presentation of computational thinking
practices in STEM subjects.

Although VR is becoming increasingly accessible, there are
still limitations to using it within the classroom. The cost of
the equipment has decreased, but it remains out of reach for
many classrooms. Additionally, the availability of VR
programs limits classroom activities and most teachers do
not have the skills to design their own VR programs. With
the development of VR mainly driven by consumer
electronics and technology companies, teachers need to be
aware of the economic motivation of VR platforms and
consumer opinions of such platforms. Teachers should also
be aware of the effect that novelty can have on students and
use of new technologies and ensure that the substance of a
lesson is not missed due to being distracted by the novelty
of a learning tool. Lastly, especially with head mounted
devices, physical discomfort can be experienced by users.
Some students require adjustments to use the technology
comfortably.

6. CONCLUSION

Computational thinking is an important skill for all students
to develop. With the ever-growing number of fields that rely
on computation and an increasingly technical world,
students must be prepared through diverse exposure to
computational thinking tasks. Virtual reality offers one way
to enable such exposure. Students are drawn to the
technology and can benefit from the engagement, learning,

87

and connections that it offers. With VR and computational
thinking working together, students will have the
opportunity to experience computational thinking in not
only STEM fields, but also in the humanities. There is a great
need for computational thinking in modern society and VR
is a tool that will help develop this essential mindset.

7. ACKNOWLEDGEMENTS

The authors would like to thank the McCarthey Dressman
Education Foundation for the Academic Enrichment Grant
which made these lessons possible and the students for
inspiring us to develop new learning opportunities.

8. REFERNECES

Barr, D., Harrison, J., & Conery, L. (2011). Computational
thinking: A digital age skill for everyone. Learning and
Leading with Technology, 20-23.

Greenwald, S. W., Kulik, A., Kunert, A., Beck, S., Fréhlich,
B., Cobb, S., ... Maes, P. (2017). Technology and
applications for collaborative learning in virtual reality. In
Making a Difference: Prioritizing Equity and Access in
CSCL, 12th International Conference on Computer
Supported Col- laborative Learning (CSCL) ,719-726.

Grover, S., & Pea, R. (2013). Computational thinking in K-
12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Henderson, P. B., Cortina, T. J.,, & Wing, J. M. (2007).
Computational thinking. Proceedinds of the 38th SIGCSE
Technical Symposium on Computer Science Education -
SIGCSE 07, (February 2016), 195.

Huang, H. M., Rauch, U., & Liaw, S. S. (2010).
Investigating learners’ attitudes toward virtual reality
learning environments: Based on a constructivist
approach. Computers and Education, 55(3), 1171-1182.

Lehrer, R., Giles, N., & Schauble, L. (2002). Data Modeling.
In R. Lehrer & L. Schauble (Eds.), Investigating real data
in the classroom: expanding children’s understanding of
mathematics and science (pp. 1-26). New York: Teachers
College Press.

Limniou, M., Roberts, D., & Papadopoulos, N. (2008). Full
immersive virtual environment CAVE in chemistry
education. Computers & Education, 51(2), 584-593.

Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicultt,
W., & Davis, T. J. (2014). Effectiveness of virtual reality-
based instruction on students’ learning outcomes in K-12

and higher education: A meta-analysis. Computers and
Education, 70, 29-40.

NGSS Lead States. (2013). Next Generation Science
Standards: For States, By States. Retrieved from
http://www.nextgenscience.org

Orton, K., Weintrop, D., Beheshti, E., Horn, M., Jona, K., &
Wilensky, U. (2016). Bringing computational thinking
into high school mathematics and science classrooms. In
Transforming Learning, Empowering Learners: The
International Conference of the Learning Sciences (ICLS)
(pp. 705-712).

Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006).
Virtual reality and mixed reality for virtual learning
environments. Computers and Graphics (Pergamon),
30(1), 20-28.

Papert, S. (1980). Mindstorm: Children, Computers, and
Powerful Ideas (1st ed.). New York: Basic Books, Inc.,
Publishers.
https://doi.org/10.1017/CB09781107415324.004

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C.,
Rennert-May, C., & Wildeman, B. (2012). Infusing
computational thinking into the middle- and high-school
curriculum. In Proceedings of the 17th ACM annual
conference on Innovation and technology in computer
science education - /TiCSE ’12.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,
Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science
classrooms. Journal of Science Education and
Technology, 25(1), 127-147.

Wilensky, U., & Resnick, M. (1999). Thinking in levels : A
dynamic systems approach to making sense of the world.
Journal of Science Education and Technology, 8(1), 3-19.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical Transactions of the Royal
Society, 366, 3717-3725.

Winn, W., Windschitl, M., Fruland, R., & Lee, Y. (2002).
When does immersion in a virtual environment help
students construct understanding. In Proceedings of the
International Conference of the Learning Sciences, ICLS
(pp. 497-503).

88

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

A Development of a SW-STEAM Education Program using the Flipped Learning

Hae-nam SONG*, Sun-gwan HAN
Department of STEAM Education, Gyeongln National University of Education, South Korea
goska9997 @naver.com, han@gin.ac.kr

ABSTRACT

In this study, we developed SW STEAM education program
that can be provided by using flipped learning. To do this, |
applied flipped learning to a class of 4th grade elementary
school in Gyeonggi Province, progress the online course site
related to SW education at the same time. After that, we
applied a program that combines the existing textbook theme
with scratch. This will help students improve their
Computational Thinking and motivation. In the future, it is
expected that SW STEAM education will be activated in
elementary education field by using flipped learning.

KEYWORDS
Computational Thinking, Flipped Learning, SW Education,
STEAM, STEAM Education.

1. INTRODUCTION

In the 21st century society, more people need to be able to
think convergently based on knowledge rather than those
who memorize and understand simple knowledge. This
change in social paradigm is too fast to catch up with the
existing knowledge-based lecture education. Elvin Toffler
diagnosed this as a "educational delay” and called for a
change to a creative and STEAM education.

Flipped learning is emerging as a teaching method that can
effectively cope with this educational crisis and raise
talented people capable of fused thinking. Teachers can
create and distribute video about the core contents of the
curriculum to be delivered so that students can study at
home. In the classroom, learning is organized by learner-
centered activities. It is not a passive class that receives
knowledge, but a class that worries for oneself to solve
problems. In this process, students can naturally develop
fusion thinking skills.

Although many educators agree on the effectiveness of
flipped learning, it is difficult to apply it in schools. The
reason why it is difficult to apply flipped learning to the
school is 'difficulty in using the device'. Secondly,
‘production burden of pre-learning video' may be the reason.

On the other hand, as the 4th industrial revolution is
accelerating, the need for software education is increasing.
The Ministry of Education and the Ministry of the Future
revised the curriculum so that it emphasizes the software
education. Now, study to software is essential. No one can
deny that SW education is necessary for future social talent
training.

As the need for STEAM education and SW education is
increasing, practical learning programs are needed in
elementary schools. Elementary SW STEAM education
should enable the learner to be able to participate actively
while maintaining interest and concentration. It also needs
to be presented by the easy way to access, with topics related
to curriculum.

Therefore, this study utilize MOOC - based flipped learning
which uses pre - developed teaching - learning site lectures,
learn the pre-production video by using the extra-curricular
time. By using this method, we intend to conduct SW
STEAM lesson connect with subjects(Korean, Mathematics,
Science). During class, students can create a scratch project
that fits their subject matter.

2. BACKGROUND

2.1. Concept of Flipped- learning

'Flipped' is a name given in the sense of reversing lectures
and homework. In other words, it is a class that overturns the
traditional way of teaching in terms of studying videos at
home and conducting classroom activities based on what
they have learned.

The concept of flipped learning can be defined as follows.
Flipped learning is a learner-centered approach to self-study
of core knowledge to learn in the home or school, making
the network, communicating with friends, conducting
project activities, group discussions, and quizzes.

2.2. Concept of SW Education

Software education is expanded from ICT education which
teaches the functions of information devices such as word
processor. Software education provided computer theory,
and ability to think through procedural thinking and solve
problems by using software. With the 4th Industrial
Revolution, production methods in all sectors of the industry
are changing, and software is at the center. The ability to deal
with software, and the ability to solve various real-life
problems using software is becoming important. Software
education is rapidly spreading in educational fields around
the world. Korea is also taking a step closer to change by
strengthening SW education in the 2015 revision curriculum.

SW education aims to develop creative talents who have the
ability to solve problems by collecting data and analyzing
information on the basis of thinking rather than nurturing
students as programmers who are simply coding. Therefore,
it is not a one-time coding education, but real-life problems
are solved through algorithms and programming in a
practical subject.

2.3. Flipped-learning of the SW Education.

Students can learn basic functions necessary for SW
education beforehand at home in the pre-learning stage
through video. Beyond simple video viewing, teachers
should provide opportunities for students to share their
thoughts in a quiz or mind map.

In SW education, learning about EPL (Educational
Programming Language) like scratch basic functions is
essential, but there are limited class hours and difficulty for
one teacher to proceed. Therefore, the difficulty of applying
SW education can be solved through flipped learning.

89

3. RESEARCH METHOD

3.1. Research Psrocedure

In this study, we have found subjects and theme that can
apply SW STEAM education. Among the 4th grade subjects,
they were selected as ‘talking' in Korean, 'polygon’ in
mathematics, and ‘change of state of water' in science. After
the selection of the topic it was subdivided and refined to
implement the learning objectives to scratch without
modifying the existing curriculum content. In order to
increase the applicability in the field of elementary
education in the future, we selected topics that can be
connected with SW education among existing contents of
textbook rather than modification of curriculum contents.

In addition, the selected online teaching and learning site
allows students to study at home the function of the scratch
program by flipped-learning. At the school, based on the
functions learned at home, we conducted mind map and
discussion learning

3.2 Application

A total of 19 students were selected, including 8 boys and 11
girls, in the 4th grade of K elementary school in Gyeonggi
Province. There is one student with an intellectual disability,
and that student is excluded from the application group
because that student takes special classes in Korean
language and mathematics. There are no students who have
been exposed to scratches in advance, and there are no after
school computer attendants, and there is no SW education
experience.

4. DESIGN OF SW STEAM PROGRAM

4.1. Learning Model of Flipped Learning

The flipped Learning model to be applied in this study is
based on the “core activity process of flipped learning based
instruction model’, from the perspective of using scratch, a
tool for SW education, was modified according to research
characteristics, with reference to ‘Development of flipped
learning instruction model based on smart education’.

Table 1. Leaning model of flipped Learning

=Objectives

Recognition
. =Solvable Problems

“Provide by Cooperation
Motivational data y perati

among students
-Curiosity
inducing
=Understanding the
Knowledge
And providing
Feedback .

= Confirm textbook
-Explore And Formalization of
individual knowledge.
information = Individual
activity structured data
-Individual
Knowledge
Organization
Activities
= Seeking
application = Utilize project
examples for subject topics
knowledge

= Making a plan
specifically for what
learners should do to
solve problems

production and
reconstruction

-Team cooperative

learning = Consider cognitive

-Professor and peer | and social interaction
evaluation

= Learning = Announced creative

outcomes cleanup | activity outcomes

= Teacher's facilitator
activity

-Sharing and
presenting

=Self-reflection with
Writing reflective
journals

= Learning theorem
and Reflection

= Providing the o
sProviding the

Deepenin
After class Iearrrl)ing agr]1d Deepening activities
Supplementary based on students'
i g |ty
classroom) | _gharing activity, kng\medge

Interactive activity

Process Core Activities Rule
. . =Presenting pre-
Before | "Trior Learning learning tasks by
The class (_vvatchmg the Ml_nd—map: Scrgtch
_ video) quiz, post-it quiz
é?:;;'ggrﬁ; -Confirm contents | °Upload to classroom
of subject S|te_ aftt_er creat_lng the
reviewing project
sPrior knowledge
check
oldentify the
Inclass | *Readiness check | individual level with
pre-learning
assignments and
reviewing project
analysis

4.2. Application of Flipped Learning

In the conventional flipped learning class, the teacher has to
prepare and provides the class related video. However, in
this study, the video is already produced and distributed on-
line, So that the burden on the user can be reduced. In this
study, Junior SW site (koreasw.org) was utilized. All of the
lectures on this site were produced by teachers and agreed
with the curriculum and were suitable for flipped learning of
learners within 8 to 10 minutes. Based on the contents that
students have heard from the online-learning site, teacher
suggested prior learning so that students can share their
thoughts with each other.

90

Table 2. Application plan for flipped Learning

Class

time Subject

Flipped Learning Activity

Introduction

¢ Introduction to Online
Learning Site
¢ Join Scratch site

‘Let's be the
main
character.’

¢ Watching a video (Pre-
learning assignment)

¢ Create mind map

Clas

time

Emoti
onal
experie
nce

(Experi
ence of
success

)

- Uploading the project to
classroom site

- Creating a ‘polite
conversation Collections '
by collecting all of your

projects DE®

- writing a comment
Watching each other's
projects

‘Let's move
the
character.’

¢ Watching a video (Pre-
learning assignment)

¢ Write new points on post-it

2) MATHEMATICS
Table 4. SW Mathematics STEAM education Contents

‘Let’s ¢ Watching a video (Pre-
Decorate learning assignment)
aquariums’ ¢ Unravel the quiz

¢ Watching a video (Pre-
5 ‘Dance learning assignment)
Party’ 0 Summarize the contents of a
lecture
¢ Watching a video (Pre-
6 learning assignment)

‘Fireworks’

O Write Lecture Notes

In this study, it is aimed to reconstruct with SW STEAM

Education using MOOC based flipped

learning, by

presenting real-life problems, pursuing connectivity with
other subjects, stimulate students' interest and naturally
develop communication skills and problem-solving skills.

4.3. SW STEAM Education Project Production

1) LANGUAGE ART

Table 3. SW KOREAN STEAM education Contents

Clas | Presen .
. Create a polite
S ting the .
. L2 conversation scratch that
time | situatio .
1 0 Anyone can easily see
Making - Think gbout _Sltuatlon of
polite conversation with adults ®
conversati - Think about the manners
on Clas | Creati | you need to talk to adults ®
Collesctlon s ve - What blocks do you need
time | Desig | to make the scratch that
2~3 |n seems to be talk? @
- Using scratch, Making
polite conversation
Collections ®

Class Presen
; ting the | Create a tool that
time L9
1 situatio | accurately draws a Square
n
- Think of the square
| features
Class VeCreatl (Rhombus, Parallelogram,
time | Rectangle)®
2-3 Desig
n - What blocks do you need
Square to draw a square accurately?
maker ©)
Emoti .
onal - Draw a rectangle using
Clas | €xperie scratch M®
stime | "¢€ - Uploading the project to
4 classroom site
(Experi | writing a comment
ence of | watching each other's
success projects
)
3) SCIENCE
Table 5. SW Science STEAM education Contents
Prese
Cl nting Let's play with your friends
ass .
; the by creating a game that you
time 1 L .
situati | need to survive on the moon
on
- Think about the difference
) between Moon and Earth S
reatin
Cge:t Class | - Creat | _\why can not a creature
time | 'V live on the moon? ©
‘Moon |, Desig .
survival n - Designing the game
game’ Situati0n®®
- Exploring the block M
Emot ;
. - Making game
ional 99)
Class | experi ‘Moon survival
time 4 ence game’@@@
(Exper | _ Game with friends
ience

91

of - Share each other's rules
succes | and games
5)

of the program on learning motivation by tests divided into
pre and post motivation and analysis the satisfaction survey.
It can be seen that SW STEAM class using flip learning
gives a very high learning motivation than traditional lecture

4) Implementation of SW-STEAM Class
Table 6. Picture of class

. |

v e

KOREAN —
STEAM

SW
Mathematics
STEAM

SW Science
STEAM

5. DISCUSSION
The developed SW STEAM education applied to 4th grade
students. The purpose of this study is to investigate the effect

class.

Table 7. Result of motivation test

Analysis Corres- | Average SD t p
pondence

Attention Pre 3.4722 14206 -2.536 | .021
Post 3.9444 | 78850

Relevance | Pre 3.0889 | .49573 | -3.194 | .005
Post 3.5444 52156

Confidence | Pre 3.4889 | .91065 | -2.279 | .036
Post 3.9667 .81818

Therefore, when SW STEAM class using flip learning is
applied to students, it can positively affect students'
motivation for learning. Especially, it showed improvement
in attention, relevance, and confidence among the sub - areas
of learning motivation.

6. REFERENCES
Alvin, T., & Toffler, H. (2006). Revolutionary wealth.
Alfred A Knopf.

Bergmann, J. & Sams, A. (2012). Flipped Your Classroom:
Reach Every Student in Every Class Every Day.
International Society for Technology in Education.

Korea online SW education. (2016). Scratch Basic.
Retrieved October 17, 2017, from http://koreasw.org.

Lee, M. K., Sung, M. K., Jung, J. Y., Kim, S. M., Kim, J. H.,
Ahn, H. H., Park, H. K., Patrick, T. T., Byeon, S. C., Bae.
D. Y, Lee, K. H,, Kim, S. C,, Cha, J. H.,, Kim, E. J., Kim,
K. Y., Lee, H. J, Kim, K. Y., & Kim, C. S. (2016).
Understanding and Practice of Flipped Learning, city:
Kyoyookbook.

Lim, J. H., & Kim, S. H., (2013). Effects of individual
learning and collaborative learning on academic
achievement, self-directed learning skills and social
efficacy in smart learning, Journal of Korean Association
for Educational Information and Media, 19(1), 1-24.

Missildine, K., Fountain, R., Summers, L., & Gosselin, K.
(2013). Flipping the classroom to improve student
performance and satisfaction. Journal of Nursing
Education, 52(10), 597-599.

MOE. (2015). Curriculum guideline for Practical Arts
(Technology / Home Economics) / Information Science
Curriculum. Seoul: Ministry of Education.

Park, T.J., Cha, H. J., & Lee, G. Y. (2015). An Exploratory
Study on Learning Analysis for Promoting Self -
Regulated Learning in MOOCs Learning Environment. In
Proceedings of 2015 Conference on The Korean Society
Educational Technology (pp. 504-517).

92

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Development of BIC-Science Module: An Interdisciplinary Approach of Computer

Science and Primary Science Education

Tracy MENSAN, Kamisah OSMAN"
National University of Malaysia
tress1907 @yahoo.com, kamisah@ukm.edu.my

ABSTRACT

Computational Thinking (CT) is being considered as a
critical skill for students in the 21 century as it is
increasingly valuable in education and workplace settings
with the economy grows more dependent on digital literacy.
Given the importance of CT, Malaysia has been integrating
CT into Malaysian syllabus since January 2017. However,
integration of CT into the Science curriculum is still a
challenge. This study therefore aimed to develop an
interdisciplinary module namely Brain-based learning,
Inquiry-based approach and Computational thinking (BIC)-
Science Module. In this paper, we first present the needs of
the module to Malaysia’s education and then presenting the
approaches of BIC through the conceptual framework. We
then propose activities that can jointly foster the
development of computational thinking and elaborate on the
instructional model to develop the module. Finally, we
discuss the benefits of our module for future research.

KEYWORDS
Interdisciplinary, Brain-based learning,
Computational thinking, Primary Science.

1. INTRODUCTION

In August 11th of 2016, the Prime Minister of Malaysia has
announced that computational thinking and computer
science will be added to the curriculum of primary and
secondary schools in Malaysia (Abas 2016), which aimed to
provide Malaysian students with the CT to be globally
competitive. The Prime Minister highlighted every student
from Primary One to Form Five should be taught CT and
coding languages to give them a good foundation in
preparing them for future digital economy jobs.

Inquiry,

The implementation of CT has been rolled out as part of the
new Standard Based Curriculum for Primary (KSSR) and
Standard Based Curriculum for Secondary (KSSM) which
has been started in January 2017 that will benefit up to 1.2
million students across 10,173 schools nationwide (Abas,
2016). The integration of CT, problem-solving and
technology for the primary school curriculum will be across
all of their subjects. Meanwhile, the integration of CT for
secondary school curriculum is through their elective
subject. These initiatives are spearheaded by Ministry of
Education (MOE) and supported by Malaysia Digital
Economy Corporation (MDEC) and aimed to participate 1.3
million students participating in co-curricular activities and
digital production hubs with 260,000 students groomed for
future digital economy jobs, e.g. data scientists and game
developer (Ng, 2016).

A national study, S&T Human Capital: A Strategic Planning
Towards 2020 in Academy of Sciences Malaysia (2015)
confirmed that the country will need one million S&T
workers by 2020, of which 500,000 will require at least a
diploma or university degrees. At the same time, it is
projected that a ratio of 70: 10,000 research personnel to
workforce would be needed. Hence, the underlying
statement indicates that Malaysia still does not have enough
talent.

The implementation of the first National Science and
Technology Enrolment Policy of 60:40 since 1970, which
guaranteed that 60 percent of students would be enrolled in
science with the remaining 40 percent in arts is still
unachieved with the ration stood at 21:79 in 2015. Regarding
the latest statistics on mean score in Program for
International Student Assessment (PISA) and the Trends in
International Mathematics and Science Study (TIMSS) 2012
which assess a variety of cognitive skills such as application
and reasoning, Malaysia’s science and mathematics
achievement still ranked below the average mean score.
Therefore, Malaysia education system aspires to be in the
top third countries of international assessments such as
TIMMS and PISA in 15 years (Ministry of Education,
2015).

In order to achieve the national goals, this paper proposed
the interdisciplinary module that supports the development
of students’ scientific expertise for the design of coherent
curriculum in which computational thinking are not taught
as separate topic but are interwoven with learning in the
science domains. Bringing computational tools and practices
into science classrooms gives learners a more realistic view
of what science fields are and better prepare students for
STEM careers (Augustine, 2005; Osman, 2013). These
practices are also central to the development of expertise in
scientific and mathematical disciplines (Basu et al., 2012).
In establishing this framework, we first propose the
following three components:

a. Relationship between BIC and Science Learning: In
section 2.1, we explicitly identify the synergies between
BIC and science learning;

b. Fostering CT with BIC-Science Module: In section 2.2,
we provide examples for the integration of CT in the
selected topic that are amenable to our technology, but
at the same time illustrate the generality of our
approach;

c. Instructional design of BIC-Science Module: In section
2.3, we elaborate the Morison, Ross and Kemp (MRK)
instructional model for developing the module.

93

2. DEVELOPMENT OF MODULE

2.1. Relationship between BIC and Science Learning

In order to comprehend the continuous development in the
discipline of science, students should be aware of the basic
science terms and they should gain the science skills
throughout their schooling process (Fogarty, 2002) which
can be achieved through interdisciplinary approach
presented in this module. Interdisciplinary can be defined as
a knowledge view and curriculum approach that consciously
applies methodology and language from more than one
discipline to examine a central theme, issue, problem, topic
or experience (Jacobs, 1989). Figure 1 shows the conceptual
framework that shows the key concepts in developing the
module.

Computer science element focused in this module is the use
of computational thinking as the skills to solve problem
systematically in the lesson. Meanwhile, the science
learning will be focused on the curricular contexts in the
topic of “Matter” which is difficult and important curricular
topic at Year 5 level. Research reports some of the ideas
students have about the particulate nature of matter as
misconceptions, preconceptions, naive conceptions, or
alternative conceptions (De Vos & Verdonk,1996).

Brain-based Inquiry- CT
Planning (Jensen, based (CSTA,2012)
2008) Approahc_h Decomposition,
1. Pre-exposure a(r?(?rl]acel: Pattern
2. Preparation 2008) recognition,
3 Initiati q Abstraction,
. nltla_tl_O_n an AlgOI’itth
acquisition i
4. Elaboration
) — BIC-
5. Incubation and Science » CT
Memory Module
Encoding
6. Verification |
and confidence Morison, Ross, and Kemp
check model (2007)
7. Celebration
and Integration

Figure 1. Conceptual framework.

BIC model is adapted from the model proposed by Cheah
(2016) as an effective pedagogy that should consist of:

a. structure: Brain-based learning;
b. approach: Inquiry-based approach; and
c. skill: Computational thinking.

The structure is the brain-based learning that recognized the
need for constructing knowledge, prior conceptions into new
knowledge through questioning and readjusting knowledge
to fit with real-life experiences (Gardner,1991 in Mangan,
2007). This can be achieved through the Seven Stages of
Brain-based Planning that can be applied in science
classroom to “access the vast potential of the human brain
and, in very real sense, improve education.” (Caine & Caine,

1991). In BIC-Science Module, every science lesson is
structured into seven stages according to Jensen (2008)
namely:

i. Pre-exposure is the stage which provides the brain with
an overview of the new learning before really digging in.
Pre-exposure helps the brain develop better conceptual
maps. Example: Students can use their prior knowledge
about different types of materials around them to help
them to understand the nature of different states of matter
that can exist as solid, liquid and gas.

ii. Preparation is the stage at which curiosity or excitement
is created. It is similar to the ‘anticipatory set’ but goes
further in preparing the students. Example: Students are
instructed to put their hand into three closed black boxes
which contain different types of matter separately. Each
box may contain ice which represents solid, water which
represents liquid and smoke which represents gases.

iii. Initiation and acquisition is the stage which provides the
immersion. Students are flooded with an initial virtual
overload of ideas, details, complexity and meanings. The
students are allowed to be temporarily overwhelmed.
This will be followed by anticipation, curiosity and
determination to discover meaning for oneself. It builds
on what the learners already know and understand and
helps them assimilate and integrate new information.
Over time, the students are able to sort out the
knowledge. Example: Students are allowed to do
experiment to describe that water can change its state
through several processes.

iv. Elaboration is the stage for processing which requires
genuine thinking on the part of the learners. This is the
stage to make intellectual sense of the learning. Example:
Students discussed openly the algorithm they
experienced in changing the states of matter in water into
solid or gas. Teachers and other students may ask
questions to improve the algorithm.

v. Incubation and memory encoding is the stage for the
importance of downtime and review time is emphasized.
Example: Students write the key points about the
“"changes in states of matter" in the form of thinking map
in their journal.

vi. Verification and confidence check is for the students to
confirm their learning. Learning is best remembered
when students possess a model or a metaphor regarding
the new concepts or materials. Example: Students
answered short quiz regarding the subtopic learned.

vii. Celebration and integration is the stage which engage
emotions. This stage instills the all-important love of
learning. Example: Stickers are given to students who
perform well and actively throughout the lesson. Top
presentations are selected to be presented during Science

Week.

While brain-based learning develops deep learning of
science phenomenon as a process, inquiry-based approach
offers the ability to do the scientific processes and the
knowledge about the processes through student-centered
exploration. Students are encouraged to raise questions and
think critically throughout the exploration of lesson

94

activities which also will provide opportunity for students to
learn by doing. The national performances in TIMMS and
PISA proved that our students are still lacking in inquiry
skills. Therefore, the design of activities in this module will
be developed from the basic which is structured inquiry to
guided inquiry or open inquiry (NRC,2000). Banchi and Bell
(2008) differentiate the four levels of inquiry (confirmation
inquiry, structured inquiry, guided inquiry and open inquiry)
based on the amount of information and guidance the teacher
provides the students. The information and guidance
provided in the module will be minimized as the inquiry
level shifts from structured inquiry to open inquiry.

CT will equip the module with relevant skills according to
the science activity. The term “computational thinking” in
education was first used in child education by Papert (1980)
with reference to Logo, a computer language designed for
children who believes that certain uses of very powerful
computational technology and computational ideas can
provide children with new possibilities for learning,
thinking, and growing emotionally. According to Curzon et
al. (2009), computational thinking is the 21% century skills.
This is an idea explored by Jeannette Wing from Carnegie
Mellon University:

Computational thinking is a way of solving problems,
designing systems, and understanding human behavior that
draws on concepts fundamental to computer science.

(Wing, 2006).

In this study, CT skills are needed to prepare a lesson for the
learner in a systematic manner. Four concepts of the CT
skills (CSTA, 2012) defined in Table 1 will be utilized.

Table 1. Four concepts of CT
Definitions (Google, 2015)

Concept

Decomposition Breaking down data, processes,
or problems into smaller,

manageable parts

Pattern recognition Observing patterns, trends, and

regularities in data

Abstraction Identifying the general principles

that generate these patterns

Algorithms Developing the step-by-step

instructions for solving problem

2.2. Fostering CT with BIC-Science Module

The long-term goal of this study is to support the
development of CT throughout the Primary Science
curriculum. BIC-Science module is designed to promote a
specific set of CT skills for the topic. Table 2 below shows
examples that incorporates CT skills in the module.

Table 2. CT Concepts Explored with BIC-Science Module

Concept Examples

Decomposition Students decomposed the changes in
states of matter which occur during the

phenomena of rain.

Pattern
recognition

Students classify the materials/objects
in the classroom into solid, liquid and
gas.

Abstraction Students use abstraction to explain the
changes in states of matter during the

heating of naphthalene ball.

Algorithms Students explore logical organization
and sequencing when animate the
movement of particles in solid, liquid
and gas using visual programming

application; Scratch.

2.3. Instructional design of BIC-Science Module

Morison, Ross and Kemp (MRK) model provide flexibility
in manifesting the cyclical process of instructional design
(Morrison et al., 2007) in the development of this module.
This circularity is achieved by viewing the nine core
elements of the model as interdependent rather than singular
and independent. This allows instructional designers a
significant degree of flexibility because they are able to
begin the design process with any of the nine components,
rather than being constrained to work in a linear fashion
(Akbulut, 2007). Every aspect of the module design and
learning process is taken into consideration. This model
focuses on these nine core elements which will be applied in
this module:

e identifying instructional design problems and
specifying relevant goals,

e examining learner characteristics,

e identifying subject content and analyzing task
components that are related to instructional goals,

e stating instructional objectives for the learners,

e sequencing content within each unit to sustain
logical learning,

e designing instructional strategies for each learner to
master the objectives,

e planning instructional delivery,

e developing evaluation instruments, and

e selecting resources to support learning activities.

3. CONCLUSION

The development of BIC-Science module will be the
foundation for a longer-term learning progression to
integrate computational thinking into the science
curriculum. The design of science lesson activities using
brain-based learning, inquiry-based approach and
computational thinking will be able to provide a student-
centered, systematic and meaningful learning environment.
With computational thinking’s growing importance in
preparing relevant talent in digital age, this paper is a call to
action for more research to integrate computational thinking
in other disciplines and in the different level of education.

4. REFERENCES

Abas, A. (2016, August 11). Computational thinking skills
to be introduced in school curriculum next year. New
Straits Times.
https://www.nst.com.my/news/2016/08/164732/computat
ional-thinking-skills-be-introduced-school-curriculum-
next-year [2 February 2018].

95

Academy of Sciences Malaysia. (2015). ASM Science
Outlook. Kuala Lumpur: Perpustakaan Negara Malaysia.

Akbulut, Y. (2007). Implications of two well-known
models for instructional designers in distance education:
Dick-Carey versus Morrison-Ross-Kemp. Turkish Online
Journal of Distance Education, 8(2).

Augustine, N. R. (2005). Rising above the gathering storm:
Energizing and employing America for a brighter
economic future. Washington D.C.: National Academies
Press.

Banchi, H., & Bell, R. (2008). The many levels of inquiry.
Science and Children. 46(2), 26-29.

Basu, S., Kinnebrew, J., Dickes, A., Farris, A. V.,
Sengupta, P., Winger, J., & Biswas, G. (2012). A Science
Learning Environment using a Computational Thinking
Approach. Paper presented at the 20th International
Conference on Computers in Education, Singapore.

Caine, G., & Caine R. (1991). Making Connections
(Teaching and The Human Brain). USA: Banta
Company.

Caine, G., & Caine, R. (2006). Making connections:
Teaching & Human Brain (3™ ed.). Thousand Oaks, CA:
Corwin Press.

Cheah, H.M. (2016). Enhancing Creative Teaching using
Computational Thinking. International Conference on
Teaching and Learning 2016, him. 26-42. Faculty of
Education, University of Malaya, Kuala Lumpur.

Computer Science Teachers Association. (2012).
Computational Thinking.
http://csta.acm.org/Curriculum/sub/CompThinking.html.

Curzon, P., Black, J., Meagher, L. R., & McOwan, P.
(2009). cs4fn. org: Enthusing students about Computer
Science, Proceedings of Informatics Education Europe
1V, 73-80.

De Vos, W., & Verdonk, A.H. (1996). The Particulate
Nature of Matter in Science Education and in Science.
Journal of Research in Science Teaching, 33(6), pp657-
664.

Google. (2015). Computational Thinking for Educators.
Retrieved from
https://computationalthinkingcourse.withgoogle.com/unit
?lesson=8&unit=1.

Hodson, D. (1993). Re-thinking old ways: Towards a more
critical approach to practical work in school science.

Studies in Science Education, 22, 85-142.

Jacobs, H. H. (1989). Design options for an integrated
curriculum. Interdisciplinary curriculum: Design and
implementation (pp.13-15).

Jensen, E. (2000). Brain-based learning. Thousand Oaks,
CA: Corwin Press.

Mangan, M. A. (2007). Brain-compatible science (2" ed.).
Thousand Oaks, CA: Corwin Press.

Ministry of Education. (2015). Malaysia Education
Blueprint 2015-2025 (Higher Education). Ministry of
Education Malaysia.

Morrison, G.R., Ross, S.M. & Kemp, J.E. (2007).
Designing effective instruction. 5" Edition. New York:
John Wiley & Sons.

Ng, W.P. (2016). Creating Connected, Empowered
Communities Transforming The Digital Economy To
Equip The Future Workforce With Vital Skillsets Dato’
Ng Wan Peng Chief Operating Officer (COO) Malaysia
Digital Economy CorporatioN (MDEC). Retrieved from
https://asia.bettshow.com/sites/asia.bettshow.com/files/PI
enary_0930-0945_Dato Ng Wan Peng.pdf

OECD. (2012). Program for International Student
Assessment results (PISA) from PISA 2012: Country
note- United States. Retrieved from PISA 2012 Results in
Focus- What is 15 year-olds know and what they can do
with what they know, OECD, 2014, pp.1-44.

Osman, K., Hiong, L. C. & Vebrianto, R. (2013). 21st
Century Biology: An Interdisciplinary Approach of
Biology, Technology, Engineering and Mathematics
Education. Procedia - Social and Behavioral Sciences
102(Ifee 2012): 188-194.

Palaniappan, A.K. (2009). Creative Teaching and Its
assessment. 12thUNESCO-APIED International
Conference. Bangkok, Thailand

Papert, S. A. (1980). Mindstorms: Children, Computers,
and Powerful Ideas, Basic Books.

Saleh, S. (2012). The effectiveness of Brain-Based
Teaching Approach in dealing with the problems of
students’ conceptual understanding and learning
motivation towards physics. Educational Studies 38(1):
19-29.

Wing, J. M. (2006). Communications of the ACM.
Communications Of The ACM. March 49(3). Retrieved
from https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf

96

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Thinking in Parts and Wholes: Part-Whole-Thinking as an Essential

Computational Thinking Skill in Computer Science Education

Nils PANCRATZ", Ira DIETHELM

Department of Computing Science

University of Oldenburg, Germany
nils.pancratz@uni-oldenburg.de, ira.diethelm@uni-oldenburg.de

ABSTRACT

Thinking in parts and wholes is a basic principle in
Computer Science. Breaking down complex structures,
objects, and systems into its componential parts and
figuring out how they make the whole what it is, is an
essential thinking skill that forms understandings on the
functionalities on how these things work. But this skill,
which is defined and presented as Part-Whole-Thinking in
this paper, is also applicable to grasp non-physical ideas
such as concepts, processes, and definitions. Either way,
Part-Whole-Thinking is an often subconsciously happening
cognitive process that forms knowledge representations.
The contribution at hand aims at working out in which way
Part-Whole-Thinking belongs and relates to Computational
Thinking. By reviewing literature on suitable definitions of
the involved terms it is shown that Part-Whole-Thinking
plays a huge role in Computational Thinking processes.
Afterwards, it is argued that a more vigorous inclusion of
this essential thinking skill in Computer Science Education
improves the overall understanding of Information
Technology.

KEYWORDS
Part-Whole-Thinking, Computational Thinking, Cognitive
Organization, Computer Science Education

1. INTRODUCTION

The term Computational Thinking (CT) is increasingly
being used in discussions about Life Long Learning (LLL)
recently. However, since Wing was the first to use the term
in educational contexts in 2006, many authors defined this
term differently in their work. We argue that CT is not only
thinking like computers/computer scientists, 1T-devices,
etc.; more importantly it is a skill that enables thinking and
reasoning about the way these devices work. Since it is a
well-known fact, that breaking down problems into parts is
a basic principle of Computer Science (CS), the core aspects
of Part-Whole-Thinking (PWT) must be considered when
discussing about pursued inclusions of CT skills in
educational contexts. In this paper, the role of PWT in the
context of CT is discussed and presented.

A literature review on suitable definitions for the terms CT
and PWT is presented in the following Sec. 2. Afterwards,
it is discussed how PWT; CT, and Computer Science
Education (CSE) refer to each other in Sec. 3, before a
summary is given and an overview on work to be done in
the future is presented in Sec. 4. Considering these aspects,
the contribution at hand aims at presenting the massive role
that PWT plays in the context of CT.

2. THINKING ABOUT THINKING

Thinking is generally seen as a cognitive process that
“allows humans to make sense of, interpret, represent or
model the world they experience, and to make predictions
about that world” (Kisak, 2015). This mental act leads to an
acquisition of knowledge, a development of thoughts, and a
formulation of reasons (Presseisen, 1991, p. 56). Besides,
thinking generates “higher processes, like judging, problem
solving, or conducting critical analyses” (Presseisen, 1991,
p. 56). A huge emphasis in thinking skills is on reasoning as
amajor cognitive skill, “although cognition may account for
several ways that something may come to be known —as in
perception, reasoning, and intuition” (Presseisen, 1991,
p. 56). One of the involved thinking skills getting more and
more notice in discussions on possibilities to equip students
with skills enabling Life Long Learning is Computational
Thinking (CT). CT is defined in the following Sec. 2.1.
Through cognitive processes like thinking, complex
relationships, which “may be interconnected to an
organized structure and may be expressed by the thinker in
a variety of ways” (Presseisen, 1991, p. 56), are developed.
Presseisen classifies the essential thinking skills involved in
these cognitive processes and identifies the detection of
Part-Whole-Relationships as one of them (Presseisen, 1991,
p. 58). The involved ability to think in parts, wholes, and
their relationships to each other is described as Part-Whole-
Thinking (PWT) in the following Sec. 2.2.

2.1. Computational Thinking

Since Wing introduced the term “Computational Thinking”
for the first time in 2006 (Wing, 2006), there has been a
huge confusion about its exact definition (Selby, 2015,
p. 81). Thus, it is no wonder that many different authors
define this term differently in their publications. Many of
these definitions “suggest that CT relates to coding or
programming” (Shute, Sun, and Asbell-Clarke, 2017). By
presenting three publications of Wing and two of authors
that discuss her definition of CT it is shown that
“considering CT as knowing how to program” (Shute, Sun,
and Asbell-Clarke, 2017) definitely is too limiting. Instead
of CT skills just being needed by programmers and software
developers, all pupils should acquire CT skills in school to
act responsibly in the Digital Age in both their future
working and everyday lives.

2.1.1. Wing (2006, 2008, 2010)

When Wing was the first to coin the term “Computational
Thinking” in her article of the same title in 2006, she
originally presented her work with the subtitle “It represents
a universally applicable attitude and skill set everyone, not
just computer scientists, would be eager to learn and use”

97

(Wing, 2006, p.33). According to her “the essence of
Computational Thinking is abstraction” (Wing, 2008, p.
3717), which “focuses on modeling the workings of a
complex problem/system” (Shute, Sun, and Asbell-Clarke,
2017, p. 4). It involves (Wing, 2008, as cited in Shute, Sun,
and Asbell-Clarke, 2017, p. 3):

(a) abstraction in each layer,
(b) abstraction as a whole, and
(c) interconnection among layers

The abstraction process is the “most important and high-
level thought process in computational thinking” (Wing,
2010, p. 1) to her. As Wing describes, “abstraction gives us
the power to scale and deal with complexity” (Wing, 2010,
p. 1), while “it is defined as the ability to decide what details
of a problem are important and what details can be ignored”
(Wing, 2008, as cited in Selby, 2015, p. 81). Thereby the
“layers of abstraction [...] reduce the level of complexity of
a problem or a representation (Selby, 2015, p. 81).

Wings definition of abstraction in the context of CT is very
close ! to the one of (problem) decomposition (cf.
Sec. 2.1.4.), which is another aspect being part of CT
according to many authors as presented in the following
Sec. 2.1.2.and 2.1.3.

2.1.2. Selby (2015)
The definition of CT Selby presents includes

o decomposition, which is “breaking down into
smaller [...] parts” (Selby, 2015, p. 81),

e abstraction, which is “the ability to decide what
details of a problem are important and what details
can be ignored” (Wing, 2008, as cited in Selby,
2015, p. 81),

e algorithm design, which “is related to the idea of
procedural thinking [...] [and defined] as a step-
by-step set of instructions that can be carried out
by a device” (National Research Council, 2010, p.
11, as cited in Selby, 2015, p. 81),

e generalization, which is a “powerful component of
problem solving [...] [and] describes the ability to
express a problem solution in generic terms”
(Selby, 2015, p. 81), and

e evaluation, which is “the ability to evaluate
processes, in terms of efficiency and resource
utilisation, and the ability to recognise and
evaluate outcomes” (L’Heureux, et al., 2012, as
cited in Selby, 2015, p. 81).

According to her, these skills are “necessary for applying
the tools of computer science to understanding the world
around us” (Selby, 2015, p. 80).

! Especially the separation between abstraction in each layer,
abstraction as a whole, and the interconnection among layers is
very close to the basic idea of PWT (cf. Sec. 2.2).

2.1.3. Shute, Sun, and Asbell-Clarke (2017)

Shute, Sun, and Asbell-Clarke worked out five cognitive
processes/components of CT that are engaged “with the
goal of solving problems efficiently and creatively” (Shute,
Sun, and Asbell-Clarke, 2017, p. 3) as stated by Wing
(2006) for their part:

1. problem reformulation: “Reframe a problem into
a solvable and familiar one” (Shute, Sun, and
Asbell-Clarke, 2017, p. 3)

2. recursion: “Construct a system incrementally
based on preceding information” (Shute, Sun, and
Asbell-Clarke, 2017, p. 3)

3. problem decomposition: “Break the problem down
into manageable units” (Shute, Sun, and Asbell-
Clarke, 2017, p. 3)

4. abstraction: “Model the core aspects of complex
problems or systems” (Shute, Sun, and Asbell-
Clarke, 2017, p. 3)

5. systematic testing: “Take purposeful actions to
derive solutions” (Shute, Sun, and Asbell-Clarke,
2017, p. 3)

2.1.4. Comparison and Summary of the Definitions of
Computational Thinking

As this very brief literature review on profound definitions
of CT already suggests, a huge part in CT skills is derived
to the decomposition of whole systems into its
componential parts. The ability to decompose is “required
when dealing with large problems, complex systems, or
complex tasks” (Selby, 2015, p. 81). Thereby “the divided
parts are not random pieces, but functional elements that
collectively comprise the whole system/problem” (Shute,
Sun, and Asbell-Clarke, 2017, p. 12). The parallels to PWT
are more than obvious at this point. But additionally, core
aspects of PWT can be found in the understanding and
definition of abstraction in the context of PWT, which the
second aspect that each of the presented publications (cf.
Sec 2.1) see as a part of CT. The ability to abstract includes
the identification of “patterns/rules underlying the
data/information structure” (Shute, Sun, and Asbell-Clarke,
2017, p. 12) amongst others. Again, this definition is very
close to the understanding of PWT as defined in the
following Sec. 2.2.

2.2. Part-Whole-Thinking

The almost endless variety of objects and living things in
our world forces us as human beings, which are only
equipped with limited cognitive resources, to map cognitive
categories. The task of these “category systems is to provide
maximum information with the least cognitive effort”
(Rosch, 1978, p. 28). Since the objects in the world as we
perceive it are in any ways structured by nature, “one
decisive aspect of our thinking is the ability to detect
similarities and differences between these various elements
and then cognitively grouping them based on their
differentiations and classifying them into categories”

98

(Tversky and Hemenway, 1984, as cited by Pancratz and
Diethelm, 2018). These conceptual hierarchies are
organized by subconsciously identifying, which parts the
respective objects are made of (Tversky and Hemenway,
1984).

“The part-whole relation plays an important role [...] in
knowledge processing, e.g. reasoning about objects” (Gerstl
and Pribbenow, 1995, p. 865), and beyond: Generally, Part-
Whole-Relations help “understanding objects, systems,
processes, definitions[,] and concepts” (Pancratz and
Diethelm, 2018) by “identifying the parts that constitute the
whole, the function of each individual part and its
contribution to the function of the whole” (Rao, 2005, p.
174). Views on the functionalities and principles of
complex objects and systems are developed based on the
knowledge about the single parts and their relationships to
each other (Gerstl and Pribbenow, 1995, p. 867). In the
context of our research we define this cognitive — and often
subconsciously happening — process of partitioning as Part-
Whole-Thinking (PWT). It is significant for many reasons:
“knowing the parts of a whole, how the parts are
determined, how they are related, and what they do is a
crucial part of understanding the whole” (Tversky, Zacks,
and Hard, 2008, p. 437 f.).

According to Tversky, Zacks, and Hard (2008) the
following questions need to be considered when discussing
and analyzing PWT processes:

o “Wholes: How are wholes determined — that is,
how are they distinguished from backgrounds?

e Parts: How are wholes partitioned into parts, and
on the basis of what kind of information? Parts
may be further partitioned into subparts; do the
same bases for partition hold for the subparts?

e Configuration: How are the parts of the whole
arranged?

e Composition: Each whole entity has a set of parts,
which may be parts of other wholes as well. How
does the entire set of parts get distributed to
wholes?

e Perception-to-function: Are there relations
between perception and appearance on the one

hand and behavior and function on the other?”
(Tversky, Zacks, and Hard, 2008, p. 437 f.)

3. HOW PART-WHOLE-THINKING,
COMPUTATIONAL THINKING, AND
COMPUTER SCIENCE (EDUCATION)
REFER TO EACH OTHER

Breaking down problems into parts is a basic principle of
CS. Typical examples are (Pancratz and Diethelm, 2018):

e the programming paradigm Object Orientation
e the algorithmic strategy Divide and Conquer

o the logical partitioning in software design called
Modularity

Besides, many Information Technology (IT) devices,
systems, and concepts make use of Part-Whole-
Relationships (Pancratz and Diethelm, 2018):

e The Internet consists of many different servers,
clients, and routers.

e Computers have processing units, graphic cards,
motherboards, and storage units.

e Algorithms are composed of a finite number of
well-defined steps.

e Relational Databases consist of various tables and
relations.

These two lists can easily be stretched. Generally speaking,
“part-whole relations often play a fundamental role in the
modeling of information systems” (Guarino, Pribbenow,
and Vieu, 1996, p. 257).

As depicted in Sec. 2.1, “Computational thinking involves
solving problems, designing systems, and understanding
human behavior, by drawing on the concepts fundamental
to computer science. Computational thinking includes a
range of mental tools that reflect the breadth of the field of
computer science.” (Wing, 2006, p. 33). As the just given
examples show, many CS concepts make use of PWT.
Therefore, CSE could provide the perfect showcase to equip
students with this essential thinking skill. Thus, it is quite
criticizable that the focus of education in schools lies on
conveying content (“what to think™) instead of teaching
critical thinking skills (“how to think™) so far (Rao, 2005, p.
173), though thinking skills like CT enable us to acquire
further knowledge on our own amongst other things (cf.
Sec. 2.1). Rao for example noticed an improvement in
learners’ cognitive learning processes when explicitly
teaching them to use CT skills like PWT in class (Rao,
2005, p. 177).

PWT can especially be found in two of the core concepts of
CT: While the definition of (problem) decomposition
obviously fits very well to the core concepts of PWT, even
the ways in which abstraction in the context of CT can be
understood imply the close role that PWT plays in CT (cf.
Sec. 2.1.1). In the end, CSE provides the perfect platform to
include the fruitful skill of PWT.

4. SUMMARY AND FUTURE WORK

We are more and more surrounded by IT devices that rashly
change and massively influence the Digital World we live
in. Therefore, it is becoming progressively important to
obtain further knowledge by oneself in order to succeed in
one’s personal and working life. Discussions about this
topic include the term Life Long Learning (LLL) recently.
The possibilities of CT for LLL are obvious. In this paper,
the massive role of PWT in the context of CT is presented.

To the authors of this paper, CT is not only thinking like a
computer (scientist) to solve problems, but also to become
acquainted with the basic principles of CS and IT devices
and thereby grasp objects, systems, processes, definitions,
and concepts of the most different disciplines (and not only
CS). Since a massive amount of CS principles makes use of
PWT aspects, we suggest to always have the underlying

99

Part-Whole-Relationships in mind when discussing,
planning, and applying CT skills in educational contexts.

With this in mind, it is remarkable that according to Selby
decomposition is the most difficult CT skill to master
(Selby, 2015, p. 84). According to her, “teachers indicate
that learners struggle with implementing the process of
decomposition” (Selby, 2015, p. 85). The reasons for this
fact “include a lack of experience, incomplete
understanding of the problem to solve, and the order of
teaching programming” (Selby, 2015, p. 85). Though
students seem to understand the concept of breaking a
problem down, they are “able to use the skill [...] more
successfully in situations where they already know the
solution or understand the problem very well” (Selby, 2015,
p. 85). Selby points out that “understanding decomposition
[...] is a prerequisite for abstraction, algorithm design, and
evaluation” (Selby, 2015, p. 85). “As such, it must be
mastered, to some extent, before the complexity of the
following levels can be accessed” (Selby, 2015, p. 85).

The fact that decomposition is a prerequisite to the other
aspects of CT already answers one of the challenges that
Wing posed in 2008: “What would be an effective ordering
of [CT] concepts in teaching children as their learning
ability progresses over the years?” (Wing, 2008, p. 3721).
The authors of this paper assume that an early on teaching
of PWT has huge potential to improve the outcomes of
education. Another challenge Wing describes is that “we do
not want people to come away thinking they understand the
concepts because they are adept at using [...] tool[s]”
(Wing, 2008, p. 3721). She clarifies this challenge with the
example of “using a calculator versus understanding
arithmetic” (Wing, 2008, p. 3721). Again, this shows the
importance of CSE in the Digital Age: The imagination of
people being surrounded by technical artifacts they don’t
understand simply is alarming. A proper knowledge in CS
is becoming more and more important. With the paper at
hand it is suggested that a more vigorous inclusion of PWT
in CSE improves the overall understanding of our students.
In order to achieve this, our future work lies on investigating
PWT in CSE alongside the Model of Educational
Reconstruction (Diethelm, Hubwieser, and Klaus, 2012).

5. REFERENCES

Diethelm, 1., Hubwieser, P., and Klaus, R. (2012).
Students, Teachers and Phenomena: Educational
Reconstruction for Computer Science Education. In
Proceedings of the 12" Koli Calling International
Conference on Computing Education Research. ACM.
164-173

Gerstl, P. and Pribbenow, S. (1995). Midwinters, end
games, and body parts: a classification of part-whole-
relations. In International Journal of Human-Computer-
Studies, 43(5), 865-889

Guarino, N., Pribbenow, S., Vieu, L. (1996). Modeling
parts and wholes. In Data & Knowledge Engineering,
20(3), 257-258

Kisak, P. F. (2015). Categories of The Thought Process.
North Charleston, South Carolina (USA): CreateSpace
Independent Publishing Platform

L’Heureuy, J., Boisvert, D., Cohen, R., and Sanghera, K.
(2012). IT Problem Solving: An Implementation of
Computational Thinking in Information Technology. In
Proceedings of the 13" Annual Conference on
Information Technology Education. Calgary, Alberta,
Canada: ACM, 183-188

National Research Council (2010). Report of a Workshop
on the Scope and Nature of Computational Thinking.
Washington D.C.: The National Academic Press

Pancratz, N. and Diethelm, I. (2018). Including Part-
Whole-Thinking in a Girls’ Engineering Course through
the Use of littleBits. In IEEE Global Engineering
Education Conference (EDUCON).

Presseisen, B. Z. (1991). Thinking skills: Meanings and
models revisited. In Arthur L. Costa, editor, Developing
Minds, Volume 1, Alexandria, Virginia: Association for
Supervision and Curriculum Development, 56-62

Rao, K. (2005). Infusing Critical Thinking Skills into
Content of Al Course. SIGCSE Bull., 37(3), 173-177

Rosch, E. (1978). Principles of categorization. In Rosch,
Eleanor and Lloyd, Barbara B. (Eds.), Cognition and
Categorisation, 27-48. Lawrence Erbaum Associates,
Hillsdale, New Jersey, 1978.

Selby, C. C. (2015). Relationships: computational
thinking, pedagogy of programming, and Bloom'’s
taxonomy. In Proceedings of the Workshop in Primary
and Secondary Computing Education (WiPSCE ’15).
New York, NY: ACM, 80-87

Shute, V. J., Sun, C., and Asbell-Clarke, J. (2017).
Demystifying computational thinking. In Educational
Research Review, 22, 142-158

Tversky, B. and Hemenway, K. (1984). Objects, parts, and
categories. In Journal of Experimental Psychology:
General, 113, 169-193. American Psychological
Association, Inc., Jun 1984.

Tversky, B., Zacks, J. M., and Hard, B. M. (2008). The
structure of experience. In T. F. Shipley and J. M. Zacks
(Eds.), Oxford series in visual cognition: Vol. 4.
Understanding events: From perception to action, 436—
464

Wing, J. M. (2006). Computational Thinking. In
Communications of the ACM, March 2006, 49 (3), 33-35

Wing, J. M. (2008). Computational thinking and thinking
about computing. In Philosophical Transactions of the
Royal Society A, 2008, 366, 3717-3725

Wing, J. M. (2010). Computational Thinking: What and
Why? Link Magazine, 2010

100

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

£1%

RSN TR 2

qT |\> t’a-ldr:'f'—" 92)“.4"#5‘

* /,—b&%" » e o FSEE 0 R b Fdois”
Bode * TGy PHE
shuhsienhuang@gmail.com, a91081469@gmail.com, quill4749@gmail.com, cristal8505054@gmail.com,
*juling@mail.nutn.edu.tw

&
%}%?iﬁl‘g Poik = & mﬁi;};tyii Z A STEM # v ehjad ©
‘éiﬁ%?%kﬁo A #-STEM &K 738 % 4
&% & Arduino k3% & ff’rfk]Ijz»%y?q ZEE R s
Vied o Y FE ’Fr ZEL R ,..a‘_mﬁ_k%ﬁ_;\: N
WfrA- g gy 3@@ ﬁﬁﬁ“@wmmmkﬁ
”37“ R ET L 5% Arduino it (7 BR REEE £
/@’* LATREALE R AR BB Y EH Y B A
SRR SR ERAS S CE T RS
Gebprg > N EEY FAFLY I REE AT F -
N R T
e N T LY A AR T T
4 RASETER RN hE s

MaEF
STEM ; Arduino sy #1% 5 5 L ; s %
HEER]

EE L

1. 34 &0 th
EE L i v %dSEMﬁ K?ﬁ(ﬁ?%~£

e »2016) - STEM %~
BAER R % B3 f2 AR R e 4

[

o B4 ¥ 5 B ¥ STEM

%?ﬁ AL KT IR Y A2 PR E g
L4 5 B4 7 EE G ows L HfRAR SRS
BEFEMEY > N2 AR ERTAFELZT* ThoD
\3

& (Huang, Tseng & Shih, 2017) - STEM &€ gLy% 4
A TEA LA R EE o BAFLILG BRI
fRAR XL 4 S AIRTR A > 22 F 4 B dp 45T
#HA o STEM 2 & &7 el ofp &8 & > 4 B4 plafl
%ﬁ%iﬁé LTS R E A g AR A

=]i‘aﬁgﬂl B P E A AT U E s
BiF %ﬁd BN EY B :j;ﬁjr}glﬁxp\ O 4
Vs BB 2 B3 f‘h/f_xg R TR Y
%’%Eﬁﬁ@aﬁ§”*f%o”ﬁ PR AR g Y
B L LA g A ARERRY K
2 EF R LB R F R L Y L d
(Lin, Huang, Shih, Covaci, & Ghinea, 2017) - i< & %
m#pﬁg’j‘*?“ ¢ frd & § ’%“#B"Lﬁk‘#m
frrl e E kg L B hE LR TP g
E i I g gﬁqg%éﬁ,—‘f‘f}&f{ﬁ%é’i@
BraEd o unt g nEE L e Jfd AN R
pE A 0 BT A AR > %2 Aok Y T BRE
7%~ STEM R 2 EH L > fb » 20k 11 2 Fif on
B0 BEGREF ’*E%‘?“j"% R A AR
7422 = mBlock i % Arduino > '/i%ﬁ‘—%)ﬁ?’—’* At
ERERLT % ¥ oA \=\:"i;7 ¥R 5> i;%"’ ’T""f‘—"q_ ezl

(3T

’

o

Ao FRLEY BN iEir2 STEMKHE > #-F5 Lagp
R N S I i ot A R

fr’f—\‘ ob s) Ebgﬂ EB,\':! E’_mnh’i °

2. = peaEd
2.1.2%4¢ ;Y & ¥ (Game-Based Learning)

SRR Y e B Y Aok AR LR NEY ¥
EEEN Y AR ER R 2 T A 0 AN Y &
P IR fod frenif A o 2 BB TR R
P+ (Prensky, 2003)

B Y AR E YR LRt - 0
EFYEARY B A RO R T ARIRET 0 11 E
érﬁ°m*ﬁ’” EIE- BRI (F
oF 5 1996) o fidiRePEIRT o A B A 2
W ITAEM G~ ARE B L SR HE R
%:‘jﬁ,ﬂ‘ﬁ’fmw' F.,)g,o,g%;‘g?a:);
«gnéé‘f‘* LEVEMRY AA LG B3 E4 R
’f‘m“;‘@@ﬁ” '“W“j‘miiﬁlé*%f"ll%p R
AR Rt R AR i 2 h R 2 KBRS -
Johnson {= Johnson (1991) 3 7 & st fims 3% 41 -

BER D bHr L R Y FF TS RS
LR B Y NRAE . Tl AN FERLSEHFR

BT g AR] AR B S kB R R
YA RBREOF B LR BY SRR
ST ﬁ%iﬁﬁ$’azﬁﬂ%wmﬁ%,

GHEHTERT BFHELT R E - AR E

fﬁ ESRGIEIE - s E G {}}t%*”"?{%ﬁ,fﬂﬁv P g
428 4 B ¥ B 4% o Johnson 4 Johnson (1987) # 3R -
””1'4}1 m?"; g*u 5%(1/,_! m,r%’# L eh3 Nz A .
d T ART Y ORIV R FE L OEY
B4 -

2.2.STEM 5

STEM% v &7 = BEF > » w54 (Science)

(Technology) ~ 1 4% (Engineering) % # %
(Mathematics) -~ B:f 5 B B ALfE -3¢ ~ 45 % 8 5
BY e 2B HENE REAfESLE > NF
ﬁﬁﬁ{mﬂ%”k°$EMksﬁm#ﬂrk ik
1A S EE S on o f3Ap ¥ A B it
EEY PEFHEIRBEAEFE a2 FITHE AR
PR DR AL 0 Tl B ARRR P PR o

2.3.iF k' & % (Computer Thinking)
iF 5 L& (Computer Thinking) £ - f&4 47 4 > &
LWAREHE DL LB FFd wF LT

(Mathematlcal Thinking) X #3054 > @

101

8 eAr

’

e #i7 (Wing,

5 AR AR 2 o HAF R 4T i
TRER AT CFRT AR o AEE LAY
nggﬁgaﬁ,%ﬁﬁﬁwﬁﬁﬂ$$%ﬁ
BRI A L BTN IR o S R AR endp 2
R BE R DI LA E R IA
DR BRADF DS F e B A AR
Hafe A P g B ReR AR e n B Y f2NES
{ﬂﬁ-w‘lf@” S ”ﬁ

T e
e

iw}; -

gHREE Y B L T fEAR

o

@ ﬁﬁwk%p

‘;»#Bﬁ%‘??l‘%& ﬁrf‘*«‘?“v’mii g Bb
J%}/L)‘f'/\“’h’f,@w A B ARIELEN A L A
)i o AFAFEH ‘Ektlﬁé‘_ﬁﬁ%STEM‘}’t??é
LH 0 F ”igﬁcé?gdﬂ"ﬁ“%\ﬁ A-BRIRTE G
TEREE RN S 8L
—“zmﬁﬂsﬁ [EE AR 3iﬁm§g:u
S 4o

=
5

(\x. -u\\: 5,&

e
Ay o T

i

B3
(B 4 % S I W -

e PR
o wi g}«mw

2=
3

AR R g Android % st o Android KRN EEY f"L
SE o W EEY Ap FRF WY
iFF ’?r\k?‘—ﬁ? Bk b AT ey ’—jE':,,‘ ﬁifﬁ’f#‘—krﬁ] l

==—— ARDUINO

"@ mBloc;{

‘]

FI15 s 53

$# e MIT #7B % e App Inventor 2k 3* #3558 2 B * 4%
U HM R E 7 2SR 425N Arduino #; R T R
B A ABLETS N SR Ee kSl
FERL o R P F T AREE Y o i e AR5t gk 0F
ﬁﬂw%”ﬁ@FﬁWuarfwaﬁmﬁﬂ’%&é
= fe B AR AR o

P A i Tﬁr?ﬁi R -MERLIEY JFI‘::,:};‘JP'J
PHRERSFEFEEY ARV R
5 N ésﬁéf&m" 3
ﬁﬂﬁ?ﬁﬁéﬁﬁ&’ﬂ@ﬁﬂ“d& (Explore)
ﬁﬁ;fi (Explain) rEE > i@ 8% F,Eﬂ'ﬁ*;ﬁ:ﬁm 3L
ERE R LE A > T2 d RSl g
%@’ﬁ”ﬁifaov&%iﬁﬁﬁﬁm“%’n

5

SR Y ERIE Ry R 2 AR
D LT

PEA B L o 2 {8 % Z FEER Jﬂim*’" = (Engineer) £
peat (Enrlch) HREE L AR BREY %*’i’ ‘%ﬁ:}f,‘};}ﬂ

a%@&awﬁmﬁmﬁ&’ﬁd?ﬁﬂﬁ%ﬁi%
s > REY FFLFRANDFEL - 284 £ RE
68 5 AR iy *ﬁm& 7o MAEERENEY)R
GAeR e o F QL gaﬁs.aﬂz;{gu(AR fﬂ;}jig L th
FeRARA S B AR o FI5 AR AT 0 T A 4 ek
b oo IR AR Ar B R R 2 kT B
MAEEFT RS > MM AR AR AR A TR o e
S A pT PPN EFRE > B R FEY
BES b o SREEEY F T R BT R AR E TORRIE
FALE Fﬁ&*‘%im*ﬁf’l U ﬁ}»*ﬁfﬁﬁ“"l%iaﬂt«* E
e 2 I EREY X AN ER R ﬁ\fg%“g—f‘r
= 223 (Evaluation) » §d BB EL AR X2
Biag y ¥ S @R EF PR > LI F Y $oki i e

5, f%E2%8404
AELRRERE S 20 B 510 5 TR B A
¢m§4’mfloii%$%ﬁﬁﬁ<m§4°iﬂ
ﬂ LB AR BT > %I kRl AR EE R
PR EEFE B F oo FIrES AE
fed ZRIpHILEATEY finE JW*"*@#
PR REE o B kv LD HEY
BAFYFHOENORER > TRI25 p AR
f?:%m%"%e%

AR Y

4&#%%

B2 ponim iz \ R i %RB

KR BEZEY 7 UFR o FTHRAMA (F 2 05
AANER LR F AEB P L BT B afe
\ﬁﬁggPi ﬁ@ﬁ”l%ﬁﬁlba45¢ﬁ’
ATy & P it o FILER SR oA
?ﬂﬁ%%‘%*qﬁ*ﬁ F RAREFR
ng:f;%f ‘Juhm‘%\'§” ST ’"Lrllliafu"“fﬂ?ﬁ“:% 60
kg o e 2t %#El’aévfi‘mﬁ’* BERBER P St
ﬁ*&ﬂg’flﬁﬁié—k?ﬁé‘ d v AEWE Y AT
il’ﬁi%?h??%%’é“ﬁﬁﬂﬁi#%%*mﬁ%
I E’”ﬁﬁg%ssié‘]'iiﬂi/rfnr}i mﬁ,é»fé
?Wéiﬁﬁ’Wd“&AﬁA%&T MR K gt
Cronbach'sa@ =876 > # T} K43 3ROV G R - H &
B F i K4 1-

+
ES
+
o 2

102

2 17%

Brx F fp i fL;J‘”“%}—'-

f M-

:ﬁ}i«|11-gvém ";#;: ’#E
AR E S R “ﬁ fwf_'}:'iﬁ‘]'ﬁﬁﬂifg?%?%%
MR o Ay hELERE s d N ET NE BT 4
7}%{ RGO FABETE TN AETHY &
PIF TR B R O B R o

B

?L" 2 Arduino # 1 - s R4 R YR T A e
L Y BV Fi5d f B AR
W%Wﬁmlﬂ*ﬁﬁﬁﬂwﬁ’@ﬁﬂ
JlARS SR B R ETAR o FE A e
\g}ﬂ HEAE R Y L LA PP
S P e A K

PR AFTARMA FF LR S
,%A F”%&?amﬁéii
AN
k=

P M SD
Lt Edea d A B RN A 4 248 4.25 716
2 EE L e A RNl A A 4.40 .681
M ER L NS A 4.30 .657
LIRS S Sl i N e 4.20 .696
Bptigd i A H T R R R 4.15 671
6.3 5 i B Ay f«kiﬂﬂlﬂ'#’xﬁ 8 AE 3.70 .865
He —kg;ngjﬁlvgb;‘g; f,vﬂﬁpAz«ﬁg_;';;;u'za;-;
Fé“#ﬁﬁmi&—ﬂ LN /r'f“#ﬁ"ér' [A& > R R A
WEH Y ARSE PIFE DA L RAHER AR R AR
lfl“/""’??x%*ﬁfﬁgfi ;‘g;‘lt_/‘éf“ufid m%”" ’
PF AR L AT pE R P kR
*)f, —kmg,yz%,nitj:)%#gy&g,fiﬂ<§4t_/éﬁvaf
g Az
2
2 T

2

g O E;wme@mm
o
!mk

= I Rt

i 4

=)

=

e
=i

¥ m?f 2 AR IE o Bk
-

VL T 3
NI I s T A
{7 Bk il A2 ¢ ’R/?JF] <3
{4 %F el HfEE
SH PR E T RNIES P RE
Poes B ED 4 6 Fdy & eninds o
¥ ¢b o %53 Arduino sz dl4E % & Maker st 4
CERBET R IRAT
Blamd & hs g ap iR > A B Arduino 5
gtb%<¢ﬁ+§}izi;§§:’ |§-¥ '?%Z éfi %‘iﬁdﬁi
zmmmwouwiﬁ“%%mﬂ¢1@

Fmghfﬂkmw*’"@mfﬂ
BE BIEIToHREAREY R4 E T A
bujﬁéé“ﬁﬁw@%?%%ﬁﬁ
T AR LG REFEY SH 7%%«”

3N BL o

]_;]c* /)

SR EB G s e
() e \§§\

2= 8y R
EEN \(.g» 1%

FY o

\?k/b

[
Ak 3 F—‘-

¥ TR S

=

T

(P w3 =2
*ﬁr

T

o«

7

T *ﬂ
M- =k

)

o
™~
w @y @y

hy =

’
FEaaS

L

. =

t

=

4
A
L=
i

NI

IR

s

B
At .

3
R

o

o

7. Kt

MG KRG B3R 106-2813-C-024-029-U & MOST104-

2628-S024-002-MY4 & 4i/m 73+ 2 8 Wﬁ’ B4 5 gL
4t o
8. p4ep
KT & foe o (2016) -EE Lase | B FR
AT, - #T%E 5 (6) 0 520 -
PG~ 3FT E s Ehedk o (2012) BT AEFERK
TREHN ETEY FAKY - LB RCF Y
€ (TWELF 2012) -2012# 10 * 26 p > 4 3 @ = #
Yy
Fok o HRIRPE . (1996) - ETERY - 2F T &
AP

b
)
#idk (2016) > R * HANIMIFAF /DS G
ﬁ-};&.ﬁ-lb" o ¥ &%gﬁ)m?ﬂiﬂw“‘rglf_‘ﬁ? o

Fletcher, S. (2011) . The impact of the 6E model in a third
grade science classroom (Doctoral dissertation, Bowling
Green State University) .

>

Garcia-Pefalvo, F. J. (2016). What computational thinking
is.
Halverson, E. R., & Sheridan, K. (2014) . The maker

movement in education. Harvard Educational Review, 84
(4) ,495-504.

Huang, S. H., Tseng C. C., & Shih, J. L. (2017) The
Design and Evaluation of a STEM Interdisciplinary Game-
based Learning about the Great Voyage. The 25th
International Conference on Computers in Education. New
Zealand.

Lin, C. H., Huang, S. H., Shih, J. L., Covaci, A., & Ghinea,
G. (2017, July). Game-Based Learning Effectiveness and
Motivation Study between Competitive and Cooperative
Modes. In Advanced Learning Technologies (ICALT),
2017 IEEE 17th International Conference on (pp. 123-
127). IEEE.

Johnson, D. W., & Johnson, R. T. (1987). Learning together
and alone: Cooperative, competitive, and individualistic
learning: Prentice-Hall, Inc.

Johnson, D. W., & Johnson, R. T. (1991). Cooperative
learning and classroom and school climate. Educational
environments: Evaluation, antecedents and consequences,
55-74.

Prensky, M. (2003). Digital game-based
Computers in Entertainment (CIE), 1(1), 21-21.

Wing, J. (2014). Computational thinking benefits society.
40th Anniversary Blog of Social Issues in Computing,
2014.

learning.

103

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Examining a Secondary School Computational Action Curriculum Using App

Inventor and the Internet of Things

Mike TISSENBAUM, Josh SHELDON, Hal ABELSON, Mark SHERMAN
Massachusetts Institute of Technology
miketissenbaum@gmail.com, jsheldon@mit.edu, hal@mit.edu, shermanm@mit.edu

ABSTRACT

This paper outlines a study in which we integrate
computational action — a pedagogical shift in computing
education towards educational designs that focus on students
learning about, and creating with, computation in ways that
connect to their lives and communities — into engineering
and design classes at a large urban high school. This paper
also outlines methodological approaches for understanding
how a computational action curriculum can change students’
perceptions of their computational identities and digital
empowerment.

KEYWORDS
computational action, computational thinking, digital
empowerment, computational identity, mobile computing

1. INTRODUCTION

Current approaches to computational thinking have largely
followed Wing’s (2006) model, which advocated for
teaching computing with a focus on the “fundamentals” of
programming, such as loops, variables, conditionals, data
handling, and parallelism. However, subscribing to only this
approach threatens to decontextualize computing education
from the real-lives of learners, making them feel that it isn’t
something they need to learn, believing they won’t need to
use it in the future — a problem regularly faced by in math
and physics (Williams et al., 2003; Flegg et al., 2012). In
response, our work suggests an alternate framing of
computing education that focuses on computational action.
Computational action posits that young people should learn
about, and create with, computing in ways that provide them
the opportunity to have direct impact in their lives and their
communities (Tissenbaum, Sheldon & Abelson, submitted).

Below we outline the theoretical foundations for
computational action and outline the design of a high school
curriculum that uses computational action to empower
traditionally underrepresented students to use computing to
have an impact in their communities.

2. COMPUTATIONAL ACTION

While approaches such as problem-based learning (Kay et
al., 2000) have attempted to situate computing education in
real-world contexts, they are often generic (e.g., designing
supermarket checkout systems) and fail to connect to
students’ personal interests and needs.

While important for all students, the need to feel their work
has the potential to have an impact in their lives and
communities, is particularly critical for young women and
groups traditionally underrepresented in computing and
engineering (Pinkard et al., 2017). By refocusing computing

education into the real lives of learners we can help them feel
empowered to use computing to effect change and to pursue
career paths that employ computational problem solving.

We have termed this shift toward educational designs that
focus on students learning about, and creating with,
computation in ways that connect to their lives and
communities computational action. To understand how to
design and support learner engaging in computational
action, we suggest it comprises of two key dimensions:
computational identity and digital empowerment
(Tissenbaum et al., 2017). Computational identity is a
person's recognition that they can solve problems using
computing and may have a place in the larger community of
computational problem solvers. Digital empowerment is the
belief that a person can put that identity into action in
meaningful and impactful ways.

3. SUPPORTING COMPUTATIONAL

ACTION WITH MIT APP INVENTOR

Many of the challenges faced when implementing a
computational action curriculum can be attributed to where
the learning takes place — traditional computer labs, which
are far removed from their everyday lives. With the
explosive growth of mobile and ubiquitous computing (e.g.,
the Internet of Things — loT), students now have the
opportunity to take what they build out into the world. This
creates opportunities to contextualize what students can
create, and perhaps more importantly, why they create it
(Lee et al, 2016).

In addition to environments that allow development for
mobile and ubiquitous devices, we also need environments
that allow students to quickly build, test, and deploy their
creations, and that provide powerful abstractions to harness
today’s incredible computing infrastructure with minimal
previous experience. App Inventor is one such environment,
a blocks-based programming language that allows learners
to build fully functional mobile apps. App Inventor employs
a drag-and-drop designer interface that allows users to
layout the front-end (user facing) elements of their apps,
abstracting away much of the complicated code usually
required. App Inventor also allows users to harness a wide
range of software and hardware logic, including creating and
storing data locally or in the cloud, or accessing the phone’s
camera, GPS, or Bluetooth functions. Because it supports
creation of mobile apps, can connect to loT devices, and
allows those new to programming to quickly access these
and other powerful computational features, while not the
only option, we believe App Inventor is particularly well-
suited for supporting computational action-focused learning.

104

mailto:hal@mit.edu
mailto:shermanm@mit.edu

4. DESIGNING A COMPUTATIONAL

ACTION CURRICULUM

To study how a computational action curriculum might
support students as they begin to recognize their capabilities
for making a real impacts in their lives using computation,
we co-designed, with two teachers, (CITE) a 10-week
curriculum for grade-10 students at a large urban American
high school.

The students would come from two classrooms, taught by
our two co-design teachers. The two classrooms were
particularly interesting for a computational action approach.
One class was an engineering design class, and the other a
traditional computing class. In the computing class, the
students would normally learn the basics of JavaScript,
HTML, and a light introduction to Java. Additionally, the
computing class had an extremely diverse population; nearly
half the students were English language learners (ELL). The
teachers recognized that these students traditionally felt
outside of the computing culture (i.e. did not have strong
computational identities) at the school. Thus, the teachers
wanted to revamp the computing class to help these students
develop their computational identities.

In discussions with the teachers, they identified an issue that
was of interest to many of the students at the school: the local
river was polluted and the students wanted to develop
solutions to clean it up. The local river was ideal context for
supporting students to engage in computational action and
for them to engage in digital empowerment.

To situate students’ projects in authentic contexts, the
engineering design class developed 10T approaches for
capturing and exploring river data. The engineering students
then became the “clients” or partners of the computing class,
presenting their designs and asking the computing students
to develop apps that could work with and enhance their
designs. To facilitate the design process, we adapted the
Stanford D-School’s design process. We also developed a
set of design documents to help the students break down
(decompose) their designs into more manageable sub-
components. The paired groups met once a week in feedback
sessions to coordinate and refine their designs. The
curriculum will culminate with the students presenting their
work at an annual work fair held at the school, which is
attended by students, administrators and city officials.

In order to understand changes in students computational
identities, digital empowerment, and computational problem
solving skills over the course of the curriculum, we adapted
several measures based on our own prior work, and other
established identity measures. To understand changes in
students computational identity and digital empowerment,
we are using a combination of an adaptation Snow et al.’s
(2017) validated multiple choice tool for measuring changes
in students’ CT perspectives, and open-ended reflective
statements that previous research (Authors, submitted) has
shown to reveal important changes in students perceptions
of their ability to use computing to solve real world

problems. Using a combination of field notes, classroom
observations, and regular individual interviews and focus
groups throughout the intervention, we are developing rich
case studies to reveal how students identities changed over
time.

5. RESULTS AND DISCUSSION

As this work is currently underway, this poster will report
on our early findings and will aim to engage visitors on
critical discussions around the role of computational action
as a new framing for computing education. We believe this
work represents an important shift in what the goals of
computing education can be and how we motivate students
to be the empowered computational creators of the future.

6. REFERENCES

Flegg, J., Mallet, D., & Lupton, M. (2012). Students'
perceptions of the relevance of mathematics in
engineering. Intl. Journal of Mathematical Education in
Science and Technology, 43(6), 717-732.

Lee, C. H., & Soep, E. (2016). None But Ourselves Can Free
Our Minds: Critical Computational Literacy as a
Pedagogy of Resistance. Equity & Excellence in
Education, 49(4), 480-492.

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O.,
Kingston, J. H., & Crawford, K. (2000). Problem-based
learning for foundation computer science courses.
Computer Science Education, 10(2).

Pinkard, N., Erete, S., Martin, C. K., & McKinney de
Royston, M. (2017). Digital Youth Divas: Exploring
Narrative-Driven Curriculum to Spark Middle School
Girls’ Interest in Computational Activities. Journal of the
Learning Sciences, (just-accepted).

Snow, E., Shear, L., Rutstein, D., Wang, H., Iwatani, E., Xu,
Y., Basu, S., Tate, C. (September, 2017). CoolThink@JC
Evaluation: Baseline Report. Menlo Park, CA: SRI
International.

Tissenbaum, M., Sheldon, J. & Abelson, H.
(Submitted). From Computational Thinking to
Computational Action. Communications of the ACM.

Tissenbaum, M., Sheldon, J., Soep, L., Lee, C.H. Lao, N.
(2017). Critical computational empowerment: Engaging
youth as shapers of the digital future. Proceedings fo the
IEEE Global Engineering

Education Conference, Athens Greece, April, 1705-
1708,Weintrop, D., & Wilensky, U. (2015). To block or
not to block, that is the question. Proceedings of the 14th
International Conference on Interaction Design and
Children - IDC '15.

Williams, C., Stanisstreet, M., Spall, K., Boyes, E., &
Dickson, D. (2003). Why aren't secondary students
interested in physics? Physics Education, 38(4), 324.

Wing, J. M. (2006). Computational
Communications of the ACM, 49(3), 33-35

thinking.

105

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking and
Special Education Needs

106

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

The Application of Minecraft in Education for Children with Autism

in Special Schools

Wen-wen MU, Kuen-fung SIN”
The Education University of Hong Kong, Hong Kong
wenwenmu@s.eduhk.hk, kfsin@eduhk.hk

ABSTRACT

This paper aims at identifying the use, benefits and
challenges of integrating Minecraft in teaching students with
autism. Classroom observations, students-created manifests
and interviews were conducted in two Chinese-speaking
special schools in Hong Kong. It is concluded that Minecraft
does have positive impact on how children with ASD learn.
Students were more engaged in class, showed improved
collaboration and communications skills, developed deeper
relationship with their classmates and the teachers, and were
more motivated to learn. Some potential challenges and
concerns are discussed.

KEYWORDS
Minecraft, Autism, Special school

1. INTRODUCTION

Autism spectrum disorder (ASD) is defined by two core
features that are restricted and repetitive behavior and
interest; and impairment in social interaction. Both can
negatively affect the academic performance, well-being and
social engagement. Researchers have acknowledged that the
simulation techniques used in computer/video games would
provide significant results for motivation and
comprehension, promote engagement and active learning for
students including those with special learning needs.
(Habgood, Ainsworth & Benford, 2005; Mohammadi &
Fallah, 2007; Ke & Abras, 2013). Meanwhile, computer and
playing video games are always the favorite learning
activities for children with ASD (Eversole, 2016). To
accommodate different learning styles and to maximize the
learning effect for students with ASD, educators examine
the appropriate teaching strategies and content delivery
mechanisms that meet mostly the individual preferences of
ASD.

Minecraft and its use in education

Minecraft is a “Three-dimensional Lego-like environment in
which the user can build and interact with a virtual world”
(Bos, Wilder, Cook & O’Donnell, 2014, p. 56). According
to Zedda-Sampson (2013), about 40% of kids with ages 8 to
10 play Minecraft. The graphics of Minecraft are
intentionally pixelated and blocky, which make them
appealing to children, especially those with ASD (Kulman,
2015).

Minecraft has currently emerged as a tool that has clear
educational values (Mark, 2015). Many educational
activities based on Minecraft have been developed to teach
students in subjects including History, Language, Arts,
Science, Math, Engineering, Architecture, and Computer
coding (Overby & Jones, 2015). Minecraft sparks children’s

creativity and imagination, and enhances other important
skills such as self-awareness, self-control, flexible thinking,
and planning & organization (Kulman, 2015). Hollett and
Ehret (2015) stressed that Minecraft helps children express
and control their emotions, build strong social ties, enhance
peer engagement and promote teamwork. Ringland (2016)
stated that autistic population may possibly practice a wide
variety of social skills in Minecraft. Furthermore, Minecraft
may be considered as a kind of Computer Mediated
Communication. For example, within Minecraft, users may
communicate with each other by sending text through a chat
window or talking with the help of modified accessories.
The Minecraft space links tightly to other social platforms
such as YouTube, discussion forums, and Wiki software
(Pellicone & Ahn, 2014), that helps the social
communication among individuals with ASD. They need not
to face with the difficulties associated with face-to-face
social interaction that requires nonverbal social cues such as
eye contact, facial expression, and gestures (Mazurek,
Engelhardt & Clark, 2015).

Efforts have been made to promote the use of Minecraft in
schools in Hong Kong. In 2014, over 550 local school
primary and secondary schools participated in a contest
organized by Hong Kong Cyberport. The City University of
Hong Kong completed a case-study to explore the teaching
and learning of Chinese History in Minecraft in Hong Kong
secondary schools (Zhu, 2017).

2. OBJECTIVES OF THE STUDY

In Hong Kong, there are 61 aided special schools with about
7,800 students with special educational needs. 41 of these
schools are for students with intellectual disabilities
classified into mild, mild to moderate, moderate and severe
grades (Education Bureau, 2017). While Minecraft is
popularly used in teaching and learning in mainstreaming
schools, there is limited research on how Minecraft is used
for students in special schools. It is worthwhile to study the
use and effectiveness of Minecraft, particularly the
strategies, benefits and challenges in teaching students with
ASD in special schools.

3. METHOD

As a pilot study, two teachers, one principal and 15 students
with ASD from two local special schools for students with
mild intellectual disabilities in Hong Kong were invited in
this study. All students were male, attending classes from
grade three to grade seven.

A semi-structured interview was conducted for examining
the use of Minecraft in classroom teaching. The guidelines
were prepared with reference to the past work on exploring
the use of Minecraft in education (Smeaton, 2012). It aimed

107

at examining how teachers used the game and incorporating
it into their existing teaching practices. Furthermore, more
data was collected from the classroom observations, weekly
diary for after-class Minecraft interest club and students’
“digital footprints”. The student-created work in Minecraft
and student-managed Minecraft servers were tracked by
using the screen captures and recorded videos. The data
source from the interview data, observation notes, student-
created Minecraft works helped the thematic analysis.

4. FINDINGS

4.1. The use of Minecraft in special schools

Minecraft were used in teaching different subjects such as
Visual Arts, Computer, Language, Mathematics and Social
Study. Teachers reported topics with architectural and
storytelling elements were particularly suitable for using
Minecraft. Topics with animals, space and history were also
reported.

The schools supported the use of Minecraft by setting up a
private Minecraft server in school with restricted access.
Only students who have been given the permission can log
in the server to play. Since no one else can access the server,
students will feel free and safe to socialize and work with
each other. Two servers respectively for the new users and
experienced players were set up. Students who were new to
Minecraft used the server for beginners to play and
socialized with their fellow classmates.

In addition to using Minecraft in classroom teaching,
teachers also organized the after-school interest club and
workshops. A teacher organized a Minecraft workshop with
the theme "Smart Home" in the summer vacation. A group
of about 6 students with ASD worked together to design and
build a smart home for the elderly inside Minecraft.

The Principal attempted to explore the effectiveness of using
Minecraft in his school and highly encouraged his teachers
to use the tool in the classroom. He started an after-school
interest group that met on every Friday. Students worked
together to learn Chinese, Mathematics and Social Subjects
through Minecraft under the teacher guidance.

Minecraft provided an interesting way for students to learn
the 3-dimensional modelling. With some software tools (e.g.
‘Mineways’, a free and open-source program for exporting
Minecraft models for 3D printing), students were able to
export what they had built in Minecraft for 3D printing.

It was observed that autistic children often had difficulty in
expressing their thoughts in words. Minecraft became a
language for them to communicate with others. When the
students were building in Minecraft, they were acting out a
story in their own mind. And they might tell that story by
using screenshots of different Minecraft scenes.

4.2. Benefits

Enhancing collaboration and teamwork

Working with other people is probably one of the most
challenging aspects of school life for students with ASD.
Effective teamwork requires the students to learn skills such
as negotiating, active listening, following directions and
accepting criticism. Playing in Minecraft offers a lot of
opportunities to develop these skills. Large-scale creation in

Minecraft can seldom be built by a single student. It requires
a team of at least 4-6 students, working seamlessly together
to complete.

“Students choose their own role based on their own
expertise and interest. For example, some students are good
at building railways, some are good at building Redstone
devices and some are good at crafting building”.

When working together in Minecraft, students have many
opportunities to discuss with members of their own team or
other teams. Building is a truly collaborative effort.

“...during construction, when one student found that he did
not have enough space, he would proactively propose to
another student and ask for more space"

Even when they are not working together in the same
project, the students are still playing in the same virtual
environment, trying to ignore distractions and avoid
conflicts from the outside world. In school, teachers can
teach the students how to work together effectively by
planning, building, and presenting a Minecraft project
together as a group.

Improving social interaction and developing relationship
Lack of social communication and interaction is a core
deficit of students with ASD, and as a result, most of them
have difficulties in developing and maintaining relationship
with other people. When working together on a Minecraft
project, the students must learn to express their needs and
opinions, make suggestion, ask for help and negotiate with
others.

“A parent shared with me that his child never called his
classmates at home. But now when he faced with a problem
in completing a task in Minecraft, he would take the
initiative to call his classmates for help.”

Students are willing to talk and share their interest in
Minecraft with peers and teachers. A common interest helps
develop new friendship and deepen the relationship among
teachers and students.

“When they see their classmates building something
interesting, they will go over and ask them how they did it.
There is a strong motivation to interact with each other.”

“There are WhatsApp groups between me and the students,
as well as among the students themselves. And they regularly
exchange information about Minecraft. Many of them would
report on their tasks and share their creations in Minecraft
with me. | am getting closer to my students. ”

Minecraft is a social game among all the players. The desire
of completing and sharing their work in Minecraft
encourages students with ASD to practice communication
and social skills. The active social interaction and develop
deeper relationship with their classmates.

Becoming active learners

Learning through Minecraft encourages the students to be
active learners and to take full responsibility of their own
learning. They have the freedom to choose what to learn and
how they are going to learn it.

“They will go online (for example, YouTube) to find
solutions. Even if the video is not in Chinese, they will find a

108

way to understand the materials. They are learning how to
learn independently which is an important 21% century
skill. ”

“E-learning is not just a one-way instruction from the
teacher. Instead, students find the answers to their questions
by interacting with others, and develop the spirit of inquiry
along the way. ”

When creating stories in Minecraft, students must find their
own contents that made up the story. In the process of
creation, the listening, speaking, writing and logical thinking
skills of the students are greatly enhanced.

4.3. Issues and challenges

Online addiction and safety

The online addiction and safety are the concerns. It was
noted that teachers restricted the playing time of Minecraft
to prevent addiction. Teacher A set the school Minecraft
servers to be available from 7 am to 11 pm. Teacher B and
the Principal only allowed their students to use Minecraft in
school under teacher supervision.

Teachers needed to prevent cyber bullying before it
happened. Teacher A decided to set up her own private
server to protect the students from potential harassment by
strangers. Teachers and students jointly setup playing rules,
such forbidding the use of “TNT”, killing of animals, or
bullying each other, etc.

Detailed instructional design

It is not an easy task integrate Minecraft in classroom
learning. Teachers reported to spend a lot of time on
instructional design and material preparation. This was
especially true in the beginning when the teachers did not
have a lot of experience in using Minecraft.

“I once conducted a project of building a “smart school” in
Minecraft. Firstly, | need to guide the students to discuss
what should be built and where, what information they need
to find out, before they can actually build them.”

In projects that require cooperation among the students, the
teacher had to help the discussion, instead of leaving the
students on their own. Some teachers also used thinking
tools such as mind map to help students discuss the project
approach and work allocation. Teachers also needed to have
good time management skills and kept reminding the
students of the time management.

“They need to think about who the protagonist is, what time

the story happens, etc. | need to give them enough
instructions or they will get stuck in some parts of the story
and neglect the rest.”

When recreating a story in Minecraft based on the story "pig
nose elephant”, the students had to fully understand the story
and then answer some important questions beforehand.

“When a chicken suddenly appeared in the Minecraft virtual
world, the students all got excited and joked to burn the
chicken. | immediately explained why we should not do
that.”

Sometimes the students' reaction was observed to be fierce
and brutal. Educators must seize the opportunity to tell the
students how they should properly behave. These are all very

challenging tasks that require a lot of experience and
wisdom from the teachers.

Home-school cooperation

Parents are the important stakeholders in learning and
understanding Minecraft with their children. Many parents
worried about their children getting addicted to Minecraft.
But some parents were willing to explore how to play the
game with their children. It is very important to get the
understanding and support from the parents.

“Whether you let them play or not, they will play. You don't
know what they're doing if you don't get actively involved.
Parents will see that the child is not just playing game,
he/she is doing homework assigned by the teachers. Showing
the products made by the students to their parents helps. ”

As teachers came to understand the benefits of using
Minecraft for learning, they began to share this information
with parents. Teachers and parents worked together to
determine the proper use of Minecraft. Eventually, parents
understood that game-based learning under proper guidance
really helped their children learn.

5. DISCUSSION AND CONCLUSION

Using Minecraft as an alternative educational tool
Minecraft has been used as the main, optional or
supplementary educational tool in many mainstream schools
(Petrov, 2014). One major difference in the approach taken
by the special schools is the extent to which Minecraft is
being used. In these schools, Minecraft is more likely to be
used as an alternative teaching tool for students with special
needs to express their understanding because these students
vary a lot in both their capability and their interests. This is
consistent with the philosophy that special education should
respect individual differences and emphasize individualized
learning.

In the case study, the use of Minecraft is not mandated to the
whole class. Both paper-pencil worksheets and other digital
tools are also available to students. Students with ASD,
however, prefer to use Minecraft over other means. But even
for those who have chosen to use Minecraft, they are using
it in many ways. Students with lower communication skills
may choose to use just screen captures and voice recording
to present their work.

Student learning and teacher competency

The two school cases started their Minecraft journey very
differently but they achieved the positive outcome in
supporting the learning of students with ASD. Teachers
reported that they recognized how their students reacted to
the use of Minecraft and the impact that Minecraft had on
behavior, motivation and learning. They used Minecraft for
the benefit of the students.

While playing Minecraft, the students are often the experts.
Learning with and from students allows the students to be
the center of learning. Previous research and experience
using Game Based Learning have shown how useful a Game
Based Learning approach can be in creating student-
centered learning environment (Motschnig-Pitrik &
Holzinger, 2002). Teachers who use Minecraft in their
schools must maintain a student-guided mentality for the

109

best outcome (Petrov, 2014). In this research, the teachers
may not be the experts in using the Minecraft but they allow
students the full autonomy in managing the school Minecraft
server and structuring their learning experience. With this
approach, students develop self-learning skills, take more
responsibility for their own learning and have more freedom
to choose what they want to take.

Even though students can learn by themselves, teachers play
an important role in facilitating and supporting the learning
of the students. Technology provides many learning
opportunities that are both engaging and motivating to the
students. However, it will work effectively if teachers
integrate it appropriately in the course design.

Some stated that teachers must be familiar with the contents
of the video games so that they can use them to support
teaching (Barbour, Evans & Toker, 2009). On the other
hand, Smeaton (2014) argued that instruction experience is
an even more important factor because experienced teachers
would be able to deliver knowledge more effectively.
Students with ASD demonstrated grat motivation when
using Minecraft to learn, but they also required strict
behavior management from the teacher. One of the reasons
why computer games such as Minecraft fails as a teaching
tool could be due to the lack of preparation and
understanding by the teacher. The experience of the teacher
is a crucial factor. According to the research findings, the
familiarity with Minecraft is not a decisive factor. The
caring of the students and the design of the learning activities
are much more important than the teacher’s personal
interests and skills in the game.

Conclusion

It was concluded that the use of Minecraft does help the
learning of students with ASD. The result associated with
this practice was positive. Students were more engaged in
class, showed improved collaboration and communications
skills, developed deeper relationship with their classmates
and the teachers, and were more motivated to learn. Despite
the benefits of using Minecraft, some major challenges and
issues were also identified. The cases presented in this study
suggest that Minecraft can be a valuable educational tool in
special school and inspire more evidence-based practice and
further research.

6. REFERENCES

Abrams, S. S. (2017). Emotionally crafted experiences:
Layering literacies in Minecraft. Reading Teacher, 70(4),
501-506.

Anderson, C. (2017). Minecraft in the classroom. The
Medium (Online), 0_1-5.

Barbour, M., Evans, M. & Toker, S. (2009). Making sense
of video games: Pre-service teachers struggle with this
new medium. In I. Gibson, R. Weber, K. McFerrin, R.
Carlsen & D. Willis (Eds.), Proceedings of SITE 2009--
Society for Information Technology & Teacher Education
International Conference (pp. 1367-1372). Charleston,
SC, USA.

Callaghan, N. (2016). Investigating the role of Minecraft in
educational learning environments. Educational Media
International, 53(4), 244-260.

Connolly, T. M., Stansfield, M., & Hainey, T. (2011). An
alternate reality game for language learning: ARGuing
for multilingual motivation. Computers & Education,
57(1), 1389-1415.

Cosh, J. (2015). Minecraft's massive landscape for
learning. Primary Teacher Update, 2015(43), 20-22.

Dodgson, D. (2017). Digging deeper: Learning and re-
learning with student and teacher Minecraft communities.
Tesl-Ej, 20(4), EJ, 2017, Vol.20(4).

Ellison, T. L., & Evans, J. N. (2016). "Minecraft," teachers,
parents, and learning: What they need to know and
understand. School Community Journal, 26(2), 25-43.

Eversole, M., Collins, D. M., Karmarkar, A., Colton, L.,
Quinn, J. P., & Karsbaek, R., et al. (2016). Leisure
activity enjoyment of children with autism spectrum
disorders. Journal of Autism and Developmental
Disorders, 46(1), 10-20.

Gallagher, C., Asselstine, S., & Bloom, D. (2015).
Minecraft in the classroom: Ideas, inspiration, and
student projects for teachers Berkeley, CA : Peachpit
Press.

Habgood, M. P. J., Ainsworth, S. E., & Benford, S. (2005).
Endogenous fantasy and learning in digital games.
Simulation & Gaming, 36(4), 483-498.

Hollett, T., & Ehret, C. (2015). “Bean’s world”: (mine)
crafting affective atmospheres of gameplay, learning, and
care in a children’s hospital. New Media & Society,
17(11), 1849-1866.

Holzinger, A., & Renate Motschnig-Pitrik. (2002). Student-
centered teaching meets new media: Concept and case
study. Educational Technology & Society, 5(4), 160-172.

Ke, F., & Abras, T. (2013). Games for engaged learning of
middle school children with special learning needs.
British Journal of Educational Technology, 44(2), 225-
242,

Kuhn, J., & Stevens, V. (2017). Participatory culture as
professional development: Preparing teachers to use
Minecraft in the classroom. TESOL Journal, 8(4), 753-
767.

Overby, A., & Jones, B. L. (2015). Virtual LEGOs:
Incorporating Minecraft into the Art education
curriculum. Art Education, 68(1), 21-27.

Pellicone, A., & Ahn, J. (2014). Construction and
community: Investigating interaction in a Minecraft
affinity space. In Proceedings of the Tenth Conference
for Games + Learning + Society - GLS 2014 Madison,
WI: ETC Press.

Perez, S. (2016). Microsoft to launch "Minecraft education
edition" for classrooms this summer, following
acquisition of Learning Game. New York:

Preston, S. D. (2008). Putting the subjective back into
intersubjective: The importance of person-specific,
distributed, neural representations in perception-action
mechanisms. Behavioral and Brain Sciences, 31(1), 36-
37.

Ringland, K.E., Wolf, C.T. & Hayes, G.R. “Making ‘Safe’:
Community-centered practices in a virtual world

110

dedicated to children with Autism”. Proceedings of the
2015 ACM International Conference on Computer
Supported Collaborative Work, ACM (2015).

Ringland, K.E., Wolf. C.T., Faucett. H., Dombrowskiand.
L.& Hayes, G.R. (2016). “Will I always be not social?”:
Re-conceptualizing sociality in the context of a Minecraft
community for Autism. 2016 CHI Conference on Human
Factors in Computing Systems: 1256-1269.ACM New
York, NY, USA.

Ruotsalainen, H. (. (2016). Designing educational game
experiences for k12 students in context of informal
minecraft club University of Oulu.

Ruzic-Baf, M., Strnak, H., & Debeljuh, A. (2016). Online
video games and young people. International Journal of
Research in Education and Science, 2(1), 94-103.

Steinbeiss, G. (2017). Minecraft as a learning and teaching
tool: Designing integrated game experiences for formal
and informal learning activities University of Oulu.

Ting, Y. (2015). Tapping into students' digital literacy and
designing negotiated learning to promote learner
autonomy. The Internet and Higher Education, 26, 25-32.

Tromba, P. (2013). Build engagement and knowledge one
block at a time with Minecraft. Learning & Leading with
Technology, 40(8), 20-23.

Wu, H. (2016). Video game prosumers: Case study of a
Minecraft affinity space. Visual Arts Research, 42(1), 22-
3.

Wu, M. (2015). In Dickson P., Lin C., Mishra P. and Ratan
R. (Eds.), Teachers' experience, attitudes, self-efficacy
and perceived barriers to the use of digital game-based
learning: A survey study through the lens of a typology of
educational digital games ProQuest Dissertations
Publishing.

Zedda-Sampson, L. (2013). Is U a word or do you spell it
with a Z? English spelling in Australian schools - are we
getting it write? Literacy Learning: The Middle Years,
21(2), 4

111

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Aﬁ"ﬁ"

Ao,

BER&'

~

| EEKT F

SUCL IR TS

REIE S e B AR

BRIk EY

S

EERE TR it il
PR R B RT TR R
chenhueiliao@gmail.com > kbc@mail.ntcu.edu.tw » minbai0926@gmail.com - seashellpeach@gmail.com

K
AFEY q bR T EREMAFT R EY RmE S
BITEE S YL ﬁv’iﬁﬁ”rzﬁgﬂ@r?{.ﬁﬁ@ﬂ

(Explicit Instruction) en# 5 8 &4 B & 4 e v
B4 i ET Rk (H4e: 28 FE - 2 FLMEFH
) > EMAY T FREMAR T AEFET D
HF# Bl PAPAGO i 5 LA KE 5 » KEF 4 4r
PEFFL L AMATRRF R e c BRI K

%#E} Fﬁg ’F"‘:‘A\; °

MaEs

FHLe By hwm, 2 F4am.

1. =%

Y RLATE ke P ERKT L hER B2 Y
HNEERLET TR UITAPEHRE > blc b RH
Birfel ey F &% FE Y L 2(Wing 0 2006) 0 A #cF
CTAER G G 0 RS Y B e iE Y Y

LRAREYERFOAMERFT NS > THF TP REY
LA E - B A it AR Bak
(Systo & Kwiatkowska, 2016) > & 7 & * & & A @b
EERTEERER . LEE L R FER AR
KT G RN RS T AP R Ap A
Lo T Ay B EART ROV RRT 4K
?—ﬁubﬁﬁmﬂﬁgmﬁﬁg“‘%’”ﬁﬁﬁ

AEN FE L APA e TS R

2. BERLRALPARTHBLIEYL
UREFEFRD AFAKTAABHEY L ROK
g«aafﬁizwvw‘wmp;"ﬂ%@L%
HRRTABPE > BTERL AN RFELEIHRT 2T R
47 (Snodgrass, Israel, & Reese, 2016) - Barefoot(2016)#% !
FORRAR LG LS VAR L] B R ()T
LAafEraa EL oA BAE Y PR
Aoty 4 T T R N IRARY o DlAeA fRE R R A0
T s A LR R
- BE G AR T T kR
@) 57 L §e G BAKT G
FY ~FRERFDRFEE -

3. % ﬁg: 2 3»% AR ?E‘-‘.?ftg

F4 LA AHE ﬂwaﬁég?%ﬁmm@ﬂm
‘&:?{?/p@‘h Bell ~ Witten £2 Fellows(2010)% 3+ % #& 7
hiFEE R FF L T AP F DL o blded E SRR
B4 40 ﬁkﬂmﬁﬁmmﬂm’°§*$ﬁ”&
SR REBRMEY DRFEFE TR R
o pas 3 MiBAezt > 4 Code.org ~ Barefoot ~ ICT

(285 el
F%%Eﬂ m%‘f 3
KA F w4 B

et 4«}

’

in Practice % $:b3m5 KA BT FH L ARKFEH
Br A HPET @ LARF FR R L LT
kg T AR L - 0 LERPERKTFRE LS
iR ST SRR R SR

4. R W PAPAGO $ ¥ i 8+ 2 4 B

AP ALEIREFEN AT ER) BARET E Fen
BEREEF O AFTHNEYREEL A0 @
%”P”§4*¢’%§ﬁﬁ Riflrme d e
Ft AR REFEEFR Y R TS BB Y
R R

W2 A RINEEREAE S 5L A AuniEa
H3 W2 2 82 o kT RES AN FY
IFEE (R E > 2001) o Ft AR RS BlAD B
m%ﬁméﬂﬁmﬁﬁé%’véﬁﬁgtamﬁ
KEFL a2 TR EFLITELEY ¢4

B8 AFE TR %@%@PN%&J%?@@’t
WIH R FS B A F 2 EE BORE ARk
EY@EELAOmE L FE AT A el
FHEE ML c AR OREFEFTHELELL
MPLE B EE LA AL 1o

Israel % & - (2015) %1038 B & ' f ok ic
ﬁ*mwrmﬁﬁﬁﬁﬁmmnmeMMX
RPER L ARF s KRS ORTS FLRE
i??ﬁ‘&ﬁ Kl,,\ ’Lvl]-&r"iaf‘t*"mﬁ";%‘?lﬂ%%
e o AR e MR e TR R
Mg RA T ERER R A D e s w0 E g o
FERMRENEAHET 2 IRFDFHRE > 257
KR E AR bldcd 30 BRREIRRF SN R
HA 58 P EBEVEELAME - T2 5" &
B o B a iR e 0 2PN A Tl Ao P Bl
i -

5, AP 1iE

AFTP W R -ERIPFARTRELDEL LA
TS R %%ﬁi'ﬁpﬁmﬁvﬁﬁw
MR FEOBRE FARE > KFEEFY L TER

{rﬁ““%Jm“’ﬁ§4H*ﬁ§ ﬁ*ﬁ
VHAGFE BEEY R I ERE L1784
iEirE A ehiT RN i’fﬁﬁékﬂ‘u.ﬂi%’%,ﬁﬁ?ﬁﬁ

rEF R

TR R

v

PSR ALGEE T REY DE YRR THFK
B JEF 2 25k 0 BTk ahi B AR

6. ¥

112

%A “Q%]—kmg{%gf_?_lﬂm:

AL§ ¥Ry 2 w4 - 2001 K £ ¥ BaeH
fEp o041 B -;%w$+%o

Barefoot (2016). Activities for pupils with special
educational needs. Retrieved from
http://barefootcas.org.uk/activities/sen/

Bell, T., Arpaci-Dusseau, A., Witten, . and Fellows, M.
(2010). Computer Science Unplugged: Understanding
Computing Through Games and Puzzles. Hubei:
Huazhong University of Science and Technology Press.
(Authored Books).

Israel, M., Pearson, J., Tapia, T., Wherfel, Q., & Reese, G.
(2015). Supporting all learners in school-wide

2 (2001) -
2

computational thinking: A cross case analysis. Computers
& Education, 82, 263-279.

Systo, M. M., & Kwiatkowska, A. B. (2014). Learning
Mathematics supported by computational thinking, In:
Futschek, G., Kynigos, C. (eds.) Constructionism and
Creativity, pp. 258-268. 0 sterreichische Computer
Gesellschaft, Vienna.

Snodgrass, M. R., Israel, M. & Reese, G. (2016).
Instructional supports for students with disabilities in K-5
computing: Findings from a cross-case analysis.
Computers & Education. 100, 1-17.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Z 1L R+ B PAPAGO ¥ M4 H &

BE PR 1. RE4 wHFHEE R
2. EEANLEAATEL > 2450 R

FhLAaME Pt~ B~ iR BN FER

WE ML 1 wypppi5s% et R:EMSLEIOR > "o RIEFEL0R -
2. RPERp Y e TwisE REET 180 AT 4 o
3. ,;;4',«1'54 WA &g] > A FHE A B2 B hE RIEHS v Rt Gt R]
4. Wizt A P BLEZRPERF- LR HiEE 3 k> TP R T

#2388 L g kPl b)(Israel et al., 2015)
RS ORE L E KE#P

Focus instruction on critical content

AT R REFTE L arvi- B4 (blde

T PE SR TR e'%g"k‘)

Sequence skills logically

F SR AL AR A 0 E -

PEERAMAS TLRNEARE -

Provide step-by-step demonstrations RBAFETEFA BT ELLAKEESRRES - # LR S
BEE G Gl R ER 4 o 45 DR R o
Provide immediate affirmative and | 4 £2 9 %2 7S BHELFFE S T A 4o S T4 0pF > XiFw
corrective feedback P N RR RES S DR o
312 Fl¥ B PAPAGO R & /& & # i
E AR Kt wL B | Lama
FFELLT 2 2 s F R #RI(THE Y 3044 | 12
AL ALY 0 B REE S PR Rl S A AR B 7
L7 + f- g s
R R wARE %M' i i
23 7 v 4 X %\lgﬁ'é) 7
EEF R - TAPL krR- BN GRREREFLIT DL ke £y ¥
TH (TR ’5—’** AMpts iz & {Lﬁ?ﬁ?é.,?‘fi °
FEapLRRP e AFE RO T A AT FHA S o EA 3 o
FAZ 2% 0 R iR Flidvmm ?
EFE 2. 7RI Ak éﬁ-ifiﬁr%?fﬁ’-’éé PRI - EoR B A R Y kA B
&35 AEBc Wik 4_ p . .
BE
wi| [" "" a | @am
7 | ¥ ¥ .’h‘
|
FL ¥ R 8RR S 2 Mo+

113

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking
Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking and
Evaluation

114

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Evaluating Computational Thinking in Jupyter Notebook Data Science Projects

Clara SORENSEN, Eni MUSTAFARAJ*
Wellesley College, The United States
csorense@wellesley.edu, emustafaraj@wellesley.edu

ABSTRACT

The interdisciplinary field of data science requires a strong
foundation in computational thinking (CT) concepts and
practices. In this paper, we describe the use of qualitative
and quantitative methods to study data science projects
completed by undergraduate students who are learning data
science but have already learned computer programming.
The projects are stored as Jupyter notebooks: documents that
store code, as well as its output from execution, formatted
text for self-explanations, and graphics. Our analysis of the
notebooks discovers two kinds of student attitudes:
explorers, who work iteratively, and goal accomplishers,
who work incrementally. Despite varying attitudes, we find
that students often fluctuate between the two learner types
depending on their computational goals for a given
notebook. Moreover, when students practice the explorer
approach, they often engage more actively with many CT
skills such as pattern generalization and communication of
results. Finally, we propose ways to utilize these findings to
encourage CT practices in future data science curricula.

KEYWORDS
computational thinking, data science education, Jupyter
notebooks, learner types

1. INTRODUCTION

As we are still debating the theoretical and operational
definition of computational thinking (CT), it is worthwhile
to engage in the question: how can we observe, describe, and
quantify its expression in learners, if at all possible? Such an
exercise has the potential to shed light into the kind of
thought processes in which learners already engage or are
trying to master as they go about solving problems through
computation. Given that learners of different ages and at
different stages in their learning will display different levels
of understanding, we need to study a variety of situations
and groups of learners engaged in computational thinking to
arrive at a more complete picture.

Our focus in this paper is undergraduate students who have
already completed at least two courses in computer science:
an introductory course in Python to learn computational
concepts such as sequencing, loops, and conditionals, and a
second course about data structures in Java, which provides
opportunities to engage in CT practices such as program
design, testing and debugging, and accessing and writing
documentation. After completing these two courses, the
students enrolled in an introductory data science course
taught in Python that utilized Jupyter notebooks? as its
environment for learning and practicing data science.

Data science, with its current focus on large amounts of
automatically captured data, provides a rich context for
observing CT in practice because it offers a wide range of

1 http://jupyter.org

problems that are new and challenging, but also meaningful
to explore—something that motivates learners. Concretely,
in the examples analyzed for this paper, the students were
able to work with a variety of real-world datasets ranging
from their personal email inbox to the web server entry logs
for the courses offered in our computer science department.
Finding answers to questions about these datasets was not
trivial. To be more efficient, students had to learn new data
structures and new operators. There was no established
algorithm for coming to a solution, thus, they needed to be
creative, work incrementally, and iterate often, all practices
inherent to computational thinking.

In this paper, we begin by providing background on Jupyter
notebooks and some previous methods for assessing
computational thinking that were helpful in framing our
work. We then continue to discuss the data and methodology
for our notebook analyses and the variables that we created
from the raw notebooks. We discuss our findings from the
data analysis including our uncovered learner types
(explorer and goal accomplisher) and conclude with a
discussion of how we propose to integrate computational
thinking practices in data science education in the future.

2. BACKGROUND

We shaped our work with both the nature of the Jupyter
notebooks and previous methods to assess computational
thinking in mind. In this section, we provide some historical
background and previous research on both these topics.

2.1. Jupyter notebooks

The choice of a programming language and its integrated
development environment (IDE) impacts what can be taught
and how it can be taught (Pears et al., 2007), especially when
teaching novice learners. The rapid adoption in recent years
of block-based programming environments such as Scratch
and App Inventor for teaching programming is due in part to
their ability to allow learners to focus on what is important—
the computational concepts—while avoiding the struggle
with the syntactical details of the underlying languages (Bau
et al., 2017). Similarly, teaching data science benefits from
environments that allow for frequent data exploration,
incremental problem solving, and easy access to previous
results of analysis. For these reasons, the Jupyter notebook
is a strong candidate for teaching data science at any level of
the curriculum. Furthermore, Jupyter notebooks have
become the environment of choice for many computational
scientists (Kluyver et al., 2016) because they encourage
reproducibility in science, a practice that is important to
foster in students early in their data science endeavors.

The Jupyter notebook traces its roots to the IPython
(interactive Python) extension for the Python programming
language (Pérez and Granger, 2007). From its inception,

115

IPython was designed to augment the Python interactive
shell with features that go beyond the usual read-evaluate-
print loop (REPL), common in most interpreted languages.
The evolution from shell interaction to the notebook (as a
single document that captures all aspects of a programming
session) was inspired by the existence of notebooks for
teaching Mathematics in proprietary software such as
Mathematica and Maple. By making the Jupyter notebook
open-source, web-based, and language-agnostic (i.e., it can
be used with many different programming languages in the
back-end), its community of developers has created a
platform with broad appeal for educators and practitioners
alike. The fact that it is also used by practitioners makes it
appealing to undergraduate students who prefer real-world
development environments (where they learn by doing) to
pedagogical ones (Oblinger, 2004).

2.2. Assessment of CT

For our purposes, we adopt the terminology presented in
Brennan and Resnick (2012), who define computational
thinking as a composition of computational concepts,
practices and perspectives. More specifically, computational
concepts refer to the concepts students engage with when
they program (e.g. iteration and parallelism). Computational
practices refer to the various practices students develop as
they engage with the concepts (e.g. being incremental and
iterative in design). And, lastly, computational perspectives
refer to shifts in perspectives about the world around the
student (e.g. by expressing and connecting their work).

Past research on both measuring and assessing these
computational thinking skills has focused primarily on
developing assessment material for pre-college programs.
Brennan and Resnick’s work specifically, which
concentrated on young students working with Scratch,
described a variety of different assessment approaches
including project content analysis and artifact-based
interviews. Boechler et al. (2012) took a slightly different
approach in that they calculated a variety of metrics as
evidence of CT skill development in Scratch applications.
Specifically, they calculated the number of scripts, number
of blocks, number of variables, number of child scripts, and
the nesting complexity of student Scratch projects. More
recently, Moreno-Leon et al. (2017) obtained quantitative
measurements of seven different CT dimensions in Scratch
projects using a static code analyzer, Dr. Scratch, in order to
cluster projects based on CT complexity. In similar block-
based programming environments, students' CT skills have
been assessed by way of analyzing student programming
actions in their log data (Grover et al., 2017). In this instance,
researchers designed specific programming tasks to draw
out CT skills to make for easier evaluation. Likewise,
Bienkowski et al. (2015) created design patterns for major
CT practices as a way to assess how learners may be
applying such skills as they develop a deeper computational
understanding.

In light of the specific assessment of CT, many
computational thinking researchers have explicitly
emphasized the importance of data and information as a core
CT practice. Barr and Stephenson (2011) include data
collection, data analysis, and data representation as three of
their nine core concepts and capabilities of CT. Further,

communication in the sense of explaining computational
results is one of the six practices found to complement the
content knowledge of computer scientists by The College
Board (2014). Despite the undisputed importance of these
data science elements of CT, we find that their evaluation
has been explored to a lesser extent than that of other CT
practices (abstraction, design complexity, etc.) in the
assessments described above.

3. DATA & METHODOLOGY

For this study, we focus on assessing and evaluating
computational thinking in the context of data science
learners. We analyze student work in the form of Jupyter
notebooks from students who took an introductory data
science course at Wellesley College, a female population, in
either Spring 2016 or Fall 2017. In total, we analyzed 132
notebooks created by 37 students from the two times the
course was offered. The notebooks ranged in focus, utilized
different (but often similar) data sets, and worked through
the data science process (Figure 1) in one way or another to
solve a problem. Since problem solving through
computation is becoming a popularized manner of
completing a data science workflow, each student notebook
emphasized various CT skills while working to answer a
question.

Ask an
interesting
question.

Get the data.

Explore the
data.

Model the
data.

Communicate
and visualize the
results.

Figure 1. The data science process by Pfister and Blitzstein
(2013).

Jupyter notebooks are automatically stored as JSON
(JavaScript Object Notation) files, a format common on the
Web. This allows for an easy analysis of the notebooks,
especially to extract the input cells that contain the code
entered by the students, the output cells that contain the
result of the code execution, the Markdown cells (special
text cells that can contain formatting such as headings, lists,
emphasized text, formulas, etc.) that contain self-
explanations or other useful comments. We don’t
manipulate the Jupyter notebooks to collect data beyond
what the notebook itself stores. Moreover, we wrote a script
to extract 15 different metrics that encompass computational
thinking skills and computational complexity in one way or

116

another from each notebook in JSON format (Table 1).
These metrics aim to quantify CT skills such as problem
breakdown, pattern recognition, and communication. We
then calculate descriptive statistics for each of these metrics
in order to better understand how they vary in practice.

Table 1. Calculated metrics for a given Jupyter notebook.

Variable Definition

total number of code cells

total number of Markdown cells

total number of lines of code

mean number of lines of code in a code cell
total number of Markdown words

mean number of words in a Markdown cell

numCodeCells
mumMkdnCells
numLinesOfCode
meanLinesCodeCell
numMkdnWords
meanWordsMkdnCell
numHeaders
munlmages
maxExecution

total number of Markdown headers

total number of images (plots, diagrams, etc.)
highest execution value

ratio of the maximum execution value to the
total number of code cells

range of the lowest execution value to highest
execution value

meanExecutionPerCell mean number of executions of a code cell
numFunctions total number of functions created

executionRatio

executionRange

total number of calls to functions
mean number of calls to a function

numFunctionCalls
meanFunctionUse

We further discover that from the information in the
notebooks it is possible to identify two distinct types of
behavior in these problem solving scenarios that we
qualitatively label as "goal accomplisher" and "explorer". In
brief, a goal accomplisher is a student that works
incrementally toward the desired outcome, while an explorer
engages in multiple iterations and sometimes off-track
activities. Of all the Jupyter notebooks collected, we labeled
71 notebooks (44 “goal accomplisher” and 27 “explorer”)
from 19 students in the second course offering based on
manual review of each notebook. Because nature of the
assigned projects differed between the two course offerings,
we chose to only label notebooks in the second course
offering to reduce a potential course-based dependency in
our metrics when comparing the learner types. We went on
to plot the trajectories of each student’s notebook executions
in an effort to visually depict the learner type of a given
notebook. We also used the labeled notebooks to determine
which of our extracted CT metrics are critical in
differentiating the learner types. With this, we also looked to
see if certain students are prone to practicing one of these
learner approaches more than the other.

4, RESULTS

4.1. Features to quantify CT behavior in notebooks

We defined 15 different variables (Table 1) in an attempt to
properly assess student computational thinking ability with
our JSON scraping script. After calculating these metrics for
all 132 student Jupyter notebooks, we found that the
distribution of values for all the features varied greatly
across the notebooks (Figure 2). Based on this, we observed
how some students were stronger in particular CT skills than
others.

More specifically for example, the maximum number of
self-declared functions in a notebook (a metric relating to
both pattern recognition ability and knowledge of existing
software tools) was 27 as compared to the minimum of 0
self-declared functions. Because these students are taught to
utilize existing Python packages to manipulate data, we
found that computationally stronger students were

numiCodeCells

meanLinesCodeCell

numMkdnCells

meanWordsMkdnCell

1
I
numFunctions I[I—P-- **
meanFunctionlse I]I-l-
o

Figure 2. Boxplot depicting the distribution of selected
features calculated based on all student Jupyter notebooks.

somewhere in between these two extremes. We observed
that students who declare more functions often are over-
declaring in the sense they aren’t actively utilizing functions
from other packages and they’re often repetitively writing
similar functions. On the other side of the spectrum, students
who don’t declare any functions tend to manually
manipulate their data with code that is copy-pasted from
their earlier code—suggesting a potential weakness in both
their pattern generalization abilities and knowledge of
existing software tools.

Another notable feature with a great range in values was the
mean number of words in a markdown cell, a variable that
links directly to the communication abilities of these data
science learners. Since students were encouraged to utilize
Markdown to communicate, evaluate, and explain results
from their code, we found that this feature directly correlated
with a student’s ability to communicate their understanding
with others. Specifically, students stronger on the
communication front had more Markdown in their Jupyter
notebooks.

4.2. Explorers vs. Goal Accomplishers

In addition to utilizing our JSON scraping script with the
student Jupyter notebooks, we classified the notebooks into
two groups based on behavioral trends in a student’s
approach to the data science cycle, trends that visually stood
out in the trajectory of their notebooks.

Our “explorer™ archetype consisted of students who
behaved more iteratively in their approach to a given data
science task. These students would often find something
interesting in their analysis then go beyond—building on
their conclusions by modifying their initial analysis and
taking it numerous steps further. Additionally, these students
were effective in their use of text explanations throughout
their notebooks in order to explain and discuss both their
thought processes and their computational approach to the
analysis. They also provided ideas as to how they could
extend their analysis and conclusions even further.

On the other hand, our “goal accomplisher” archetype
featured students whose notebooks focused on answering a
specific scientific question with the intention to reach a
conclusion to that question and thus end their analysis. Once
identifying and planning out their approach, these students
would spend most time cleaning the data before going on to
use this cleaner data set to answer their initial research

117

question. Though these students generally had a shorter data
exploration period within a given notebook, they were
particularly strong at identifying a major takeaway or trend
from their analyses.

In our “explorer” example (Figure 3), the student tried to
analyze her email behavior by creating new questions to
answer throughout the course of her notebook. She started
by importing the data and organizing it into a DataFrame?
with some slight data cleaning and exploring. However,
early on she reimported the data, presumably because she
wanted to use the original data for deeper analysis (A). A bit
later in the notebook she defines a function to label the day
of the week an email was received to explore daily email
variation (B). We see that this function is executed much
earlier than surrounding cells—this is because she went back
to rerun old cells but never needed to update the function
itself. Then, after some initial analyzing and visualizing her
email behavior on a daily basis, she went on to see trend
variation on a monthly timescale and between her various
social groups (C). Generally, here the student went back and
forth between cells when she decided to modify her analysis
as she developed new interest in the various contexts
(temporal and social) of the data.

Explorer

300

200

Execution Order

100

o
Code Cell Mumber

Figure 3. Example notebook of an explorer.

Our “goal accomplisher” (Figure 4) began her notebook by
defining functions specific to formatting her data in a way
appropriate to answer her scientific question: “who are my
emails from and how does this change over time?” (A). Once
she had successfully validated the cleanliness of her data,
having categorized individual emails using her initially
defined function, she immediately went on to analyze the
categorized emails as a function of time and plotted the
result (B). Continuing on, she further subsetted her
categorized emails with modified functions and replotted the
result once again—determining that most of her emails were
“Wellesley Emails” with peaks occurring during specific
points of the semester (C). In particular, throughout this
notebook she worked on the same question with impeccable
focus and continued to smoothly progress until she
successfully found her answer.

2 a two-dimensional labeled data structure that organizes a
dataset into columns of potentially different (data) types

Goal Accomplisher

Exgcution Order

1] 0 20 o 40
Code Cell Number

Figure 4. Example notebook of a goal accomplisher.

4.3. Differentiating learner types

We wanted to determine whether our learner types were
differentiable with our variables extracted using our JSON
scraping script. After labeling 71 of the notebooks as
“explorer” or “goal accomplisher” style, we ran two-sample
t-tests to compare all our metrics between the two groups
(Table 2). We found a significant difference (o = 0.05) in
the number of code cells, the number of Markdown cells, the
number of lines of code, the number of Markdown words,
the number of images, the maximum execution, the
execution range, the mean execution per cell, the number of
function calls, and the mean function use between an
explorer notebook and a goal accomplisher notebook. For all
these variables, explorers had a significantly higher average
value than goal accomplishers.

Table 2. Results of two-sample t-tests comparing CT
metrics between explorer and goal accomplisher
notebooks.

Explorer Goal Accomplisher Results

Mean Std.Dev. Mean Std.Dev. t-stat p-value
numCodeCells* 49.2 26.1 24.7 15.9 4.92 <0.01
numMkdnCells* 23.1 19.1 13.7 12.6 2.49 0.015
numLines- 245.4 151.3 132.0 118.9 3.51 <0.01
OfCode*
meanLines- 5.2 2.5 5.5 3.8 -0.31 0.760
CodeCell
numMkdn- 627.3 550.1 250.8 191.5 4.16 <0.01
Words*
meanWords- 29.1 19.8 21.9 15.7 1.69 0.096
MkdnCell
numHeaders 13.8 16.2 9.2 11.5 1.40 0.166
numImages™® 6.6 6.1 1.7 4.0 4.16 <0.01
maxExecution® 260.9 268.1 102.0 114.8 3.46 <0.01
executionRatio 5.3 3.7 4.3 4.3 0.94 0.351
executionRange* 244.9 252.2 72.6 80.9 4.21 <0.01
meanExecution- 174.0 231.2 62.3 97.6 2.83 <0.01
PerCell*
numFunctions 4.1 5.6 2.0 4.0 1.85 0.069
numFunction- 15.9 22.8 5.0 8.9 2.86 <0.01
Calls*
meanFunction- 2.7 2.0 1.3 1.7 3.05 <0.01

Use*

Additionally, we wanted to evaluate these behavioral
patterns across students and see if students tend to favor one
learner type over the other in their notebooks. We found that
most students had notebooks in both styles (Figure 5). This
suggests that students work differently depending on the

118

purpose of a given notebook. Furthermore, with this it
appears that students are flexible in many of the CT practices
that we quantify with extracted features from the notebooks.
In particular, explorer notebooks typically featured a higher
number of images (or data visualizations), a metric that
directly exhibits a student’s ability and effort to visualize
their data and communicate information to non-experts. This
metric, however, varied greatly across notebooks for an
individual student, often depending on the learner style of a
particular notebook (Figure 5). This suggests that most
students have already developed many of these CT skills but
that they selectively apply them, naturally, in situations
where they are more useful.

5 explorer notebook
goal accomplisher notebook

= = [
[=] L [=]

Total Mumber of Images

L

1234567 6 091011121314151617 18 19
Student

Figure 5. Number of images in a Jupyter notebook based
on student and learner type.

5. DISCUSSION

In this paper, we presented our findings from both a
quantitative and qualitative evaluation of student Jupyter
notebook projects for an undergraduate data science course
in the context of computational thinking. We developed a
script to scrape the JSON-formatted notebooks for various
metrics that relate to the computational ability and efforts of
a student. We further found that we could classify student
behavior into two groups based on behavioral trends in their
notebooks, a classification that could be visually depicted by
the trajectory of a student’s notebook execution.
Furthermore, utilizing our extracted metrics we found that
students practicing the “explorer” approach in their
notebook often engaged in greater CT habits than those
practicing the “goal accomplisher” approach. Seeing as
explorers are more iterative by our definition and that
iteration is a CT skill on its own, it appears as though many
CT practices correlate and perhaps promote one another.

Though we found that the “explorer” notebooks were
typically more iterative in their data science process and
more thorough in their utilization of CT skills, we believe
that both learner types are important to data science
workflows. Since it was apparent that very few students
practiced only one of the two approaches in their notebooks
(68.4% of students had at least one notebook of each learner
type), it makes sense to consider the learner types as flexible
measures that depend on the desired goal of a project
notebook. A “goal accomplisher” is not inferior to an
“explorer” but rather a “goal accomplisher” at the time may
be seeking something specific to glean in their notebook as

opposed to undergoing a full project that seeks to deeply
uncover something new. As this is the case, however, we
encourage data science instructors to promote the “explorer”
approach if they’re concurrently attempting to stimulate the
development and practice of CT.

It is also possible that the “explorer” approach is less natural
to a young computer scientist than the “goal accomplisher”
approach. When exploring a student needs to be flexible as
compared to when they have a goal in mind and they
generally already know how to accomplish it. This idea is
similar to the “expertise effect” seen in chess: an expert
chess player sees the field in terms of patterns whereas a
novice player sees it as a list of the positions of all the pieces.
The expertise here comes with familiarity of the data and
knowledge of the tools available to work with it efficiently
and effectively. Since computer science students are often
used to completing assignments with concrete instructions
and purpose, working in the goal accomplisher manner may
be more intuitive for new data science students. With the
greater discomfort that may come with the explorer
approach, students may be naturally practicing already
developed CT skills as they iteratively work through a
problem.

Notebook behavior also likely depends on both the
individual and the type of task. Though most individuals
(68.4%) exhibited both learner type behaviors in their
notebooks, 31.6% of students only featured one learner type
in their notebooks (15.8% of students were explorer
exclusive and 15.8% of students were goal accomplisher
exclusive). Students whose notebooks focused more heavily
on data cleaning tended to favor the goal accomplisher style.
In contrast, student notebooks that were more focused on
understanding the data in a variety of ways, often including
some sort of modeling aspect, favored the explorer style. We
noticed this trend in learner type based on notebook focus
particularly in the email inbox analysis project in which
student analysis was less structured and more up for student
interpretation than some of the other projects.

Additionally, it is important to note that a binary
classification for a given notebook may not always be
appropriate. For our purposes, we felt that the notebooks we
labeled fit well into one of the notebook styles based on a
manual review of the student’s approach. However, based
on the statistics of the measured CT metrics for each learner
type, we know that there is a great range in CT expression
within both styles so a binary classification may not be
applicable in all cases. We believe it is important to further
explore the idea that there may exist a spectrum between the
two learner types observed here.

Even more, since data science requires individuals to solve
complex problems with computation it also requires
continuous learning. Here, we looked at the work of students
new to data science but not new to computer science—they
all had previously taken at least two other courses. Based on
our feature extraction, it appears that some students are more
flexible and willing than others to adopt new tools and
practices that are taught (e.g. consider the function
declaration and use metrics). This student resistance to
upgrade their skills and learn new tools (when they believe
they already have the tools to solve a problem) we feel can

119

hinder CT and instructors need to be conscious of this
problem. With this, we think our metrics should be utilized
in a cautionary manner for instructors to use to evaluate
student flexibility and effort in learning new material.

6. CONCLUSION

Learning data science requires students to utilize a variety of
computational thinking concepts and practices. Here, we
developed an approach to convert Jupyter notebooks into a
series of metrics that might be associated with certain CT
skills. These metrics include, but aren’t limited to, the
number of functions created—a feature that may depict signs
of pattern generalization—and the mean number of lines of
code—a feature that may correlate to algorithmic efficiency.
However, more research is necessary to connect all our
metrics with concrete CT skills and practices. Further, we
find that when these metrics are compared across various
students, it becomes easier to assess how students are
performing in relation to one another and perhaps helps to
identify weaknesses in certain CT areas of individual
students.

One advantage of our findings is a “minimum effort
approach” that can be used by instructors without the need
for a sophisticated research infrastructure. Jupyter has an
online version, JupyterHub, which makes it easy for students
to upload their work online. Over time, this should make it
easy for an instructor to observe student skills by utilizing
our learning analytics. However, to be successful in practice
our approach relies on students following instructions about
storing everything in their Jupyter notebook by considering
it exactly as a personal notebook where they record
everything that happens during their learning and not as a
polished, final product to submit for a grade. Additionally,
we will continue to develop these metrics and ideally go on
to produce a type of teacher dashboard in which a teacher
can see data about the progress of their students. We also
aim to provide feedback and potential recommendations for
what CT skills may need to be worked on from this tool.

7. REFERENCES

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to K-12: what is Involved and what is the role of
the computer science education community?. Acm
Inroads, 2(1), 48-54.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F.
(2017). Learnable programming: blocks and
beyond. Communications of the ACM, 60(6), 72-80.
Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S.
(2015). Assessment design patterns for computational

thinking practices in secondary computer science: A First
Look. SRI International2015.

Boechler, P., Artym, C., Dejong, E., Carbonaro, M., &
Stroulia, E. (2014, July). Computational Thinking, Code
Complexity, and Prior Experience in a Videogame-
Building Assignment. In Advanced Learning
Technologies (ICALT), 2014 IEEE 14th International
Conference on (pp. 396-398). IEEE.

Brennan, K., & Resnick, M. (2012, April). New
frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research
Association, Vancouver, Canada (pp. 1-25).

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N.,
& Stamper, J. (2017). A Framework for Using
Hypothesis-Driven Approaches to Support Data-Driven
Learning Analytics in Measuring Computational
Thinking in Block-Based Programming
Environments. ACM Transactions on Computing
Education (TOCE), 17(3), 14.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E.,
Bussonnier, M., Frederic, J., ... & Ivanov, P. (2016, May).
Jupyter Notebooks-a publishing format for reproducible
computational workflows. In ELPUB (pp. 87-90).

Moreno-Leon, J., Robles, G., & Romén-Gonzélez, M.
(2017). Towards Data-Driven Learning Paths to Develop
Computational Thinking with Scratch. IEEE
Transactions on Emerging Topics in Computing.

Oblinger, D. (2004). The next generation of educational
engagement. Journal of interactive media in
education, 2004(1).

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., ... & Paterson, J. (2007). A survey of

literature on the teaching of introductory
programming. ACM SIGCSE Bulletin, 39(4), 204-223.

Pérez, F., & Granger, B. E. (2007). IPython: a system for
interactive scientific computing. Computing in Science &
Engineering, 9(3).

Pfister, H., & Blitzstein, J. (2013). Course: CS109 Data
Science.

The College Board. (2014, June). AP Computer Science
Principles Draft Curriculum Framework. Retrieved from
http://media.collegeboard.com/digitalServices/pdf/ap/co
mp-sci-principles-draft-cf-final.pdf

120

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Assessment of Computational Thinking

Nikolina BUBICAY, Ivica BOLJAT?
! Mokosica Middle School Dubrovnik, Croatia
2 Faculty of Natural Science Split, Croatia
nikolina.bubica@skole.hr, boljat@pmfst.hr

ABSTRACT

With the new CS Curriculum in the Republic of Croatia,
Computational thinking (CT) has finally been introduced in
the educational process. In addition to the benefits that CT
concepts bring to CS education, the question of evaluating
CT and programming learning outcomes is also opening.
The purpose of this paper is to present a model of evaluation
of CT concepts based on the learning outcomes of the
Croatian CS Curriculum using the Evidence-center design
approach. The model is independent of the programming
tool or environment and is intended for use with students
who are CS novices.

KEYWORDS
Computational thinking, evaluation, programming novices,
evidence-center design.

1. INTRODUCTION

New trends in technology development have a great impact
on our daily lives. Technology enters the fabric of our lives
regardless of the occupation area, but also regardless of the
age of the user. We hear more demands for changes in K12
education. Also, regardless of the type of technology
students use and the occupations they are being educated for,
they are increasingly expected to possess some generic
competencies such as ability to solve problems in everyday
life, disaggregate complex problems to simpler ones,
generalize solutions, etc. The fundamental question today is
how to respond to such challenges. Leaders of CS education
increasingly emphasize the need to modify existing CS
curricula and to include the development of these
competencies. Jeannette Wing (Wing J. M., 2006) points out
that besides the standard types of literacy, such as
mathematical, engineering and reading literacy, students are
expected to have the ability to solve problems. She defines
CT as «...the process of formulating problems and their
solutions, but in ways that solutions are presented in a form
that enables them to perform effectively with some
information processing agent " (Wing J. M., 2010).

2. COMPUTATIONAL THINKING

There is still a lot of confusion over the very definition of
the concept of computational thinking, and many
surrounding questions and challenges need to be addressed.
It is considered to be the universal competence of every child
that would, together with analytical skills, be the foundation
for each child's school learning (Wing J. M., 2006). Denning
(Denning P. J., 2009) discusses whether CT belongs
exclusively to the field of CS. Guzdial (Guzdial, 2008)
describes CT like a 21% century literacy that is necessary to
a whole series of faculties. It is often discussed how CT
differs from algorithmic thinking, and Denning adds that "...
CT means interpreting the problem as an information

process for which we are then trying to find an algorithmic
solution" (Denning P. , 2010). To create an operational
definition of CT, the ISTE and CSTA organizations
analyzed feedback from about 700 surveyed teachers,
scientists and CS researchers. The result was formulated in
the operational definition of CT for K12 education as a
problem-solving process which includes formulating
problems, logically organizing, analyzing and representing
data with abstractions, automating solutions through
algorithmic thinking and generalizing the problem-solving
process (ISTE & CSTA, 2011). When talking about teaching
and learning CT, perhaps the most interesting is the role of
programming. How much programming, if any, is needed to
adopt CT? There is no unique answer, but practice points to
different levels of programming involvement. Some define
CT as a fundamental ubiquitous problem-solving tool and
suggest several activities and projects which address CT
(Astrachan, Hambrusch, Peckham, & Settle, 2009). Other
approaches suggest various ways of incorporating
programming into teaching and learning of CT, from those
in which programming is the fundamental CT skill to those
that integrate CT through various general education courses.

3. CTINTHE CROATIAN PROPOSAL OF

CS CURRICULUM

In May 2016, Croatian Ministry of Education published
Proposal of CS Curriculum for K12 education. The proposal
was a promising hope for CS teachers since most of them
were restrained by the old and outdated curriculums.
Moreover, CS curriculum proposal finally accepted CT to be
a significant part of the CS education in general. Croatian
curriculum subject domains are e-Society, Digital literacy
and Communication, Information and Digital technology
and CT and Programming (Brodanac, et al., 2016). The role
of CT and programming domain in CS Curriculum aims to
make students to be involved in logical thinking, modeling,
abstracting and problem-solving because solid ICT
education, based on CT and creativity, should enable
understanding and alteration of the world around us
(Brodanac, et al., 2016). CT learning outcomes are created
from the beginning of primary education starting with
elementary pupils, age 6-7, through middle school pupils,
age 11-14, and finally high school students, age 15-18
(Brodanac, et al., 2016)

4. HOW TO ASSESS CT?

Everyone agrees that learning programming is hard, but it
seems that evaluating new knowledge through evaluating
new definitions and programming commands is far simpler
than evaluating the way students apply computing and
programming language to solve problems and to design
different computer work. To assess CT, it is necessary to
find evidence of a deeper understanding of the problem

121

mailto:nikolina.bubica@skole.hr

solved by the student or to find evidence of understanding
how the student created his coded solution. Since CT
concepts include, for example, abstraction (ISTE & CSTA,
2011), it means that we must find ways to evaluate how
student applied abstraction in his solution while trying to
solve a problem. As there is very little agreement about the
CT definition, it is even less known about the tools for
assessing such thinking. However, there are approaches for
evaluating the development of CT that are currently in use
or are still in development. They could serve as a solid
foundation for developing a general approach for evaluating
CT. Brennan and Resnick propose a valuation method that
includes project portfolio analysis, document-based
interviews, and development of design scenarios (Brennan
& Resnick, 2012). Such approach estimates the fluidity of
computer-based practice of testing and debugging,
experimenting and repetition, abstraction and modulation,
and reusing and remixing/scaling. Expertise is assessed
through three levels: low, medium and high. The evaluation
approach of student's documentation consists of building
creative projects from students but also of creating visible
traces of their work on the project. Such traces could be
achieved in the form of paper or digital diaries. Also, it could
be achieved by using Scratch's commentary capabilities for
explaining some project's features and screen views that will
graphically present the project, its intent or the main
advantages and disadvantages. Still, there is not enough
research data to validate this approach. Dorling and Walker
specifically study the practice of teaching CT in the
classroom environment and propose a framework for
evaluating the Computing Progression Pathway that
recognizes the major areas of CS and offers specific levels
of adoption (Dorling, 2014). Within the PACT project
(Principled Assessment of CT) general CS practice is
represented through some design patterns which emphasize
application and reviewing of design skill while solving the
computational problem rather than evaluating the
knowledge of the concepts necessary to apply such skills
(Bienkowski, Snow, Rutstein, & Grover, 2015). This
approach is based on Evidence-centered design (ECD)
(Hendrickson, Ewing, Kaliski, & Huff, April, 2013) for
creating a structured description of the domain evidence
argument and highlights knowledge and skills complexity or
other features or behaviors that should be valued. The ECD
approach is usually represented through five layers: domain
analysis, domain modeling, conceptual evaluation
framework, evaluation application and delivery. SRI
Education group, within the PACT project, proposed
application modes for every layer to create the practice of
CT assessment. Also, it is possible to find several published
computer-based or paper-pencil tests that differ in context,
intended for the age of those who are important in testing
and reevaluating (Werner, Denner, & Campe, 2012). This
paper offers a framework for assessing CT demonstrated on
Croatian Learning Outcomes of CT and Programming
Domain based on ECD and PACT evaluation proposal.

5. PROPOSAL OF CT ASSESSMENT

Despite the advantages of introducing CT into the new
curriculum, we can’t ignore possible difficulties and new
problems that arise from this new approach to teaching CS.
Evaluation of CT becomes a new challenge in the present

CS educational work and requires a more serious approach
than finding individual solutions by teachers’ practitioners.
One proposal of CT evaluation will be presented in the next
paragraphs. It uses ECD as an orientation towards multiple
activities necessary to create useful documentation like
domain analysis, domain modeling, construction of
framework and assessment implementation and delivery
(Mislevy & Harertel, 2006).

5.1. Domain analysis

Appropriate pedagogical practice, emphasizing the
constructivist approach to learning and putting students at
the heart of the learning process, should develop the
competencies like independence, self-confidence,
responsibility, and entrepreneurship. CS curriculum created
according to the learning outcomes instead to the prescribed
content, enables the realization of learning and teaching
directed at each student level and the development of his or
her potential. It provides flexibility and gives freedom to the
teachers in designing the learning and teaching process. The
basic goal of the domain analysis layer is to find and explore
all relevant materials concerning the target learning
outcomes. In this article, we will use the sixth-grade CT
learning outcomes, student age 11-12 (http://bit.ly/2018cte,
Table 1). These learning outcomes stem from several
documents but mostly Croatian National Educational
Standards, CS Teacher Standards and Proposal of Croatian
CS Curriculum. Croatian National Educational Standards
defines the way in which CS is involved in Croatian primary,
secondary and higher education. Croatian CS Curriculum
and CS Teacher Standards defines CS learning outcomes at

each educational level with its adoption level specification.
Every learning outcome is expressed in detail within Bloom
taxonomy, through different adoption levels: satisfactory,
good, very good and exceptional level (http://bit.ly/2018cte,
Table 2). These learning outcomes are a basis for our
assessment process. In following sections, we will try to
identify more design patterns that will help us create
appropriate evaluation.

5.2. Domain modeling

Domain modeling has the task to identify elements for
describing the domain we want to evaluate. According to
ECD approach, Domain modeling is organized into five
categories: fundamental and additional knowledge, skills
and features, possible working products, variable feature and
possible observations (Bienkowski, Snow, Rutstein, &
Grover, 2015). An example of domain modeling for CT
sixth-grade learning outcomes can be found on author’s
personal page (http://bit.ly/2018cte, Table 3).

5.3. Assessment framework

CT evaluation is highly dependent on the context within
which the evaluation is performed. Is it necessary to conduct
CT assessment using some programming tool or
environment? The question of the connection between CT
and programming must be defined regarding the context of
the applied evaluation. There are different approaches to
incorporating programming into the process of teaching and
thus the process of CT assessment. We differentiate them
according to the role of programming and CT in the course
curriculum (Astrachan, Hambrusch, Peckham, & Settle,
2009). In this paper, assessment of CT is achieved through

122

http://bit.ly/2018cte
http://bit.ly/2018cte
http://bit.ly/2018cte

the approach that is not dependent on the programming tool
or environment. This approach could serve for evaluation of
adopted learning outcomes in real classroom situations at
some stage of education. Precisely, the independence of the
programming tool or environment enables wider application
of the evaluation tool and highlights the concepts of
evaluation rather than the syntax of a programming tool or
environment possibilities. For the same reason, such a tool
could be used with students that have no programming
background. According to ECD (Hendrickson, Ewing,
Kaliski, & Huff, April, 2013), evaluation framework aims to
assist assessment designers while they validate their task
model. Every assessment designer should validate his work
with questions regarding construct relevance, specificity,
and scalability and questions related to item statistics and
item complexity. This evaluation framework should provide
information about evidence, students model and task model,
observable characteristics, measurement models and test
specifications. For testing this model of evaluation, a similar
measuring instrument adapted to Python programming
language was conducted during 2016/2017 school year.
Evaluation instrument was applied after 12 weeks (6th
grade) or 14 weeks (7th grade) of learning and teaching
process on a sample of 15 students of 6th grade (8 female)
or 10 students of 7th grade (3 female). The positive and
promising results of probe evaluation encouraged the
creation of this evaluation model, independent of the
programming tool and the programming environment.

Model of students

Given that the evaluation is intended for use in middle and
secondary schools in the Republic of Croatia where there is
a big diversity in applied programming tools and languages,
an evaluation that is not dependent on the programming tool
could be widely applicable. Programming tool or
environment independence emphasizes on CT concepts
rather than the ability to work with specific tool or
environment. Also, if it is crucial for the actual CS
curriculum to use certain programming tool or an
environment, these tasks could be easily customized and
constructed in it.

Model of tasks

Evaluation tasks are created for students with little or no
programming knowledge. Each represents one puzzle used
to help the main character in solving problems. Puzzles are
supposed to assess one or more CT concepts. CT concepts,
concealed in puzzles, have been selected and aligned with
the expected learning outcomes (Brodanac, et al., 2016) and
detailed domain analysis (http://bit.ly/2018cte, Fig. 2).
Assessment tool should be implemented in the form of
online knowledge test consisted of 10 questions. The types
of questions that will appear in the evaluation tool are:
multiple choice questions (mostly used for identification of
some fundamental misconceptions or unsustainable mental
model), short answer questions; essay questions (used for
student's authentic algorithmic solutions). Feedback for
multiple choice questions should be defined automatically,
while short answer questions and essay questions should be
manually evaluated by the researcher or teacher.

Model of evidence

Design and application of high-quality assessment are very
demanding and also time-consuming. According to ECD
approach (Hendrickson, Ewing, Kaliski, & Huff, April,
2013) our assumptions and hypothesis represent evidence
about the way student’s abilities are represented in his work.
Such evidence should reveal student’s adoption of learning
outcomes. Each algorithm solution is always difficult to
evaluate automatically. Evidence analysis helps us in
creation of evidence model for similar tasks. While
analyzing possible student’s answers, it is crucial to know
which computational concepts are evaluated with the default
task (http://bit.ly/2018cte, Table 4). Evidence of student
work varies from the situation where the student doesn’t
even try to do anything, further through several partial
solutions and finally to a fully correct solution
(http://bit.ly/2018cte, Table 5).

@
‘ Action Labyrinth:

e set Step_number to nul

] while not (flower_up OR flower_right) repeat:

walk

e o
1

¥ e

Task 8. Dangerous
frogs appeared on
different places in
the labyrinth. Frog
wants to stop Maja
on her way to the
yellow flower. So,
in order to help
Maja we will Action go_up_jumpover._frog:

allow her to jump ?%¥

over the frog whenever she encounter one while going up.
We apply the new rule: if Maja encounters the frog on her
way up, she may jump over it by doing two steps at once.
Write your own commands in the form of new Action
go_up_jumpover_frog for Maja moving up and jumping
over the frog.

Action walk:

while NOT obstacle_up:
go_up_jumpover_frog " Y
increase Step_number by 1

if NOT obstacle_right:
go 1 step right
Increase Step_number by 1

else

if NOT obstacle_left:
go 1 step left -

Increase Step_number by 1

Figure 1: Example of essay task question

Model of measurement

To complete domain analysis and modeling, it is necessary
to define the model of measurement. For the task example in
Fig. 1, the possible evidence is presented according to its
complexity. If the student does not offer any response or his
answer has no links to the task itself, such answer should be
rewarded with zero points With each of the following
evidence, it has been recognized a higher level of adoption
from the previous one (http://bit.ly/2018cte, Table 5).

5.4. Assessment implementation/delivery

The realization of the test assessment, adopted for Python
programming tool and conducted during the 2016/2017
school year, was performed as online assessment within
Loomen Learning Management System (LMS). The
assessment consisted of eight tasks (one pairing task, four
multiple choice tasks, three essay tasks) and was conducted
during a 45-minute regular school class. The students
showed great satisfaction by conducting online assessment
instead of standard paper-pen assessment even though it was
their first real encounter with such form of evaluation. The
assessment task discrimination analysis showed that as
many as six tasks proved to be excellent (task discrimination

123

http://bit.ly/2018cte
http://bit.ly/2018cte
http://bit.ly/2018cte
http://bit.ly/2018cte

index > 0.35) while two of them were discarded from further
modeling due to the negative index of discrimination. As for
the task difficulty, two of them have proved to be extremely
simple (0.93), but they have already been dismissed from the
further modeling because of their extremely low
discrimination. Two tasks had recommended difficulty (0.5-
0.6) and four task acceptable difficulty index (0.3-0.7).
Further application of the assessment tool will be used to test
the validity and reliability of the measuring instrument and
will help in creating this new CT assessment model. CT
assessment model proposed in this paper will also be
organized in the form of online testing within the Loomen
LMS. Students’ access to Loomen LMS will be enabled
through their unique user data, provided to every middle and
secondary student in the Republic of Croatia. In that way,
the authenticity of the research participants’ data will be
preserved. In the phase of pilot research, it is expected the
involvement of 50-60 students with the purpose of testing
the clarity of task texts and detecting potential ambiguities
or some other problems. Also, several CS teachers will be
invited to evaluate the assessment tool as valuable
practitioners with attention on measurement model. After
defining the final version, the assessment tool will be applied
to as many 11-12year old students as possible who are just
encountering fundamental concepts of CS. In addition to the
evaluation tool, the students will be previously asked to fill
out a questionnaire that aims to collect some personal
information interesting to the research like general data such
as gender, general academic achievement or some data
related to programming knowledge. Also, evaluation tool
will be applied even with some number of high school
students. The results of the research should reveal the power
of the tool itself, but also could explore if there is a
difference in the results among participants who have some
programming experience from those who have none, and
further investigate whether there are differences in gender
related to results and so on.

6. CONCLUSION

Many teachers are increasingly emphasizing the need for a
stronger involvement of the CT concepts in CS courses, but
it is also noticed within some other sciences such as biology,
physics, mathematics, chemistry (Interdisciplinary
Computational Thinking, 2017). The purpose of this paper
was to present one approach to the assessing CT adapted to
the actual classroom situation. The proposed assessment tool
was developed knowing that there are several programming
tools and environments used in CS education in the Republic
of Croatia, but also accepting the fact that CS is an elective
subject in elementary/middle schools where programming is
only minor part of the subject curriculum. The new CS
curriculum proposal introduces the concept of
computational thinking, and thus opens the question of
evaluating its concepts. The proposed evaluation model is
based on defined learning outcomes from the CT and
programming domain of the new CS curriculum proposal
and offers the possibility of assessing CT concepts
independently of applied programming tools and

environments in the teaching process. Also, it could serve as
the basis for making similar assessment tools. The real
power of the tool, its validity, and reliability, but also its
weaknesses will be able to reveal through its application,
which is our next step.

7. REFERENCE

Astrachan, O., Hambrusch, S., Peckham, J., & Settle, A. (2009).
The present and the Future of Computational Thinking. ACM
978-1-60558-183-5/09/03, pp. 549-550. Chattanooga,
Tennessee, USA.

Bienkowski, M., Snow, E., Rutstein, D., & Grover, S. (2015).
Assessment Design Patterns for Computational Thinking
Practices in Secundary Computer Science: a first look. Menlo
Park, CA: SRI Education.

Brennan, K., & Resnick, M. (2012). .New frameworks for studying
and assessing the development of computational thinking.

Brodanac, P., Bubica, N., Kralj, L., Marku¢i¢, Z., Mirkovi¢, M.,
Rubié¢, M., & Sudarevié, D. (2016, February). Computer Science
National Curriculum - proposal. Retrieved from kurikulum.hr:
http://www.kurikulum.hr/wp-
content/uploads/2016/03/Informatika.pdf

Denning, P. (2010). The Great Principles of Computing. American
Scientist, vol. 98, str. 369-372.

Denning, P. J. (2009). The Proffesion of IT Beyong Computational
Thinking. Communications of the ACM, vol.. 52, no. 6, pp. 28-
30.

Dorling, M. &. (2014). Computing Prograssion Pathways.
Retrieved from
http://community.computingatschool.org.uk/resources/1692

Guzdial, M. (2008, August). Paving the way for the Computational
Thinking. Communications of the ACM, vol. 51, no. 8,, pp. 25-
217.

Hendrickson, A., Ewing, M., Kaliski, P., & Huff, K. (April, 2013).
Evidence - Centered Design: Recommendations for
Implementation and Practice. Journal of Applied Testing
Techology, JATT, volume 14, Assosiation of Test Publishers.

Interdisciplinary Computational Thinking. (2017, July 11).
Retrieved from Teaching London Computing: A RESOURCE
HUB from CAS LONDON:
https://teachinglondoncomputing.org/interdisciplinary-
computational-thinking/

ISTE, & CSTA. (2011). CSTeachers. Retrieved from
Computational Thinking resources:
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/
CompThinkingFlyer.pdf

Mislevy, R. J., & Harertel, G. (2006). Implications for evidence-
centered design for educational assessment. Educational
Measurement: Issues and Practice, 25, 6-20.

Werner, L., Denner, J., & Campe, S. (2012). The Fairy
Performance Assessment: Measuring Computational Thinking in
Middle School. SIGCSE’12. Raleigh, North Carolina, USA:
Copyright 2012 ACM.

Wing, J. M. (2006, March). Computational
Communication of the ACM, . 49 vol., no.3, pp. 33-35.

Wing, J. M. (2010, November 17).
www.cs.cmu.edu:
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.
pdf

thinking.

Retrieved from

124

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Cross Comparison of Multiple Computational Thinking Activities:

a Grey-based approach

Meng-leong HOW, Chee-kit LOOI"
National Institute of Education, Nanyang Technological University, Singapore
mengleong.how@nie.edu.sg, cheekit.looi@nie.edu.sg

ABSTRACT
The current paper proposes a grey-based approach to
conduct cross comparison analysis of multiple

Computational Thinking (CT) activities, which could be
used to better inform decision makers and policy makers in
education about the exact CT activities which they might
like to consider selecting for the learners; regardless of
whether these CT activities are screen-based block-based
programming (such as Blockly or Scratch), or text-based
programming (such as using the Python, or Java, or C#
programming language, et cetera), or unplugged CT
activities, or physical computing activities (such as
programmable robots, or circuit boards with
microcontrollers such as Arduino and the BBC Microbit).
Further, this grey-based cross comparison approach can be
used regardless of the rubric or test being used to assess each
individual CT activity (for example, CT-Profile, PECT,
PACT, Dr Scratch, CTt psychometric test, ACTMA, CT-
Stem, or Bloom’s Taxonomy, or SOLO Taxonomy).
Potentially, this grey-based approach of cross comparing
multiple CT activities could be useful for anyone who is
interested in pulling together all of the analyses for different
CT activities into one coherent meta-analysis of multiple CT
activities.

KEYWORDS
Computational Thinking, evaluation, multiple comparisons,
Grey-based approach, assessment

1. INTRODUCTION

1.1 Computational Thinking

Griffin (2016) points out that it is important for novice
programmers to develop a mental model of a notional
machine (du Boulay, O’Shea, & Monk, 1981), which is a
rudimentary model that describes the instructions of a
computer program. Strong interest in how the novice
programmer could develop this mental model have more
precisely elucidated this mental model of a notional machine
into what is now known as Computational Thinking (CT)
(Wing, 2008). The constituents of this mental model of CT
include decomposition, algorithmic thinking, abstraction of
data, abstract of functionality, evaluation, and
generalization. Indeed, CT is indispensable to problem-
solving in the real world, and is considered to be essential in
education (Wing, 2008). According to Gouws et al. (2013),
decomposition refers to the process of breaking down a
problem into multiple steps in order to solve it. Algorithmic
thinking refers to the repetitive execution of patterns of
instructions, which might involve loops for iteration or
recursion. Abstraction of data and functionality refers to the
notion of representations in data storage and the

manipulation of those data in functions. Generalization
refers to the ability to create adaptable solutions that are
reusable for a wider range of problems. Evaluation is the
ability to select the best solution for a given problem, as well
as to identify and correct errors.

The following is an overview of various CT assessments that
are useful for assessing the suitability of individual CT
activities for learners, prior to doing a cross comparison of
multiple CT activities using the proposed grey-based
approach in the current paper.

1.2 CT Assessments of screen-based CT activities
Screen-based CT activities involve block-based
programming using drag-and-drop graphical elements.
Examples of block-based programming include Scratch,
Alice, and AgentSheets. A seminal assessment framework
for block-based programming is the Systems of Assessments
for Deeper Learning of Computational Thinking for K-12 by
Grover (2015).

1.3 CT Assessments of Unplugged CT activities

Unplugged CT activities teach computing concepts without
screen-based devices. They include those offered by CS
Unplugged (Bell, Alexander, Freeman, & Grimley, 2009),
Code.org, and CAS London. Assessments for unplugged CT
activities have been propounded by Rodriguez (2015) and
also by Takaoka, Fukushima, Hirose, and Hasegawa (2014).

1.4 CT Assessments of Physical Computing activities
Examples of physical computing in education include
Arduino, Raspberry Pi, and the BBC Microbit. Assessments
for computational thinking in physical computing-based
activities include (ACTMA) Assessing Computational
Thinking in Maker Activities, and the CT-Stem taxonomy
(Weintrop et al., 2014).

1.5 Research Problem

Although there is myriad of CT assessments, almost nothing
exists in the extant literature which looks at systematically
performing comparisons in a transparent way across
multiple CT activities, which could be used to inform
educators and policy makers about the developmental level
of CT skills involved in each activity, thus enabling them to
select those activities that might best fit the learners’ CT
skills development needs.

In assessments, there are usually four types of measurement
scales — nominal, ordinal, interval and ratio (Anderson,
1961). A nominal scale assigns numbers that can be utilized
to categorize items. For example, a CT activity might be
assessed according to whether it is a screen-based activity,
or an unplugged activity, or a physical computing activity. It

125

does not compare whether one category is superior to
another, and vice-versa.

An ordinal scale uses variables of increasing or decreasing
values to provide meaningful information for comparing
categories of items. For example, a CT activity might be
assessed according to whether it is low-level, medium-level,
or high-level in terms of difficulty.

An interval scale provides precise information on the rank
order of the item being measured, with equidistant
“spacing”, however the interval scale does not have an
absolute zero point. For example, a CT activity might be
rated on its age-appropriateness by assessors, which
normally does not include the point of birth (age at absolute
zero number of years).

The ratio scale provides the most amount of information; not
only is it equidistant, it also has an absolute zero point.
Examples that utilize the ratio scale might include the length
of time that a CT activity takes, or the amount of money that
a CT activity costs.

Hence, it can be challenging to compare multiple CT
activities. “Poor information” or “incompleteness of
information” is likely due to a lack of consensus when
comparing multiple CT activities, each of which might have
utilized a different measurement scale, or even multiple
measurement scales. Incompleteness in information is the
fundamental meaning of being “grey” (Deng, 1989), which
is also what makes comparison of multiple CT activities
challenging. Therefore, we proffer that a grey-based
approach is particularly suitable for comparing multiple CT
activities.

In the present paper, we propose a grey-based approach of
cross comparing multiple CT activities. The rest of the paper
is organized as follows: in Section 2, Grey Theory (Deng,
1989) will be briefly discussed with a more specific focus on
grey-based (MADM) Multiple Attribute Decision Making
(Li, Yamaguchi, & Nagai, 2007), which forms the
foundation upon which this proposed method of a grey-
based approach to conduct cross comparison analysis of
multiple CT activities is built on. In Section 3, a worked
example will be used to apply the proposed grey-based cross
comparison approach to a set of hypothetical data from six
CT assessments. Finally, the implications for education of
this proposed cross comparison of multiple CT activities will
be discussed.

2. GREY-BASED APPROACH

Following Liu and Lin (2010, p. 15), we use the conceptual
notion of “black” to represent completely unknown
information, “white” to represent completely known
information, and “grey” to represent partially known and
partially unknown information. A grey number is defined as
a number with uncertain information and is denoted as ®G
(Deng, 1989; Liu & Lin, 2010; Liu, Yang, & Forrest, 2016).
A grey-based approach of performing cross comparison of
multiple CT activities is proposed in this paper, because it
excels in comparing multiple entities in situations where
there might be a diversity of characteristics in the various
entities, uncertainty, scarcity of quantitative data, or
incomplete information; situations which educators or

decision makers might find themselves in when evaluating
different CT activities offered by different people for their
learners.

Using a grey-based approach, ratings of CT attributes
described by qualitative linguistic variables from different
CT Assessments can also be expressed in grey numbers (see
Table 1), after consensus has been reached by the decision
makers. To illustrate the point that the grey intervals agreed
upon by the decision makers do not even have to be strictly
equidistant, Advanced (A) has a slightly wider grey interval
compared to the rest of the developmental levels of CT skills
in this suggested example of a grey interval table. This
proposed grey-based approach is not a rigid framework. It is
intended to be flexibly adapted by the CT evaluators.

To ensure fairness in the assessments, each of the decision
makers would be independently assessing the CT activities
"blind"; unaware of what ratings the other assessors might
give. There would be no need to address how agreement or
disagreement between the assessors was handled in the
procedure. Hence, interrater reliability calculations between
the assessors would be unnecessary.

Table 1: Scale of CT skills attribute ratings using intervals

of grey number ®G
Scale Intervals of

(level of CT skill) grey number ®G
Very Rudimentary (VR) [0, 1]
Rudimentary (R) [1,3]
Rudimentary-Intermediate (RI) [3, 4]
Intermediate (1) [4, 5]
Intermediate-Advanced (1A) [5, 6]
Advanced (A) [6,9]
Very Advanced (VA) [9, 10]

3. APPLICATION AND ANALYSIS

A grey-based approach for the comparison of multiple CT
activities, which could include but are not limited to
activities that are screen-based, unplugged or physical
computing, is proposed as follows: in this worked example
(see Table 2), let us suppose that there are six CT activities
Si(i=1,2,..., 6)selected for comparison against five CT
skills attributes Q; (j= 1, 2,..., 5). The CT skills attribute
Q1 represents Abstraction, Q; represents Algorithmic
Thinking, Qs represents Decomposition, Qs represents
Generalization, and Qs represents Evaluation respectively.

126

Table 2: Attribute rating values for Computational

Thinking Activities
Q S D D, D, D, 20,
CT Sub CT Activiey Decrion Decion Decision Decision Grey
Maker | Maker2 Maker 3 Muakerd imterval
Q
CT Acevity | A IA A A [S.75,825)
Abutraction CT Activity 2 A A A 1A 1500,630]
CT Activity 3 1 1 A A 16.75.629)
CT Acsvity 4 1 IA 1A I [450,550]
CT Acsvity S IA 1 I 1A [450,550)
CT Acwvity 6 A IA IA 1A [$25,67%)
Q
CT Acavty | A A A A 15.50,7.50)
Algorithmee CT Acsivity 2 A A A A 15.50,750)
Thinking CT Acovity 3 I 1 ¥ I 325,450
CT Acuvity 4 R Rl Ri R {200, 3 350]
CT Acuvity 5 RI Rl R Rl 1250,12.78)
CT Acsivity 6 R R " Ri 1200, 3.50)
Q, 155%0,7%0)
CT Activity | A 1A A A
Decomposition CT Acsvaty 2 IA A A A {5.75,825]
CT Acswity 3 A A I 1A [528,729)
CT Acuvity 4 A A 1A A 1$30,7.30)
CT Actinity § A 1 1 A 14,50, 5.50)
CT Activity 6 1 1 A I {625,529)
Q
CT Acivity | 1 A A A 1550, 8.00)
Gesenlision CT Acsvity 2 A A I 1A [$.78,.82%)
CT Acwvity 3 VA YA A A [750,950]
CT Activity 4 A IA A A 15.75.825)
CT Activity § A IA A A 1525,6.75)
CT Activity 6 A VA VA A 750,95
Q,
CT Acsevity | A A IA A |$78,825%)
Evaluason CT Acuvity 2 A A A 1A {S.00,630]
CT Activity 3 A IA I I [475,625)
CT Acsvity 4 1 IA 1A ! 1450, 5.50)]
CT Acsvity § A 1 I A (450,550
CT Activity 6 A IA 1A A [525,6.75)

A committee of four CT activities assessors, who can also
be referred to as Decision Makers D1, D2, D3 and D4 has
been formed to express their preferences of CT activities for
the learners. Examples of CT assessors or decision makers
could include, for example, teachers, heads of departments,
school principals, or researchers.

Step 1
The equation for calculating the average of the lower and
upper bounds of the grey intervals respectively is:

1
®Gij = E[@ng +®G] + -+ @G] 1)

in which ®G{§ is the average value of the attribute ratings for
each CT Activity, where i = 1,2,...,m;j =1,2,...,n

Step 2

Normalize the grey decision matrix (see Table 3). The
normalization method is utilized to preserve the property
that the ranges of the normalized grey number belong to,
that is [0, 1].

Table 3: Grey normalized attributes for CT Activities

S Q Q Q Q Q
(CT Acuvity) Abntraction Alporsdmec Decomponition Generalicason Evalsation
Thanking
CTActivity | J0047, 1 000F 0733, 1 D00) 0667, 098] (045, 0958] (0407, 1000)
CT Activity 2 J0606,0.783) 0733, 1.000) J0.697, 1 000] 0724, 1.000] [0.£06,0.T8K)
CT Activity 3 10.576,0.758) 10433, 0500) 0636, 05791 |0553,0.700] |0.576,0.758)
CT Activity 4 j0545,0667) 10267,0467] J0667,0909) [0636,0913] [0.545 0.6487]
CT Activity S 10.545,0667) 0333,0.500] j0.545,0545) [0O.778,1.000] [0.545,0.667)
CT Activity 6 J0A36,0818] 0267.0.467] J0515,0636] [0SS3.0700) [0.636.0.818]

Each normalized grey interval is expressed as

gij Eij
(G max ’ (G max (2)
J J

®G}; =

Step 3

As a suggestion, perhaps we could consider taking the more
“conservative” lower value from each grey interval that
corresponds to each CT skill (see Table 4).

Table 4: values of the lower bound in grey intervals

CT Activicy Abstraction Algorithmic Decomposition Generalization Evalustion

CT Activity 1 687 0753 (56T (656 ssT

CT Activigy 2 .05 0,733 597 0,724 0505

CT Activity 3 576 04X il 0553 0376

CT Activigy 4 545 0.267 557 L6346 0545

CT Axtiviey $ (r545 0333 545 0776 0545

CT Aciivity & ha3s 267 513 0443 1)
Step 4

Comparison of the six CT activities that are being
considered for their suitability to the learners’ CT
developmental needs can be accomplished using, for
example, a bar chart (see Figure 1) or a box and whiskers
chart (see Figure 2).

Comparison of CT Activities

m Abstraction W Algorithmic ~ m Decomposition m Generalization ~ m Evaluation

05
0.2
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

CT Activity 1 CT Activity 2 CT Activity 3 CT Activity 4 CT Activity 5 CT Activity 6

Figure 1: Bar chart comparing multiple CT activities

Comparison of CT Activities

Il Abstraction Il Algorithmic Bl Decomposition

1 Generalization [l Evaluation

09
0.8 X
07 Higx R
0.6 * X Fae"
0.5 E
0.4

03 X *
0.2

0.1

CTActivity 1 CTActivity2 CTActivity3 CTActivity4 CT Activity 5 CT Activity 6

Figure 2: Box and whisker chart comparing multiple CT
activities

4. IMPLICATION FOR CT EDUCATION

Researchers (such as Bers, Flannery, Kazakoff, & Sullivan,
2014; Grover, 2013; Portelance & Bers, 2015) concur that
CT developmental activities ought to be age- and grade-
appropriate. Instead of relying on one decision maker’s “gut
feel” or the words of the marketing manager of a third-party
CT activity training provider to gauge whether some CT
activities would be suitable for the educational institute’s
learners, a grey-based approach has been proposed in the
current paper for the cross comparison of multiple CT
activities. Different combinations of CT skills development
offered by each CT activity could be used to inform the
decision makers in educational institutions about the
suitability of each of the CT activities for their learners. For
example, CT Activity 6 (see Figure 1) might involve a lower
developmental level of Algorithmic Thinking; however, this
type of CT Activity might be more age- or grade-

127

appropriate for beginner learners of CT. Conversely, CT
Activities 1 and 2 might involve higher developmental levels
of CT skills, which suggests that they could be more suitable
for learners who need to be engaged with something more
challenging. Further, in situations where multiple third-party
training providers approach educational institutions to offer
their CT training services, this proposed approach could be
used by the stakeholders (for example, Ministry of
Education, principals, vice-principals, heads of departments,
and teachers) of the educational institutions to document the
cross comparison process of multiple CT activities offered
by these third-party vendors, thus contributing to increased
transparency in the educational institutions’ corporate
governance.

5. CONCLUSION

The focus of the paper is on the lack of tools that show what
CT skills are addressed and to what extent across various CT
activities, especially when there is no consensus on what the
CT skill of Algorithmic thinking means, for instance. The
tool is useful when dealing with such ambiguity by
averaging the inputs of multiple evaluators. Until now,
although there are many frameworks for assessing
individual CT activities (as mentioned earlier in Section 1),
there is no approach in the extant literature for performing
the cross comparison of multiple CT activities, which could
be used to transparently document the selection criteria by
multiple decision makers. These decision makers could
include teachers, heads of departments, school principals,
researchers, or the Ministry of Education. The transparency
of this grey-based approach could potentially contribute to
the democratization of the selection process of CT activities,
as the input of each decision maker is taken into serious
consideration. A worked example of cross comparison
between multiple CT activities using hypothetical data has
been used to illustrate a proposed grey-based approach. This
proposed grey-based approach is a reasonably easy to
understand, easy to calculate, and easily implementable CT
evaluation tool, which we hope would be considered by
decision makers in educational institutions for performing
cross comparison of multiple CT activities when they need
to evaluate them to find out if they are at the appropriate
developmental levels for their learners.

6. REFERENCES

Anderson, N. (1961). Scales and Statistics. Psychological
Bulletin, 58(4), 305-316.
https://doi.org/10.1037/h0042576

Bell, T., Alexander, J., Freeman, 1., & Grimley, M. (2009).
Computer Science Unplugged: School Students Doing
Real Computing Without Computers. Journal of Applied
Computing and Information Technology, 13(1), 20-29.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A.
(2014). Computational thinking and tinkering: Exploration
of an early childhood robotics curriculum. Computers and
Education, 72, 145-157.
https://doi.org/10.1016/j.compedu.2013.10.020

Deng, J. (1989). Introduction to Grey System Theory. The

Journal of Grey System, 1, 1-24.

du Boulay, B., O’Shea, T., & Monk, J. (1981). The black
box inside the glass box: presenting computing concepts to
novices. International Journal of Man-Machine Studies,
14, 237-249.

Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013).
Computational thinking in educational activities.
Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education - ITiCSE
’13, 10. https://doi.org/10.1145/2462476.2466518

Griffin, J. M. (2016). Learning by Taking Apart;
Deconstructing Code by Reading, Tracing, and
Debugging. Proceedings of the 17th Annual Conference
on Information Technology Education (SIGITE '16), 148—
153. https://doi.org/10.1145/2978192.2978231

Grover, S. (2013). Using a Discourse-Intensive Pedagogy
and Android * s App Middle School Students. Sigsce, 723—
728. https://doi.org/10.1145/2445196.2445404

Grover, S. (2015). “Systems of Assessments” for Deeper
Learning of Computational Thinking in K-12. Annual
Meeting of the American Educational Research
Association, (650).

Li, G., Yamaguchi, D., & Nagai, M. (2007). A grey-based
decision-making approach to the supplier selection
problem, , 573-581.
https://doi.org/10.1016/j.mcm.2006.11.021

Liu, S., & Lin, Y. (2010). Grey Systems: Theory and
Applications. Berlin: Springer-Verlag.

Liu, S., Yang, Y., & Forrest, J. (2016). Grey Data Analysis.
Singapore: Springer-Verlag.

Portelance, D. J., & Bers, M. U. (2015). Code and tell.
Proceedings of the 14th International Conference on
Interaction Design and Children - IDC ’15, 271-274.
https://doi.org/10.1145/2771839.2771894

Rodriguez, B. R. (2015). Assessing Computational Thinking
in Computer Science Unplugged Activities. Colorado
School of Mines.
https://doi.org/10.1017/CB09781107415324.004

Takaoka, E., Fukushima, Y., Hirose, K., & Hasegawa, T.
(2014). Learning Based On Computer Science Unplugged
in Computer Science Education : Design , Development ,
and Assessment, 8(7), 3-7.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,

Trouille, L., & Wilensky, U. (2014). Defining
Computational Thinking for Science, Technology,
Engineering, and Math. In American Educational

Research Association Annual Meeting. Philadelphia,
Pennsylvania.

Wing, J. (2008). Computational thinking and thinking about
computing. Philosophical Transactions of the Royal
Society of London: Mathematical, Physical and
Engineering Sciences, (July), 3717-3725.
https://doi.org/10.1109/IPDPS.2008.4536091

128

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

On Tools that Support the Development of Computational Thinking Skills:

Some Thoughts and Future Vision

Gregorio ROBLES'", Jean Carlo Rossa HAUCK?, Jestis MORENO-LEO N3, Marcos ROMA N-GONZA LEZ?,
Roberto NOMBELA?Y, Christiane Gresse von Wangenheim®
13,5 KGB-L3, Universidad Rey Juan Carlos, Madrid, Spain
2.6 Department of Informatics and Statistics, Federal University of Santa Catarina, Floriandpolis, Brasil
3INTEF, Madrid, Spain
4 Facultad de Educacion, Universidad Nacional de Educacion a Distancia, Madrid, Spain
grex@gsyec.urjc.es, jean.hauck@ufsc.br, j.morenol@gmail.com, mroman@edu.uned.es,
r.nombelaa@alumnos.urjc.es, gresse@gmail.com

ABSTRACT

Development of Computational Thinking (CT) is an area of
many initiatives in the last years, due to the importance of
having CT skills. There are many environments that allow
learners to develop such skills, for instance Scratch and MIT
App Inventor, in a visual and intuitive way. As in
professional software development, assisting tools that help
and guide learners are starting to appear. In this paper, we
discuss the current status of these tools, based on an analysis
of what state-of-the-art CT assessment tools, such as Dr.
Scratch for Scratch and CodeMaster for App Inventor, offer.
We report their limitations and envision and discuss future
enhancements.

KEYWORDS
computational thinking, tools, assessment, Scratch, App
Inventor

1. INTRODUCTION

The inclusion of computer programming and computational
thinking (CT) skills in the school curriculum is one of the
main trends in the educational landscape worldwide. This
movement has motivated a deep interest among scholars and
research institutions, who are analyzing and comparing the
approaches and plans of the different initiatives. The reviews
on the state of CT in education that have been performed
coincide in three main, fundamental aspects that require
urgent attention from academia: assessment of CT skills,
transference of CT skills and factors affecting CT skills. The
topic of this paper is related to assessment of CT skills,
although its reach is beyond that specific topic.

There are many initiatives fostering the development of CT
skills (Lye & Koh, 2014), such as tools where learners can
acquire programming skills by means of using visual
programming languages. Some of the most commonly used
tools to support CT learning are Scratch
(https://scratch.mit.edu/), MIT App Inventor
(http://appinventor.mit.edu), Code.org (https://code.org/),
Snap! (https://snap.berkeley.edu/), among others.

In the teaching of CT in schools, practical activities are
typically carried out where learners develop programs using
these tools. The resulting projects need to be evaluated in
relation to the extent to which they reached the pedagogical
goals and also in relation to other aspects, such as:
fundamentals of algorithms, use of variables, flow control,
modularization of complex tasks, etc. (CSTA, 2017). Most

of these aspects can be evaluated in an automated way,
through analysis of the source code developed by the
learners (Moreno-Leon et al., 2015), thus supporting the
educator in the assessment and grading of learner’s work.

Currently, there are some tools that perform the assessment
of CT aspects through the static analysis of projects

developed by learners, such as: Dr. Scratch
(http://www.drscratch.org/), CodeMaster
(http://apps.computacaonaescola.ufsc.br:8080/), Quizly

(http://appinventor.cs.trincoll.edu/csp/quizly/), and Ninja
Code Village (http://ik1-325-22639.vs.sakura.ne.jp/ncv4s/),
among others.

This type of assessment presents some limitations, first of all
because the tools generally work on the source code,
typically only after the learner has finished his/her work.
This focus on the source code also limits the assessment, not
covering essential CT practices like creativity and
collaboration, and sometimes does not provide valuable
support for the learner.

The goals of this paper are following: (1) to review the
current state of computational thinking assistance tools, and
(2) to propose future enhancements for them.

The paper is structured as follows: In the next section we
will introduce the state of the art in assessment of CT skills,
and focus on two CT assessment tools (Dr. Scratch and Code
Master). Section 3 reports the limitations and deficiencies
that the aforementioned tools present, while Section 4 offers
some enhancements to address those limitations.
Conclusions are drawn in Section 5.

2. ASSESSMENT OF CT

Assessment of CT skills is a topic that has gained attention
of the research community in recent years. Besides, Dr.
Scratch (see Section 2.1) and CodeMaster (see Section 2.2),
many other research efforts have been devoted to it, such as
Quizly (Maiorana et al., 2015), Fairy Assessment (Werner et
al., 2012) and REACT (Koh et al., 2014).

2.1. Dr. Scratch

Dr. Scratch (Moreno-Le6n, Robles & Romén-Gonzélez,
2015) is a free/libre/open source tool that analyzes Scratch
projects to assess their level of development of CT skills by
inspecting their source code. Dr. Scratch
(http://www.drscratch.org/) is inspired by Scrape (Wolz,
Hallberg & Taylor, 2011) and is based on Hairball, a static

129

https://scratch.mit.edu/
http://appinventor.mit.edu/
https://code.org/
https://snap.berkeley.edu/
http://www.drscratch.org/
http://apps.computacaonaescola.ufsc.br:8080/
http://appinventor.cs.trincoll.edu/csp/quizly/
http://ik1-325-22639.vs.sakura.ne.jp/ncv4s/
http://www.drscratch.org/

code analyzer for Scratch projects that detects potential
issues in the code (Boe et al., 2013).

The CT assessment of Dr. Scratch is based on the degree of
development of seven dimensions of the CT competence:
abstraction and problem decomposition, logical thinking,
synchronization, parallelism, algorithmic notions of control
flow, user interactivity and data representation. Each
dimension is assigned a score, resulting in an aggregated
total mastery score. With this information Dr. Scratch
generates a feedback report that include ideas and proposals
to enhance the CT score by encourage learners to try new
blocks and structures.

Different actions have been performed to validate Dr.
Scratch from distinct points of view, showing that the tool is
useful for learners and proving its ecological validity
(Moreno-Leo6n et al., 2015), and comparing Dr. Scratch
results to other measurements, such as educator grades of
Scratch projects or software engineering complexity
metrics, showing convergent validity (Moreno-Leon,
Robles, & Romén-Gonzéalez, 2016a; Moreno-Leon et al.,
2017; Roman-Gonzalez et al., 2017).

Finally, since Scratch creations are categorized under
different types of projects, such as games, stories or music
creations, among others, the results of the analysis of 250
projects of 5 different types show that this topology is
replicated when projects are analyzed with Dr. Scratch, thus
proving its discriminant validity (Moreno-Ledn, Robles &
Romén-Gonzélez, 2018).

2.2. Code Master

CodeMaster is a free web-based tool
(http://apps.computacaonaescola.ufsc.br:8080) developed to
facilitate the assessment and grade of App Inventor and
Snap! projects, in a problem-based context, focusing on
learning computational thinking in K-12 education.
CodeMaster can be used by learners to evaluate their own
projects obtaining direct feedback and also by educators to
assess and grade all class projects at once, in a
comprehensive assessment.

CodeMaster measures the complexity of the App Inventor
and Snap! learners’ projects using an extended rubric based
on the CT framework by Brennan & Resnick (2012),
Dr.Scratch and the Mobile CT rubric (Sherman & Martin,
2015). CodeMaster, thus, evaluates several dimensions of
CT, such as abstraction, synchronization, parallelism, flow
control, user interactivity and data representation.
Assessment results are presented to the learner in a visually
appealing and stimulating way, represented by a character
who has a varied color badge depending on the score reached
in the code assessment.

The tool has been tested and applied in real environments
and has been observed as a useful, functional, performance-
efficient tool to support the assessment of App Inventor and
Snap! projects.

3. CURRENT LIMITATIONS

In their current form, the main beneficiaries of CT
assessment tools are not learners, but educators. This is
because the tools offer an evaluation that is based on the final
product, emphasizing the abilities that learners have. If the

tools would address more the learning process, they should
emphasize feedback on bad practices and on how the learner
can learn more (Robles et al., 2017).

The exclusive focus on source code analysis tends to
facilitate the assessment of CT aspects that can be evaluated
by automation. However, this focus limits in several ways a
more comprehensive assessment of the CT development. It
is very difficult, if not impossible, to evaluate creativity or
collaboration, for example, only by the static analysis of a
learners’ piece of source-code.

Despite automated assessment allows educators to devote
time to pedagogical issues that require more educator-
learner interaction, which has proven to be very positive
(Ala-Mutka, 2005), offering an important support to the
educator, it may not be directly contributing to the learning
process itself.

Automated CT assessment tools typically do not provide a
personalized learning experience, tracking the entire
learning process, but only evaluating the outcomes at the end
of the development process. So, the opportunity to support
the learner throughout the learning process and to suggest
systematic ways for the development of learner’s skills is
been lost.

In summary, even if not comprehensive, educators are the
main beneficiaries of current CT assessment tools. Their
evaluation can be supported and enhanced with these tools;
so, even if some aspects such as user interface quality and
creativity may not be considered by the tools, the
information they offer and the amount of time saved is of
high value for educators.

4. ENHANCEMENTS
In this section, we propose a set of enhancements that could
be implemented in CT assistance tools.

4.1, Tools More Learner Driven

Tools should focus more on the learner and on the learning
process. This means that the major point of interest should
not be on the blocks that are used, but on the identification
(and explanation of) bad smells (i.e., bad programming
practices), dead code (i.e., parts of the program that are never
reached), among others (Robles et al., 2017). The rationale
for this is that learners are familiar with their own code and,
if done properly, will understand the problems of their
current solution.

4.2. Assess Ul of Projects

Despite its importance, the quality of User Interfaces (Ul)
has been, in general, ignored during CT learning. Some tools
only count the interface components and if some type of
arrangement is used. Although some artistic aspects of Uls
are difficult to assess, other dimensions of the Ul quality,
however, can be objectively evaluated, using well-known
good practices as a basis. This type of evaluation, if
automated, can help learners to improve the quality of their
developed Uls.

4.3. Personalize (and follow) the Assessment Process
Tracking the development of CT learners’ skills becomes
important in order to customize his learning experience. To
make this possible, automated assessment and learning

130

http://apps.computacaonaescola.ufsc.br:8080/

support tools need to be able to identify the learner through
the creation of individual accounts.

In addition, individual identification enables educators to
follow the development of each learner abilities in the
various aspects of the CT, allowing to identify if the
learner’s progress is adequate and to personalize the tasks
and exercises, among others.

44, Educator Dashboard

Every modern learning management system includes
educator dashboard and learning analytics tracking systems,
in order to assess and intervene in real-time and in a
personalized way (Kalelioglu, 2015).

Similar functionality should be included in the assistance
tools to help educators have a comprehensive view of their
learners, and to follow their learning process. The educator
dashboard should be designed in such a way that it highlights
the most relevant information, i.e., that information that is
easily to obtain in an automated way (i.e., a learner lagging
behind or abandoning), but that requires human intervention
to solve.

4.5. Identification of Learning Gaps

As in any other formal language, computer programming
must be learnt in a systematic way, ensuring that there are
no gaps between computational concepts (Rich et al., 2017).
If computational concepts are not developed systematically,
and if learning gaps are not identified, then misconceptions
are likely to appear.

Thus, assistance tools should not only score the presence of
certain computational concepts, but also to point out the
absence of others in between (Grover & Basu, 2017).

4.6. Identification of Learning Paths

In the same wvein, computational concepts can be
progressively developed, by means of programming projects
with increasing complexity. Current learning paths are
monolithic. As shown in (Moreno-Ledn, Robles, & Roman-
Gonzalez, 2018, in press), Scratch guides generally begin
with programming animations, music and art projects,
continues with stories, and finish with games, showing in the
process concepts and elements of increasing complexity.
This, however, supposes a barrier to those learners who are
not interested in games, as their disinterest may lead to not
develop higher CT skills.

However, Moreno-Ledén, Robles, & Roman-Gonzalez
(2018, in press) also reports that for every category there are
projects that show basic, intermediate and advanced CT
skills. Thus, it is possible to allow users to set a learning path
with the number of phases of their choice and the types of
project to include in each level. Future assistance tools
should not be limited to receive and assess the projects of the
learner, but also to propose him/her feasible and significant
learning paths.

4.7. Use of Recommender Systems

Furthermore, the aforementioned learning path can be
enhanced by providing the learner with prototypical
examples than can be remixed (Dasgupta et al., 2016). Then,
assistance tools should not only give feedback about the
ongoing programming projects of the learner, but also to
propose him/her new projects to be remixed, which are

placed in his/her "Zone of proximal development” (ZPD)
(Vygotsky, 1978).

4.8. Other Abilities and Skills

Assistance tools should embrace the analysis and assessment
of not-so-objective computational thinking practices based
on learner’s behavior while programming. High-level skills
that should be addressed are reusing, abstracting,
modularization, debugging and modeling.

Targeting these skills is not easy as they are tight to the
process and obtaining information about them is complex.
Nonetheless, we argue that this could be done indirectly by,
for instance, the identification of bad smells (see 4.1) and
observing how the learner solves them.

4.9. Integrated Instructional Feedback

Currently, a learner interested in receiving automated
feedback on a project developed in one of the popular tools
(e.g. Scratch, App Inventor or Snap!), needs to export it, and
submit it in another tool (e.g., Dr. Scratch or CodeMaster).
This tends to difficult the use of such tools and leading the
learner to submit his project to analysis only at the end of the
development process.

The integration of instructional feedback directly to the
development environment could give fast results, as it has
been observed in other scenarios (Gongalves et al, 2017).

4.10. Share and Socialize

Along the formative assessment of the CT skills of the
learner, the corresponding assistance tools should not only
give feedback to the learner, but also share and socialize
his/her achievements with a broader community.

Recent research has demonstrated that individuals who
perform more social actions during the learning process,
reach higher levels of sophistication in their CT skills and
computer programs (Moreno-Le6n, Robles, & Roman-
Gonzélez, 2016b). Other research has found that
professional developers make a surprisingly rich set of social
inferences from the networked activity information, such as
inferring someone else’s technical goals and vision when
they edit code or guessing which of several similar projects
has the best chance of thriving in the long term (Dabbish, et
al., 2012).

5. CONCLUSION

Computational Thinking is a skill that is vital for the
personal and professional development of the citizenship of
the 21% century. There are many initiatives that have
simplified the acquisition of these skills, mainly by
programming in learner-friendly visual interfaces, such as
Scratch or MIT App Inventor. In recent times, assistance
tools are starting to appear that -on top of the aforementioned
platforms- offer assessment and guidance through the
learning process. However, at this point these tools are
mostly useful for educators. In this paper, we offer some
insight of future lines that can make assistance tools better
suited for learners. These enhancements range from the
introduction of personalized elements that adapt the learning
process to the learner, including recommender systems and
learning paths, to the evaluation of other skills, such as
abstraction, modeling or debugging. We hope to see in the

131

near future many ideas and implementations targeting these
issues to the benefit of educators and learners.

6. ACKNOWLEDGEMENTS

This research was supported in part by CNPQ and in part by
the Region of Madrid under project “eMadrid: Investigacion
y Desarrollo de tecnologias educativas en la Comunidad de
Madrid” (S2013/ICE-2715).

7. REFERENCES

Ala-Mutka, K. M. (2005). A survey of automated
assessment approaches for programming assignments.
Computer science education, 15(2), 83-102.

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., &
Franklin, D. (2013). Hairball: Lint-inspired static analysis
of scratch projects. In Proceeding of the 44th ACM
technical symposium on Computer science education.
ACM, 215-220.

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of computational
thinking. In Proceedings of the 2012 Annual Meeting of
the American Educational Research Association,
Vancouver, Canada.

CSTA (2017) K-12 Computer
Available at http://www.k12cs.org.

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012).
Social coding in GitHub: transparency and collaboration
in an open software repository. In Proceedings of the ACM
2012 conference on Computer Supported Cooperative
Work. ACM, 1277-1286.

Dasgupta, S., Hale, W., Monroy-Hernandez, A., and Hill, B.
M. (2016). Remixing as a pathway to computational
thinking, in Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing, ser. CSCW 16, 1438-1449.

Gongalves, R. Q., Wangenheim, C A. G, Hauck, J. C. R,
Zanella , A. (2017) An Instructional Feedback Technique
for Teaching Project Management Tools Aligned With
PMBOK. IEEE Trans. on Education.

Grover, S., & Basu, S. (2017). Measuring student learning
in introductory block-based programming: Examining
misconceptions of loops, variables, and boolean logic. In
Proceedings of the 2017 ACM Technical Symposium on
Computer Science Education. ACM, 267-272.

Kalelioglu, F. (2015). A new way of teaching programming
skills to K-12 students: Code.org. Computers in Human
Behavior, 52, 200-210.

Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning,
A. (2014). Real time assessment of computational
thinking. In Visual Languages and Human-Centric
Computing (VL/HCC), 2014 IEEE Symposium on. IEEE,
49-52.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through programming:
What is next for K-12?. Computers in Human Behavior,
41, 51-61.

Maiorana, F., Giordano, D., & Morelli, R. (2015) Quizly: A
live coding assessment platform for App Inventor. In:

Science Framework.

Blocks and Beyond Workshop (Blocks and Beyond), 2015
IEEE. IEEE, 25-30.

Moreno-Leon, J., Robles, G., & Roman-Gonzalez, M.
(2015). Dr. Scratch; Automatic analysis of Scratch
projects to assess and foster computational thinking. RED.
Revista de Educacidn a Distancia, 46, 1-23.

Moreno-Leon, J., Robles, G., & Roman-Gonzélez, M.
(20164a). Comparing Computational Thinking
Development Assessment Scores with Software
Complexity Metrics. Proceedings of 2016 IEEE Global
Engineering Education Conference, Abu Dhabi.

Moreno-Leon, J., Robles, G., & Roméan-Gonzélez, M.
(2016b). Examining the Relationship between
Socialization and Improved Software Development Skills
in the Scratch Code Learning Environment. J.UCS,
22(12), 1533-1557.

Moreno-Leén, J., Roméan-Gonzélez, M., Harteveld, C., &
Robles, G. (2017). On the automatic assessment of
computational thinking skills: A comparison with human
experts. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing
Systems (pp. 2788-2795). ACM.

Moreno-Leon, J., Robles, G., & Roméan-Gonzélez, M.
(2018). Towards Data-Driven Learning Paths to Develop
Computational Thinking with Scratch. IEEE Transactions
on Emerging Topics in Computing.

Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., &
Franklin, D. (2017). K-8 Learning Trajectories Derived
from Research Literature: Sequence, Repetition,
Conditionals. In Proceedings of the 2017 ACM Conference
on International Computing Education Research (pp. 182-
190). ACM.

Robles, G., Moreno-Ledn, J., Aivaloglou, E., & Hermans, F.
(2017). Software clones in Scratch projects: On the
presence of copy-and-paste in Computational Thinking
learning. In Software Clones (IWSC), 2017 IEEE 11th
International Workshop on. IEEE, 1-7.

Roméan-Gonzélez, M., Moreno-Leon, J., & Robles, G.
(2017). Complementary tools for computational thinking
assessment. In Proceedings of International Conference
on Computational Thinking Education (CTE 2017). The
Educ. Univ. of Hong Kong, 154-159.

Sherman, M., & Martin, F. (2015). The assessment of
mobile computational thinking. Journal of Computing
Sciences in Colleges, 30(6), 53-59.

Vygotsky, L. (1978). Mind in society: The development of
higher psychological processes. Cambridge, MA: Harvard
University Press.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C.
(2012). The fairy performance assessment: measuring
computational thinking in middle school. In Proceedings
of the 43rd ACM technical symposium on Computer
Science Education (pp. 215-220). ACM.

Wolz, U., Hallberg, C., & Taylor, B. (2011). Scrape: A tool
for visualizing the code of Scratch programs. In Poster
presented at the 42nd ACM Technical Symposium on
Computer Science Education, Dallas, TX.

132

http://www.k12cs.org/

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

BRI

HE R

R TE S BT 3L
TAE RYREARER

AR F

ik (2013-2017)

.3 0 R

zhangangi19950601@163.com, teastick@gmail.com, 201622010028@mail.bnu.edu.cn, chengweirzh@163.com

| F—;k Eﬂ’“—ﬁ;{ﬂ m‘a“
koo AEEFIC KT 2013 & 1 2017 £iTT £ G EQ AN
HIEf 0 SSCI = #k » H ASER 3 N N IERad § v B

Ey 2P 2E I ZEFT A 04 B S

ERAHERE S AT AL A e AT LM AE A

i’Lﬁﬁ”%Eﬁﬁﬁ‘#ﬁﬁﬁ‘ﬁgkﬁk#
’}J:

Fad s LR RT

FiFem2s2 i nams B 2 F 8L
kit bR A Y HE -

1. w3

AR LR E0 —%‘mlﬁ‘iise WU I opF
ﬁ*z—.—]é"iﬁm,r‘% » B P IV U T 5F 5 H w F 1 AR
3 02006 £ - % 2 E (Jeannette Wing) % 21+ 5 L4

ﬁﬂf‘i,ﬁ v ¥ f%‘fu,w EHEFRT KEAR DT LE

QMlEﬂﬁ%*ﬁ*ﬁ#(GE)ﬁgﬂﬁﬂﬁ
1?{”# (CSTA) = SRR BRI R o
TEREES 2 r/lﬁ’*;’im/&w\%vﬁcﬁi%’ Rl
e 2013 £ 9 7 > BEHKTINSF 2ETAE LA
4oFn s ek B ikqr st %) 5 2014 & 2 0 % [E) College Board
1t E ‘u/g‘_kﬁ:&afr_ﬁ—l**,\,*ﬂfﬁJ ;,_,ja:; SHhoe R

’*m’%fi%ﬁ o Ep MR T BT - kST
I E R aKTIEL) —kﬁ&m%s,: ’J—'E* I
ﬂma_miﬁ’ﬁ;ﬁ%y%#ﬁ&ﬁm%ﬁpf

BB AEER K > At 4 2 ekd L E R A
SRR R DR o
2. < @EkiFik

2.1. ’.J',g%;g:fé
AR LAL- AR G LS A
2 i
i
5

AidAR e P ERBALT Ao PP F gk i 4
*"J#**l’f“{ﬁ‘fm’\ﬂ:tﬁi”ﬁ IZELE S NS =2
4 idARe hi fdp s 74 o % 1 E (Wing, 2006) %+
-Er:u/a‘-?‘ LJ"ﬁ‘!'ﬂb "7%\5%’! giii‘t.i"iﬁ’

FiepE ot s @FRF P ELAT AT K
TRENBY S5 036 0 A RFATEFFELLY
% # F 3458 0 4o Flanigan, Peteranetz, Shell, & Soh
(2017)i% 4 A+ H u e foilig L A B B AP E P e
bk N B K LF;L“ Wad - kB el
FrRBELFEPEREDISG > ZEEP 0
% LB A ARG B Ee o G BT KR EL D
FrLafrilE e LEL o Jaipal-Jamani & Angeli(2017)

2
B

AR A AR IE T OF dhp Aok B P E A
BT a2 mn ap > S frBAE TR
PR BRI EME IEfE R LN 4 o

l‘:,‘% S E R ARKRT PEE > /F"{ f RORIEG
PELAKRT P AEFLLEY > 0G0 Rdep R
o AP EFLDTELALTE LT > Aa
T AR S (R PR E LA A G G5
AR o

2.2, H+E A
B P T g X T e
£ 4 0 4o Grover & (2017) A4k M E ALAL R IR TR 5
DN REES e E E A AR hETS AR
PRI frd I > Ut LSRR R o R ¥
LAMA G E LR .:(ﬁ& Korkmaz, Cakir, &
Ozden (2017) te A= 5 ¢ Us++ & naig =¥ % d ISTE
(2015) :}%"'ﬁvmﬁflsixiinb s gl d dpha ity
&/g_;::,—ﬂg ST LR -SRI R I O e e - £
+E R KT o Chen & (2017) Afe® A skfrend b i
7];5_:" B AT P E R E RIF L RA D Y R
E o @M EPIE LBRE D F TR A cnhfeid i
MEPFFERTEGNREE A A L Ra
PHE o BEEAP O GZIE LG VF A TLRE FE
Fatht 2 A BLA%E) 2 5 g {e X B o
(Roman-Gonzalez, Pérez-Gonzalez, & Jiménez-Fernandez,
2017)F Bk * S IR R 0 F R RV e R E LR
Pend adkie- PR ERAPERE > g
ESM BB TP N A S RER A o AR
A 2P AR ErI M Baichang Zhong, Qiyun
Wang, Jie Chen, & Yi Li (2016)+%++ 7 = ‘2 %x & 25 122¢

\1* we xh3

\

—

;I /—

4 it

5

UDM)’ﬁ*@ﬁ‘ﬂﬁﬁ#dﬁﬁ;fﬂﬁﬁé
FIER I A ekt XY 0 W E R Az L AR

g s R AP BALEL 7 25 9=k - Choi, Lee,
& Lee(2017)= % 7 A7 HEenE 2 ¥ 25 (PBAL) >
HEFEARBALE FHER AP LG 0E
1 K AL R A2 G R R AR R

PEELBBRRT S BB AR Sk o
PBAL 448 74§ & A4l K5 ks ik + it i @

EL R IS Sl N RS TR gy A

FH-ch ARFAFTATAELAT PATEE TS

: —‘ﬁm’*ﬁw,&tfﬂf-l’ = Rl Sl X
LOCAIERG IR o AT FIRITT E P AR L ATR
SEENEE S I U L I AR R
THEF AR EEE BN SRR b A o

133

3. FIM4E

2wkt Ao g P A4
(1) 57 #ap =g o
HERLRY BT 9
(2)
(3) #+HLadief >
£EF X L7

4, R

4.1, > #kH A p8

AT - R R TR 0 R R fAY

—é‘_;;gp’\» A mp;L' v A2 Hor AT
(1) (7 FEAMFP -+

DB e R E S

Gt Y 22 PR L RGeS g ?

FEERA R SRR G2

Brasp ey

(2) B p g HE H L a=h
(3) LEF T
(4) & SSClI&]+ = % ;

(5) 22013 &3 2017 # % % -

42. > HIEF L it
ek R b Rk L T PR

T @ 8§ % i Web of Science Pro & B 4ciB -
1 “Computational Thinking”# X 47 » x4 2013 & ¥
2017 & ¢n SSCI 3+ Fi2 (77 6k » % F ¥ 337/ 2

< :ﬁ‘_mf?.@ 32 f_r/’“IIL ’
ﬂMﬂmwaP*:ﬁ
> ,§_ s A {;‘Q;ﬂiﬁﬂ;t
£ Pzw?%%ﬁﬂa e SRS N

3
H = ’531“755"‘3“ ’I’V‘j‘,i’f‘l
£ 3 % RN

,3
g
N
.3?“
?2*
?2*
T
g
@

S iriﬁm52$#$°%%ﬁpiiﬁ%
SO R TR L

Ao (E g% A

BB —f—I’ﬁ 1IAFE #E 5~ 7l o

3
ﬁi?@%*ﬁﬁﬁp{%’ipfﬁ%ﬁ%%ﬁa

(1) fhxiz 4 f’riﬂf SR ERE SRR Y o
(2) 3BRE A+ LRI N NIER A N ER At f R
(IR Y INREN I

5. %%
IS AR AR B ST

51 xrpzel 2124

’*% Lenssd 3 g 3o o T 50 B R CRIE R T § R
Pl ERGes Y hE L SRRt RimE ¢) M

ﬁ~%iiﬁwﬁﬁ“’%iﬁpzﬁm%ﬁ@{K-

12 gen¥ 4 2 2014 & 2 * % [£] College Board % # 1

BRI et B eft £ R 12 (Computer Science Principles)

RARAEE 0 2 kARG v R Y F A 0 R L BB

ErAPomAt At A KI2KTHELIEAELS
mi%'?r—"?’:"‘f?i)’ pb I ""!&;Jﬁ*i"’ﬂ"""a BRIk
P RARSE L AORELS R FL AL
KT AL R

ZIEFSE Y G L e iat §fh

= BF. Ehit EEdd
B
<
(Grover %,2017) iE B3 A 9~11 -~
12 # &%
i
(Korkmaz, Cakir, i3 IF A =
& Ozden, 2017) H i Af
(Chen %,2017) iE &3 A 5 # %%
4
(Jaipal-Jamani & iE B3 B W
Angeli, 2017)
(Tsai, Shen, Tsai, e] < FE 4
& Chen, 2017)
(Basu, Biswas, & i@ B3 6 FRF
Kinnebrew, 2017) 4
(Choi, Lee, & Lee, E | ol 4-6 &R
2017) 4
(Roman-Gonzalez, @ 5T FSadid 5-10 &
Pérez-Gonzalez, & i % F 4
Jiménez-
Fernandez, 2017)
(Atmatzidou & * % O AP B
Demetriadis, 2016) PR 4
(Baichang Zhong, PE PR 6 E BFE
Qiyun Wang, Jie 4
Chen, & Yi Li,
2016)
(Byeongsu Kim, #E F3 AR <~ FE 4

Taehun Kim, &
Jonghoon Kim,
2013)

5.2, ;B4 5
e ,;gkp’f' v Joo gk IR geE g S \‘.J‘J,&};';i;:f%‘
IE’.%(L""‘]l”r—r v A2 FEE L RSB M Pfgﬁiiﬁ%
R R 1 B ki (TR B S N~ A A
- - *{'% AN wHEPE S V- FE AT
%g % 3 A _Qpi%ixyu% ~ESE G
~F A ;ﬁnﬁ" EI e T R =
Jalpal -Jamani ~ Basu = Atmatzidou /= % Jf;rsgiﬁa"::
SRk fEE A S g ehaiR R T e E) 2 AR
5: B RAR RS G0 BAGRER S S F]
g dA oo 3 & SLP eh A Byeongsu Kim, Taehun
Kim, & Jonghoon Kim(2013)4&+»¢ = 2Lst & fred M- e %
40 R¥ AE Rfgahieg o L E T A D e i)
%ﬂiga%ajmﬁﬁiﬁ’uﬁs”“»ﬂg&
AT fRE{eiz * o A F D P B A FE s 4B | AR

£

1 Lol £ \““\ﬂ

& =
FTAER B

g B

Hb

134

“%yj“ﬁﬂ’%*%%%%%z,;w .
i i\zfﬂ'J;qix“c’i;EB E‘i’)ﬂﬁ—\l HphpT aLRE 4 chiy
ﬁﬂﬁ*ﬁxsﬁmﬂﬁﬁi,mpwﬁﬁiﬂ¢ﬁ
SRR RIS S L S L
IR R A oy
LAy BRI grER s i me‘-,’;'-%;v PEaTa

Wi
Ere
4
u{ﬂ
H
i
4
.‘/
Pl
"

fr;ggﬁma rq’r—agﬁ'_ »] pijﬂ‘%?'%
2Alh &7 A MAR S Lt mﬂ%*ﬁmﬁiiﬁ
ERRY BT > dodk 2857 o
10
]
B
. l [I
R i ol £ OiLFwik FifiRe

=

FJLEE S S e

5.3. = 5/

Elad K-12 B> & 2 AGER 3 58 SR F 5] SR
F2AARZET IR 41 FAOERG 4 at By
BEB KT T AR amww—gﬂtm¢m¢
&’ﬁ’*¢4ka FACL it B e
Ein F 4 TR B N ;%i £ I0 o FL VRN F %
N R T ;ww;_v:m S AR PR e 2
JERETI

5.4, =i pl F
&rz\» 249757 0 R R AR
—%‘1 7+

~

AT TR 8 2 S
xDL,\,‘«LEﬁiL RAER L Bp FARR o
FER R AR KRN L AR LA
B R T A L E j\ﬁ'&’ff“ﬁxl,{:} e
WAFG FRFHELATR SRR T F A
Fi’%m%iim»;wﬁﬁnz R
G AR T R - LS 0 b4e Atmatzidou &
Demetriadis(2016){248 7 1 & B o+ 8 & afg s 4= o
T N TN N LI NN e /\"'\iiﬂ”-f—'i
4 et B by o Korkmaz & (2017)5% 545+ 5 L fs®

A—I o T

N

fE';v__?\"éf?»*‘/\"’m-‘fiﬂhm*EB’3‘37"/]\"‘5 5
T\F’LQF%&;;‘E/Z‘,Q #L‘L‘]E‘,/H.‘bl?r':"\[;réJ

ot AEfEAFa o T3 JalpaI—Jamanl ~ Chen &' #2375 5
L] 1§ j?c‘*" ?4 %fijfi ks IF é‘{ﬂmq/ F ’I“,—é
FASAEHRNLE -

perh s T it e RREEIE > AL IRER S N IR T
PR R 2 G G MR et koo A% F A {oBa KOF
m"L%‘:E‘/&’I“pimé’Jléw'%/um"&i‘/f‘ Foom A
AL K2 Mg iR ® AT LR8BS &
MAAR &2 58 AT AL R S ik iy e
Tt feeid ey BoR TG - 0Pt k0 f g E
Ko FAaAwl BRI R o STALP I RATA »
Mz & o PRSI TR b LA X hp B

‘

R 3 e E 3
’:’ i+ E R, /g_rrwr'm}
LB EP FH S
4 hird AR AT 4
Lty LAFLE R
bR

AR f"ii’f«ﬂ SN R A

BER, A2t ik (tip X
-);'H’ 1%1»(1‘5:‘»\1%’1,&,[" 1?755\._—1,_
I eh= iR IR o R R ch

MR S N N GER FAh B4

2K-12 M B+ 5 L s 3 58 F8] ~ p R asm
g i PR
EH:E = QIJ
[C - S VI A S S
R T T T R
SIS - S A RS S G
I e = A B A
il & B O#
At
(Grover %, v Vv v v v
2017)
(Chen %, v v v
2017)
(Basu, Biswas, o, vV vV Vv
& Kinnebrew,
2017)
(Choi, Lee, & o v v
Lee, 2017)
(Romén- v
Gonzalez,
Pérez-
Gonzalez, &
Jiménez-
Fernandez,
2017)
(Atmatzidou vV VvV V V
&
Demetriadis,
2016)
(Baichang v v vV v v
Zhong, Qiyun
Wang, Jie
Chen, & Yi Li,
2016)

6. 1t
rFE R AL e
=LA O
LEA Y

’ﬁ*’/ﬁ 'f

j: I B 14&;}’\{[‘1

]’é‘%;\ \iglj\/‘j?{|15}]' 755{1

o ATy A f S BT - Lt

AL ECERE £ag

Lo P W% P %TA £8 K-12 M;,;m%w S

L».P 5‘“ #Eﬁi‘lj'f"‘_?.;

EEYE S pitE H..zg_a ZXPLE RSB YT o

LA pERFSAEY P F A IFL E) hd F o4 F Y
AL ER G Rk HBRT FE L RT F I
iR FRTIEG G ks o RR K S
U S AR B e - VA Y e

135

BhEBEGEE LM REE L ok e
?;(JH; E‘i”?’f’—?—: ‘/"E‘;_gg o

EARHTLY R RFRT S EA LAY E
KT dete 3B B E LA X FF AP
O R L E LR S L

7. ¥ 2ak

Atmatzidou, S., & Demetriadis, S. (2016). Advancing
students’ computational thinking skills through
educational robotics: A study on age and gender relevant
differences. Robotics and Autonomous Systems, 75(Part
B), 661-670. https://doi.org/10.1016/j.robot.2015.10.008

Baichang Zhong, Qiyun Wang, Jie Chen, & Yi Li. (2016).
An Exploration of Three-Dimensional Integrated
Assessment for Computational Thinking. Journal of
Educational Computing Research, 53(4), 562-590.
https://doi.org/10.1177/0735633115608444

Byeongsu Kim, Taehun Kim, & Jonghoon Kim. (2013).
Paper-and-Pencil Programming Strategy toward
Computational Thinking for Non-Majors: Design Your
Solution. Journal of Educational Computing Research,
49(4), 437-459. https://doi.org/10.2190/EC.49.4.b

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X.,
& Eltoukhy, M. (2017). Assessing elementary students’
computational thinking in everyday reasoning and
robotics programming. Computers & Education,
109(Supplement C), 162-175.
https://doi.org/10.1016/j.compedu.2017.03.001

Choi, J., Lee, Y., & Lee, E. (2017). Puzzle Based
Algorithm Learning for Cultivating Computational
Thinking. Wireless Personal Communications, 93(1),
131-145. https://doi.org/10.1007/s11277-016-3679-9

Flanigan, A. E., Peteranetz, M. S., Shell, D. F., & Soh, L.-
K. (2017). Implicit intelligence beliefs of computer
science students: Exploring change across the semester.
Contemporary Educational Psychology, 48(Supplement
C), 179-196.
https://doi.org/10.1016/j.cedpsych.2016.10.003

Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana, N.,
& Stamper, J. (2017). A Framework for Using
Hypothesis-Driven Approaches to Support Data-Driven
Learning Analytics in Measuring Computational
Thinking in Block-Based Programming Environments.
Acm Transactions on Computing Education, 17(3), 14.
https://doi.org/10.1145/3105910

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics
on Elementary Preservice Teachers’ Self-Efficacy,
Science Learning, and Computational Thinking. Journal
of Science Education and Technology, 26(2), 175-192.
https://doi.org/10.1007/s10956-016-9663-z

Korkmaz, 0 ., Cakir, R., & 0 zden, M. Y. (2017). A validity
and reliability study of the computational thinking scales
(CTS). Computers in Human Behavior, 72(Supplement
C), 558-569. https://doi.org/10.1016/j.chb.2017.01.005

Roman-Gonzélez, M., Pérez-Gonzélez, J.-C., & Jiménez-
Fernandez, C. (2017). Which cognitive abilities underlie
computational thinking? Criterion validity of the
Computational Thinking Test. Computers in Human
Behavior, 72(Supplement C), 678-691.
https://doi.org/10.1016/j.chb.2016.08.047

Wing, J. (2006). Computational thinking. Communications
of the ACM.

136

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

A R

%'Lil/]*,
1;.,

A
¢4‘%kﬁﬁfﬁu

P HE2 =¥ L FR

2,2_4“:;2

B /%/F FAF F'~ A ﬁi%
darkdreamsOSOZ@gmaiI.com » nfhuang@cs.nthu.edu.tw » ckstar2001@gmail.com

B2
& A PO N A (Massive Open Online Course,
Hik) ¢ e2HBERTHERLIRNEYHN > 4o
A ERRED A RARR C ERDT Y F R
Pt] 5B B Rk 3?5@35‘«5\ ° 7 "H'J“"“ LA
KEFSPwdm de > Bk &g AR FERY
(Self-regulated Learning) 1% % % & %s- Fod f“%‘f ¥4
»# sozs (Prerequisites) # B # R 2R 5T Jjé« J
53 Jf”‘ PLEPR AT L o R MY Bk £
7"‘55 FHEF2HIE T ED ‘w;{
& ?\fw RS ERAFREVH S
BER O RF R IRAGFRLETERACEY D2

o

Matx

ik pADEEY LFom mome F o

1. #2

.$pz¢%W$éw“ﬁ**‘% FEELRE

Ba A ”Lrp}a[}%m B e b % (Freitas, Morgan,
Gibson, 2015; Perna, Ruby, Boruch, Wang, Scull, Ahmad,
& Evans, 2014) » & Fikl #3 Fhad § - e R ITE
FAAM R - EPRF R RS R O
(Hew & Cheung, 2014) - @& siensm + 8 ¥ ;J’-f‘_ ¥) B
R U G ookendg 31 R A defe S RS R
P EAER S ERNEY %a‘%ﬂfé”ﬁ e e e it 3= 4

B 5 RH B BT ORT R R AL -

Bkl nEY FREPGG LR TREY DR
ﬁ\qxu-}g‘-&%‘tﬁtﬁ_mp\ oo BilE- i RE Y
FORCT AN ENES TR P R
FRG T A ARFEEY i A sy
CFENAADFEVHALEY HEL P2
;511:,3/, Seendbfne ARG MEE ook B
e ,Tﬁgégﬂ—ﬁﬁ]%% S s S I
s;:,u.,,:&g;\‘,aﬁ“fu °

M ald

Jr,, At S R VR 0 B EFFL G DL

~ g~ e 3R 5 A @ (evidence-based)
pES ‘Ii I QA—F%\#E Fﬁé?ﬁf‘ ° j‘ﬁjﬂ w4
2 lab AP H R R BEF Y ML
ﬁﬂﬁJ%%E ﬁjiéi’ﬁmﬁ@ﬂ?

ﬁ\\]l B 4L .

21. Kk
‘7‘;%%3 Akt i) ~F2A#HLE L 2@
Fok (L7 FMEE) ~LFPFRRE (51 8F)

eﬂﬂq?—_]
R

@%w

w
v

\

beich | =i
o
xS gl o

A,

lvm*a&%

B0
|

T
0

=5 %é o+ 1\‘-

&+ {?ﬁ“};”ﬁ Br o BHARY B REKY FHER
FrEYRBIZDLP - BA SR (L EFR) 2
ﬁiéﬁti{_’ﬂb#‘%"ﬂ‘i R P EFA TE LR R FRT B
FY®RA - FPEEEY) AR EYHEEIRE
ER (Fw% > 2015)

22, Fiki=E P/ 4

I T4 ﬂl%?ﬁcf—"ﬁ RAMETRE > b5 A TR
gk BH %k % ik F 22 % % (Freitas, Morgan, &
Gibson, 2015) ¥ & éﬁ% 4 % (Daniel, 2012) » d »
& -’-'Pp%ﬂ":}"’xr‘g) 3 ﬁ_;“F 3 |F1§’rnarai\ > ot F |
3 Fgcﬁ EALZEODM M I I T G s A
3 % M (Bady, 2013) s T 5 F R "ﬁ e £
lE«‘J’Fﬁ‘E&?i RS SRR A RS Y BB
Y#or3 2% k2 L s £ & (Henrie, Halverson, &
Graham, 2015)

23. FHAGEY

PARNESEY SEY Hermp EFY s
L ep® R H Y p £ (Zimmerman & Schunk, 2001)
Zimmerman 5 2B P £ Y —’ﬁ pARSEY 4 E
BE RS BANRE A VD NP EH
FIE R 4 0 AT B A K E Fonirs
THRLBRE FRILAIEYFP L0 FV R
ERESREE: SRIEL W ok PR 2 /’FZ{ - ffkﬁﬁi“
F L s B840 5 (Zimmerman, 2000) o B
ABEE Y e £ F 4 i s (SR RATHE
Bofpfoiniw B p AAFFY U Taop o T
B AR TR AAEEY RS TG
Ap B rdrdlipad g BARIME AT ERE D
e p et o FE NENE RIDIOWmT ? o
Mg o | (Patrick & Middleton, 2001) -

24, 4z g

P FEERRLAERTE T T AR L ERR

PR A Rt AR S AR iR D R J‘wfﬁ@ 74 (de

la Torre, 2010) - vzt~ B (Knowledge Map, K-Map)

BiE R gy e o *T# TR S A

& 3\ "?‘ (2011) EA ;,ﬂfr’”‘ g5 T ’]‘qiﬁ}ﬁ- i &
WL RAH 0 U : ;L;Cu%;‘?'l R R

'Iﬁl Fmﬂ 2% frv—éﬂ’ HP 0 NEBRBILRH T h

FEAE A e

-
/f ﬁwu

137

’

3. FIRY

31. A7 FEET2

AP RY LEFEL TR (ShareCourse) T 5
ShareCourse *+ 2012 # d & < § £]* » {345 2014 # >
R i kA TR e MOOC Bt 547 %
%4 , > ShareCourse € & "FARFEEid | ¥i& 2%
¥ OVRE o Pw S8 AW 50 BAERREE
oo BE > BB EAZE 300 P kAR B ow e BT
B iTE kA (Andr0|d 2 i0S) hERFHE* it (APP)

TRHEEEEBERLNT R B P A AR GRRET
T E - Pé‘rﬁ R E o

32, FPrE#EFE

PRy o@psEs Ty i %iﬁkk*@@
SpCHE A SRR FRIRE G S E Ry
w5 02016 & 9 " B (e La:]«%ﬁ MOOC | - 4.2
ERE S LR R ¢ R = S S R
Flirg oA rgF i » BeHE L 2T RS8 T
WiEEfE PR E LA AN TS GREE 2
ERE &Y FERFRAFEVEY > AT L A2k
F ogRaksy if‘fvf%é\fﬂﬁ A#H S PRESD F
P2 i Q@ 20 E-FA AR
A HE R AR T A LA A LT AR KOS

M
A1 A RENE
F=x FPREMF
% TORlE ARk
- Limit and Continuous function
= Continuity and Differentiation
= Differentiation and the Mean Value Theorem
s Mean value theorem
7 # - S
2 Applications of the first and second derivatives
= Integrations and Fundamental Theorem of
A Areas and volumes from definite integrals
1 The natural logarithm functions
+ BT
o _ The natural exponential function and the inverse
trigonometric functions
L= Integration by parts and the trigonometric
+= The trigonometric substitution and the partial
L L’Hopital’s rule and improper integrals
L3 I

’

o

33. & pHH]

B reh® YRR R LRI S - BT A R
ﬁWQW’ Bm R Rt F Y S &

Pt B REF IR Bk E R

ﬁ&a%sﬁ% FAxBEYRY RY TR e
,?],55}.;‘;3&)‘3 » ¥ & ,...mi’rfr' %] %ﬁ PLIFLFI’; Ak L _;.g;
?&ﬁﬁﬁﬂaﬂﬁiﬁ%%ﬁaﬁﬂ$%§F5¥
N gt H Ao R RIRMAE Y TR BANE > 2

e

B oEe Bl TR ST EAEE R A
F- Telead g oEe m e
.| Uniqueness
(=5 —14)
Sum rule
Definition of limit .| Constant multiple
[ELTEL)) | Product rule
- - — (WAIER poik BB k) .
Right-hand-sided limit | Quotient rule
(5#2) . (B:5)
| Reciprocal rule
. .. (eldt)
Lefi-hand-sided limit
(4% %)
Limit | Continuity
(8) GESE)
Bl L Bcdf A % — sy Bl (REF Sadt)
34, FF s]

BAKERFRM G A TR KRR S
AR E M BRREF R HRAEMLG ﬁ AR MR

TR SRR T r*‘]lLJii/Z‘L‘—,—’Wj‘%-ff‘ J"f#_
ER o REFRRBEFRMEF L@ B L7
FhuA o TR A eEE Y FiEH (Text Mining)
B EBE MY (PDF) = F et T & sB 4
FAAME R FEFE BETARRE T FRAD
¥ % 4 f $ s TF-IDF (Term Frequency—
Inverse Document Frequency) #-& gLh 45 05 B 01 %
Bl rradr it TR BM G BEREMaETE
PR R o T2 R MR 0 R SRF
AL > FNE G P e iR o M ER
ﬁ\?{geé;ﬂ (TA) ﬁtbrrﬂ%]gj,up",??;g;@‘
FHOE Y TR RSB L R B P i m
B RpER o

Definition of (imit({BPREE %) -
a Uniqueress(i—1%)

Right-hand-sided limit(##5) BEeR
P TURIES: I ~ MBS ~ FoE— Quotient rule (%)
Week! 1 Left-hand-sided)limit(#EFR)
- 3 Reciprocal rile(f8|£)
imit(FEPR) Contindity (B 4i1E)
FI2HAA % - rms { (st)

& Y5 # 5 PDF et & > %1 Open Source : Pdfminer #-
FHHE_PDF 2 29 Fd k- et HiL g%
i1 PDF Hh& 422 3 A enme @ o 40 st enfa 45

138

FiE nfet o B iTEaeT o F R4~ PDF 2 B 2
[EAR SNV F—F"-‘J;Ef*"’i" ﬁ/’""\%“’r—f“\it‘ﬁ'w’%'ﬁ
I N S A S Ay k)
1%"?5—?\[‘3]1 %’h},. -&r’r[.g]:g?m]’—é‘-‘ig
S5®F 2 (doictzstir)

~=b

1 |Example

2 Suppose that the p.d.f of a random variable X is as follows :
cx forl <x<2
3 |f(®)=
otherwise

4 -« |a. Find the value of constant ¢ and sketch the p.d.f|

[B] 3 ik B E B"fm

35. AmH
A Y L* W2 D RS CRFERER > B w T
T 5 ShareCourse EY —Ff#‘ﬁtt” L RHFM P BETEE AR
£ SERES - LSS 4 (client/server) 1 internet % 5 i
B g7 0 d server i3 (web server) g # client =%
(browser) g @iz 4] » 14 client =3 s B ST
fs » rﬁﬁb server =4 i B % ‘cu (MySQL) fie & dRE o %
WL R @ﬁg?l.i%:gmtiﬂ/,ﬁm,ﬁ 4T E b
M R Y AR FEELS L R PRI IR
12 Linux Cent OS ¥ 5 2 17T 5 s PHP #2583 3 5 A #
8 client spw B (T E 2 BH > iR RIS o B B0
2 b oo R0 PHP i 5 Web server 4= MySQL i id 0
e f FreRl& S, o A SRR AT B 44977 -

FEASHAEA

A4k SR
4. R E %
(1) 27 3 #HWivd & pooms éf#fs‘f‘v P E R T
ko ,«_}fﬁﬁ_‘ FEile > WV AT E A e
SR TNE R ESE LT 1

() ¥ AT B o gl e
RKEF LR RFEF DT ik
(@) M #p RRARD] KFEY TSR
Eﬁjé_—_%‘?&r@l\ﬂ(%& » T 51'%. [jxpﬂtﬁimt i uE Fi
(4 EErREEREFIMERIZE BV AR
PR e AR Hk LN 4 o EAT
PRADER -

5. 3% = 1;%

A% (2011) - BV RH AR L ARMFAREFE

SAH Lo

BpEREEFALR TS

44 ¥

¥ i % (2015) o Er3kEF (MOOCs) ¢ fw 2 3% (SPOCs)

Pk BE KRS - ¥ %# - 1 101-110 -

Bady, A. (2013). The MOOC moment and the end of
reform. Liberal Education, 99(4), 6.

Daniel, J. (2012). Making sense of MOOCs: Musings in a
maze of myth, paradox and possibility. Journal of
Interactive Media in Education.

de la Torre, J. (2011). The generalized DINA model
framework. Psychometrika, 76,179-199.

Freitas, S. I., Morgan, J., & Gibson, D. (2015). Will
MOOCs transform learning and teaching in higher
education? Engagement and course retention in online
learning provision. British Journal of Educational
Technology, 46(3), 455-471.

Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015).
Measuring student engagement in technology-
mediated learning: A review. Computers & Education,
90, 36-53.

Hew, K. F., & Cheung, W. S. (2014). Students’ and
instructors’ use of massive open online courses
(MOOCs): Motivations and challenges. Educational
Research Review, 12, 45-58.

Patrick, H., & Middleton, M. J. (2001). Turning the
kaleidoscope: What we see when self-regulated learning
is viewed with a qualitative lens. Educational
Psychologist, 37, 27-39.

Perna, L. W., Ruby, A., Boruch, R. F., Wang, N., Scull, J.,
Ahmad, S., & Evans, C. (2014). Moving
through MOOCs: Understanding the progression of users
in massive open online courses. Educational Researcher,
43(9), 421-432.

Zimmerman, B. J. (2000). Attaining self-regulated
learning: a social-cognitive perspective. In M. Boekaerts,
P. Pintrich, & M. Zeidner (Eds.), Handbook of self-
regulation. (pp. 13-39). San Diego, CA: Academic Press.

Zimmerman, B. J., & Schunk, D. H. (2001). Self-regulated
learning and academic achievement: Theoretical
perspectives (2nd ed.). Mahwah, NJ.: Lawrence Erlbaum
Associates.

139

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking and
Teacher Development

140

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Computational Thinking Reshapes the Teachers’ Perspective on Human Mind

towards Teaching and Learning Process

Hew-mee CHEAH
University of Malaya, Malaysia
eleanorcheah.creativeteaching@gmail.com

ABSTRACT

The purpose of this paper is to share on the method used in
creating self-realization among Malaysian Educators on the
needs of adopting Computational Thinking (CT) Skills. This
is an important step to begin the process of change. Once
they have accepted the needs of CT, they could be the
change agents to shift the Malaysian Education’s paradigm
by integrating CT into their teaching and learning skills
successfully. A total of 21 participants attended a CT
training conducted by the author, and the training was aimed
to create awareness on (i) educators’ perspective on how the
human minds work towards the teaching and learning
process, (ii) understand that CT is a unique school of
thought, and (iii) it is one important skills in this 21%
Century. Unplugged activities were being used to create the
awareness where the findings clearly showed that the
activities used during the training brought much positive
results for the whole purpose of this study.

KEYWORDS
Computational Thinking, Unplugged Activity, School of
Thought, Reshape Perspective.

1. INTRODUCTION

Malaysia started to promote Computational Thinking (CT)
in the year 2016 and integrated it into learning modules
especially in ICT subject. This was stated in the 111
Malaysia Plan, which would run from the year 2016 until
2020 (Economic Planning Unit, 2015). The Malaysia Digital
Economy Corporation (MDEC) is the sole driving force in
making sure the success of this plan ultimately. This is a
huge project involving teachers training, alteration of the
curriculum, and change management for the stakeholders’
readiness.

1.1 Teacher Training

In 2016, MDEC had organized a training programme called
“Computational Thinking & Computer Science Teaching
Certification Programme” (CT&CS TCP). This certification
programme was aimed to build teachers’ understanding on
CT, and ultimately transfer CT skills to the students in all
the schools. The programme started off with the training for
selected 100 lecturers from the Teacher Training Institution.
Once they had gone through the entire certification process
and certified as a Master Trainer (MT), they could start
training all the pre-service teachers. In the following years,
36 lecturers from 6 public universities were trained and
certified as MT to conduct the same training for all the other
in-service teachers.

The CT&CS TCP consists of 3 parts. Part 1 is a 5-day face-
to-face training (8 hours a day) conducted by the author for

over one week. Part 2 required participants to submit a
programming project. They had to exemplify a range of
programming techniques learned during the Part 1 training.
They would start this project right after the Part 1 and were
given two weeks to complete it. In Part 3, the participants
needed to show some particular aspect of CT pedagogy by
carrying out a classroom investigation. They had to submit
their own video and report on their findings after they had
conducted similar lessons in actual classrooms, which
demonstrated how the CT pedagogy had effectively helped
their weaker students in learning certain difficult topics.

1.2 Curriculum

In order to ease the teachers’ implementation of CT
education, MDEC had successfully developed a series of
teaching modules. These teaching modules covered all the 8
subjects of the primary level, Computer Science Foundation
for the Year 7 — 9, and Computer Science for the Year 10 —
11. It gave these teachers some basic ideas on the various
ways CT could be integrated into their Teaching and
Learning (T&L).

1.3 Change Management

As for the stakeholders’ readiness, MDEC works closely
with the Ministry of Education (MOE) Malaysia and various
State Education Departments to conduct different
workshops for the principals, school managements, teachers
and students for this CT awareness.

The CT is truly a new concept to the Malaysians, where
many teachers were often being confused by this different
school of thought. Some of them had thought that CT was
actually focused on the engineering thinking, or scientific
and mathematical thinking. Some wrongly thought it was
just another problem solving skills and couldn’t understand
why it was being focused on. The investigation by Ling et al
in 2017 showed that teachers often related this CT to ICT
instead. They thought that one must acquire the ICT
knowledge to be able to integrate the CT into teaching and
learning (Ling, Saibin, Labadin, & Abdul Aziz, 2017).

2. BACKGROUND OF THE STUDY
There are three main purposes to this study. It is to
demonstrate how Unplugged Activities would:

i. enable educators to reshape their perspective on
human mind in T&L process,

ii. demonstrate that CT is a unique school of thought.
iii. create realization on the importance of CT.

The three unplugged activities were: 1: Tangram 2: Monster
face 3: Algorithm (further discussed in page 3).

141

2.1 Reshape the Educators’ Perspective on human mind
in T&L process

According to the statistics conducted by the Higher
Education Leadership Academy at the Ministry of Higher
Education Malaysia in 2011, the results showed that 50% of
the lessons delivered by 41 schools across Malaysia were
unsatisfactory. The researchers had followed 125 lessons,
and most of the lessons did not engage students into learning.
These lessons were being conducted using the teacher-
centered learning method. Most emphasis was towards
memorizing the questions and answering techniques, instead
of instilling higher order thinking skills. The assessments
were mostly tested on the student’s ability in recalling
concepts (70% of all the lessons observed) rather than to
analyse and interpret data (18%) or synthesize information
(15%) (Project Management Office 2012).

Siti Hendon Sheikh Abdullah had conducted a qualitative
research in 2013, where she observed the trainee teachers of
9 primary schools who had delivered various Physics topics.
The results clearly showed that those trainee teachers had
tried to use the inquiry approach, but it was not being
conducted effectively. That was due to the trainee teachers’
failure in carrying out the teaching and learning
constructively. Those trainee teachers were not skillful
enough in using the Inquiry-Based Approach to conduct
teaching and learning because they had failed to think
constructively (Abdullah, 2013).

There is a definite need to build the educators’ constructive
thinking skills and we must bring this awareness to their
conscious level, so that they could recognize this deficit
(Adam, n.d.). Once they are fully aware on the areas of their
weakness, they could easily adapt and materialize the
changes immediately.

2.2 Computational Thinking as a unique school of
thought

There were famous Mathematicians like John Napier,
Charles Babbage, Lady Ada Lovelace and etc who were the
pioneer contributors to the formation of computer science as
a discipline. The Engineers like Herman Hollerith and
Vannevar Bush (just to name a few) had also built punch
card and electric motors which became the fundamental
architecture design of the modern computers (CMU, n.d.).
All these developments had led some people to mistakenly
believe that the CT resembles the mathematical,
engineering, or Scientific Thinking.

In the book titled “Mastery Algorithms”, the author
Domingos had written a good description on how the CT is
different from these schools of thought. He pointed out that
a scientist focuses on theories and the engineer focuses on
practical, while the computer scientist actually works on
both the theories and practical together (Domingos, 2015).
In a more layman understanding, a scientist forms formula
while the engineer uses this formula to build things, but a
computer scientist needs to come up with formula (example:
syntax) and work on the transistors (engineering work).

When someone focuses on the computer science related
coding work for a period of time, it will eventually change
their thinking patterns. Kim et al had done a research in the
year 2013 and discovered that computer programming

enhanced creative problem solving ability for both ordinary
and gifted learners (Kim, S., Chung, K., Yu, H., 2013). This
implicates that programming activity could enhance a
person’s thinking.

The author views CT as a collective of schools of thought,
which is a deeper and more revolutionary thinking level. Just
like dementia is a collective of various symptoms, whereby
Alzheimer and Parkinson actually branched out from it; The
Computational Thinking is a collective schools of thought,
where scientific thinking, engineering thinking, and
mathematical thinking are all part of it.

2.3 The importance of Computational Thinking

The arrival of the 21% Century, where technology advances
exponentially (Nagy, Farmer, Quan & Trancik, 2013), has
led to a paradigm shift in education. In order to equip our
future generations with problem solving skills to solve
complex problems brought by the advanced technology, we
need to redesign our educational standard by imparting
thinking skills, especially CT in this context, to benefit our
young learners.

All the educators today should see the coming of this
technology wave, where the Industry Revolution 4.0 would
be sweeping around the globe soon. We should therefore
prepare our young learners and future leaders with this CT
skills.

3. METHODS

The study used qualitative pre-post “self-assessment”
approach (Bhaniji, F. et al, 2012).

3.1 Participants

A total of 21 lecturers from various university faculties who
had not attended any CT training had participated in this
study. They were selected lecturers from a mixture of the
faculties of computer science, engineering, and education.

3.2 Pre-training assessment
A pre-training survey was conducted for self-assessment on

i understanding on CT,

Q: In your opinion, what is Computational
Thinking (CT)?

This question was used to assess the understanding
of the participants on CT. By knowing that CT was
a new concept to them, author would need to
synchronize with all the participants and get them
to understand to the importance of CT, before the
training of CT could be conducted.

ii. ability to view from the students’ perspective,

Q: T am able to identify the students’ thinking
pattern and make full use of it for teaching &
learning process.

This question eventually led to close the gap
between the teacher and students towards the
process of teaching and learning.

iii. problem solving skills.

Q: | think my problem solving skills is ,
because .

142

This question was aimed to demonstrate that CT is
a unique problem skills / thought process. The
participants would have to assess if CT training had
helped to scale up and improve their problem skills.

3.3 Unplugged Activity 1

The training began with Unplugged Activity 1. It was
modified from Algorithm Unplugged Activity 6 by
Code.org.

®

)

Figure 1. Unplugged Activity 1

All the participants worked in groups of three / four persons.
Each group was given a different tangram picture. They had
to use their problem solving skills to write instructions for
the computer to form the same tangram picture. Once they
had written the instructions, two groups were paired to take
turns in playing their roles as the computer and also as the
programmer. When they were the programmer, they had to
read out the instructions. The other group who role played
as the computer and sat back to back with the programmer,
had to form the picture based on the instructions heard.

This activity demonstrated clearly how the humans need to
carefully plan a successful communication with a computer,
which also raised up the participant’s awareness on its
importance to see from the second person’s perspective in
real-life communications, especially throughout the
teaching and learning process.

3.4 Unplugged Activity 2

The next activity was Unplugged Activity 2. It was adopted
from Barefoot CAS UK. The original name for this
Unplugged Activity was “Crazy Character Algorithms”
(Barefoot)

This activity simplified the problem by providing the
“ingredients” of the crazy character with simple instructions
next to it.

How to draw a crazy character algorithm
draw a circle for
the body

S O

o

C 3 add wings
D\\ f dd four |
g '°’

add 2 eyes

add a crown

An example crazy character algorithm

Figure 2. “Ingredients” of the crazy character

All the participants drew different versions for this crazy
character by using the “ingredients” in Figure 2. Next, they
wrote their instructions for others to draw the same crazy
character by just reading the instructions without knowing
what was being drawn by that person.

3.5 Unplugged Activity 3

Unplugged Activity 3 showcased how a computer scientist
could abstract problems and solutions. It was modified from
“Graph Paper Programming Unplugged Activity 4” by
Code.org.

This time, the “ingredients” were not being only given for
the problems, the solutions were also being abstracted to the
simplest way.

Group Group.

Instructions:

Answered by (Group Name)

|
@
“*

Figure 3. Unplugged Activity 3

143

PROGRAMMING KEY

Move One Square Forward

Move One Square Backward

Move One Square Up

Move One Square Down

Change to Next Color

1
}
<:i»

Fill-In Square with Color

i

All the three Unplugged Activities demonstrated different
levels of problem skills, and how this CT could simplify
(abstract) the solution (algorithm) by eliminating human
errors.

Figure 4. Simplified solutions

3.6 Post-training assessment

After all the three Unplugged Activities were completed, the
participants went through the Computational Thinking
training which was designed by the author.

A post-training survey was conducted to assess on
participants’ view and understanding on Computational
Thinking: Their view on CT as a deeper level of problem
solving skills, and does CT help them better observe how
students learn and communicate with others.

4. RESULTS

We demonstrated our finding on the participants’
i understanding on CT,
ii. ability to view from the students’ perspective,
iii. problem solving skills.

4.1 Understanding on CT

Prior to the training, all the participants were asked on their
understanding towards this Computational Thinking. Table
1 shows the answers from the 19 (out of 21) participants.

Table 1. Pre-training — Understanding on Computational
Thinking.

3 Logical thinking with use of technology in
solving real life problems.

4 Student able to generate new idea using several
process and produce the idea using new era
computing.

5 Thinking about how to use technology
effectively to solve problem.

6 Students know how to use the technology
efficiently or in other words, use it with
wisdom and have the knowledge on how the
process happen (to solve problems using the
computer or technology).

7 Breaking down a big problem to smaller pieces
and then combine them to get the final
solution.

8 Problem solving techniques in CS.

9 Sorry, not really sure. Its may about logic

thinking as a coding in computer
programming.

10 Using technology as a problem solver.

11 CT (skills and ways of thinking) can be used to
support problem solving process when writing
computer programs.

12 CT is a set of processes for solving problems in
logical way.

13 To provide solution to problem using
computer.

14 CT is cognitive an thought processes involved
in formulating problems and solutions so that
the solutions of the problems could be
represented in a form that can be effectively
carried out by an information-processing agent.

15 Not sure

16 Logical thinking about how to solve problems.

17 Mind thinking to be as computer thinking.

18 Method used by computer scientist to solve
problems.

19 Computational Thinking is the thought
processes involved in formulating a problem
and expressing its solution(s) in such a way
that a computer-human or machine.

Question: In your opinion, what is Computational
Thinking (CT)?

Partici Answer
pant
1 Problem solving technique which follows
specific steps and procedures / guidelines.
2 I have less exposure on CT, but in general |
think it is the way of how we view and solve

problems.

Table 1 shows that most of the participants had no prior
knowledge on CT. They thought it was the use of technology
or computing in solving problems.

4.2 Ability to view from the students’ perspectives

After the participants had gone through the three Unplugged
Activities, the participants eventually realized they would
definitely need to rethink how they should conduct their
teaching lessons from all the students’ perspective.

Table 2. Pre-training self-assessment: Understanding the
students’ learning perspective.

Question: During the teaching & learning process, |
am able to see from students’ perspective. This is how
I doit:

Partici Answer

pant

N (Before)

144

Observing their learning patterns and how
they answer assessment questions,

(After)

While going through the exercises and the 6
concepts of CT, | realize that as an educator, |
should know the prior knowledge that the
students have, so that the activities created for

them are suitable and they’ll be able to gain
the CT skills.

M (Before)
I set my mind that | am a students which is new
to the subject.

(After)
Don’t expect students to think like we think.

Q (Before)
Observe and evaluate the student performance
(results & responses from the students when |
asked guestions to them)

(After)

| have learned that we cannot feel frustrated if
students are unable to follow all of our
instructions. It is because at sometimes we
must see from their perspectives too in order to
be get mutual understanding.

(Before)
Yes?

(After)
Instruction must be clear.

(Before)

Provide the question to student and ask them to
solve it, observe the way how they solve the
problem, and then discuss with them if there is
any issue.

(After)

From today’s training, I get to know that the
different between instructor and students.
Instructor will always think that student
understand them, however, that is not 100%
true, most of the time, if the instructor did not
give them the evaluation, such as provide the
exercise, and ask them to try, at the end, the
student will totally learnt nothing, as they
never try and know their mistake. Thus they
don’t have chance to correct it.

(Before)
Through arguments in their reports

(After)

What | know, what my colleagues know, and
S what the trainer knows is quite different.

Therefore, we can not set standards that are

too high at first, where we must allow the

learning process to change positively over

time.

The participants were conscious on the strength and
weakness of the human mind especially in this area of T&L
process after they had gone through Unplugged Activity 1.

“Human mind cannot process too many instruction /
complex.”

“Human mind can make assumptions and prediction, but it
can get tired and confused.”

“Human can predict and make assumption. But they also
tend to forget and have negative feelings.”

“Human is able to guess, assume and predict when they start
to propose a solution. However, they will feel frustrated and
sometimes get easily annoyed if they cannot solve the
problem using the proposed solution.”

“Strength of human mind-can guess, predict, assume, has
prior knowledge, and can judge. While, weakness of human
mind- get tired and easily disrupted.”

“Strength: Human can think wisely, and then improvise.
Moreover, human can do the logical reasoning, they able to
identify the correct or wrong. However for human’s
weakness, is they have feeling, have emotion, and
sometimes, the bad emotion, will causing them to make the
wrong decisions.”

“The strength of human mind is able to think logically and
creatively while the weakness is lack of focus and
concentration.”

“Human can do reasoning, they tend to make guess, predict,
tired, confused based on their old information.”

4.3 Problem Solving Skills — CT is a unique school of
thought

All the participants were encouraged to rate their own
problem solving skills prior to the CT training. During the
training, they would be able to see the three different levels
of thought process from the three Unplugged Activities.
From these hands-on activities, they eventually realized they
still needed to improve their problem solving skills.

These participants provided their thoughts on their own
problem solving skills after three Unplugged Activities. It
could be summarized into a few format:

“I am more clear about how I think/thinking process while
solving problems during training activities.”

“I realized my problem solving skills was just moderate.”

“I realized my problem solving skills improved after
learning all the 6 CT concepts.”

“I realized my problem solving skills need to be improved.”

>

“I realized my problem solving skills was just average.’

“I realized my problem solving skills can be enhanced by
incorporating the computational thinking skill. The skill that
I learned the most is abstraction, which is learnt to identify
the important features when solving the issue, and also must
first to break the problem into the small part which can be
manageable.”

All the participants were questioned on whether this CT is
an important skill to be taught to their students and a high
majority of the participants fully agreed that this CT would
greatly to help prepare the students to contribute new
solutions to the seemingly impossible problems (Figure 5).

145

Computational Thinking Skills help prepare students to contribute new
solutions to seemingly impossible problems.

0(0%) 0(0%) 0(0%)

Figure 5. Computational Thinking is important

5. DISCUSSION

The ultimate results showed that Unplugged Activity 1 had
successfully created awareness and brought it to the
conscious level of all the participants which they could
recognize this deficit. They agreed that they had wrongly
thought they could easily understand how their students
would think but in actual fact there are much room for
improvement. This CT has shaped their general perspective
on how their students learn after understanding and
identifying the ways the human minds work.

Besides this, the results also showed that the participants
agreed to the importance of this CT and that it greatly helped
to improve their problem solving skills.

6. LIMITATIONS AND FUTURE WORK
The survey and training were conducted entirely in English
language. According to the feedback, it showed that the
majority of these participants’ English level were not at the
proficient level. They may have also misunderstood the
meaning of some given questions, or were unable to absorb
all the information shared during training.

A more carefully planned self-assessment questions for both
pre and post trainings should be developed, in order to
successfully provoke the participants’ thoughts on the core
of the questions.

Before we can popularize the CT in Malaysia, we need to
create effective awareness to the needs of this CT. It could
be a road block for changes to take place if we do not help
the educators to unlearn the old concepts, so that they can
relearn this CT.

On top of that, the importance of closing the gap between
the educators and the learners is very important. It should
start from how these educators can view all the students’
learning skills from their perspective. From there, these
educators could use their CT skills to decompose the lesson
towards these students’ manageable level, and make
learning more fun and achievable.

We need to think of the effective ways to maintain trained
educators’ thinking pattern, so that they would not fall back
to their old patterns too.

7. REFERENCES

Adams, L. (n.d.). Learning a New Skill is Easier Said Than
Done. Retrieved Jan 28, 2018, from:
www.gordontraining.com/free-workplace-
articles/learning-a-new-skill-is-easier-said-than-done/

Barefoot CAS. https://barefootcas.org.uk/programme-of-
study/understand-algorithms/ks1-crazy-character-
algorithms-activity/

Bhanji, F., Gottesman, R., Grave, W.D., Steinert, Y., &
Winer, L.R. (2012). The Retrospective Pre-Post: A
Practical Method to Evaluate Learning from an
Educational Program. Academic Emergency Medicine,
189-194. doi:10.1111/j.1553-2713.2011.01270.x

Domingos, P. (2015) The Master Algorithm: How the
Quiest for the Ultimate Learning Machine Will Remake
Our World. New York, NY: Basic Books.

Economic Planning Unit. (2015). Eleventh Malaysia Plan
2016 — 2020: Anchoring Growth on People. Putrajaya,
WP: Malaysia. Prime Minister’s Department.

CMU. History of Computers. Retrieved Jan 26, 2018, from:
https://www.cs.cmu.edu/~fgandon/lecture/uk1999/history
/

Kim, S., Chung, K., & Yu, H. (2013). Enhancing Digital
Fluency through a Training Program for Creative
Problem Solving Using Computer Programming. The
Journal of Creative Behavior, 47(3), 171-199.
d0i:10.1002/jocb.30

Ling, U. L., Saibin, T. C., Labadin, J., & Abdul Aziz, N.
(2017). Preliminary Investigation: Teachers’ Perception
on Computational Thinking Concepts. Journal of
Telecommunication, Electronic and Computer
Engineering, 9, 2-9, 23-29. Retrieved from
http://journal.utem.edu.my/index.php/jtec/article/view/26
72

Nagy, B., Farmer, J., Quan, B. M., & Trancik, J. E. (2013).
Statistical Basis for Predicting Technological Progress,
PLOS ONE, 8 (2), 1-7. Doi:
10.1371/journal.pone.0052669.

Project Management Office (2012). Preliminary Report,
Malaysia Education Blueprint 2013-2025. Malaysia,
Ministry of Education.

146

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Teacher’s Perceptions and Readiness to Teach Coding Skills:

A Comparative Study between China, Finland and Singapore

Chee-kit LOOIY, Jari MULTISILTA?, Longkai WU?, Pauliina TUOMI?
! National Institute of Education, Nanyang Technological University, Singapore
2Tampere University of Technology, Finland
cheekit.looi@nie.edu.sg, jari.multisilta@tut.fi, longkai.wu@nie.edu.sg

ABSTRACT

While many countries have recognized the importance of
computational thinking and coding skills and are
implementing curricular changes to introduce coding into
formal school education, a necessary and critical success
factor involves the preparation of and support for teachers to
teach coding. Thus, understanding the perceptions of
teachers towards coding is most important, together with
knowing the kinds of support they received, and their
readiness and challenges to teach. The purpose of the current
study is to compare teachers’ attitudes towards the
importance of ICT skills and coding skills in Finnish,
Chinese and Singapore K-12 schools. The findings indicate
that Singapore and Finnish teachers believe that coding is
useful even if students will not work in ICT jobs while
Chinese teachers are undecided. China and Singapore have
more positive views towards how to prepare for future-ready
learners.

KEYWORDS
computational thinking; coding skills; 21st century skills;
primary school; comparative research; attitudes

1. INTRODUCTION

Countries and regions around world, such as Australia, New
Zealand, United States, United Kingdom, South Korea,
Finland, China and Singapore, have recognized the
importance of coding. They are taking rapid measures to
introduce it through all levels of the school curriculum. Both
Finland, China and Singapore have to date revised national
standards and curriculum to focus learning goals on higher-
order thinking, inquiry, and innovation, as well as the
integration of technology to the curriculum. In these
countries, the need for educating students in 21st century
skills is commonly acknowledged. These countries
(Shanghai region for China) have also been top performers
in PISA rankings.

The purpose of the current study is to compare teachers’
attitudes towards the importance of 21st Century skills,
especially computational thinking (CT) and coding skills in
Finland, China and Singapore, in K-12 schools. Specifically
we aim to compare teacher’s attitudes towards the
importance of teaching coding skills already in basic
education, the importance of 21st Century Skills in students’
future jobs, and preparing students for the digital century.
The findings and results of comparative education studies
are valuable resources also for the administration of
education systems and is one of the main reasons this
approach was chosen for this study.

2. 1ICT AND CODING POLICIES INTHE 3

COUNTRIES
We first provide a backdrop of policies regarding ICT use
and teaching of coding the three countries.

Finland

The teaching of ICT started in Finland in 1980s, first in high
schools. Official reports and curriculum projects stated
clearly that students should learn the basics of this new
literacy. However, software support was weak and there was
not much in-service teacher training in computing. In
secondary schools, the actual subject of ICT was brought
into the curriculum between 1987 and 1988, as an optional
subject. A few years later, ICT was no longer taught as an
individual subject, and ICT skills were integrated into other
subjects (Vahtivuori-Hénninen & Kynéslahti 2012).

Since fall 2016, coding is a mandatory, cross-curricular
activity that starts from first year of school and spans
both primary and lower secondary education. Finland has
outlined that coding is one of the learning skills — just like
reading, writing, counting and drawing. The Finnish
Ministry of Education has outlined that ICT skills, and
coding in particular, is a fundamental part of the Finnish
National Core Curriculum (FNCC) from 2016 (FNBE,
2016). It is still not an independent subject, but it is
integrated into other subjects. The FNCC defines several
transversal skills that should be taught and learned in every
subject. ICT competence is among these transversal
competencies. The FNCC states that pupils should work
with digital media and age-appropriate programming tasks.
Key content areas related to the objectives of mathematics
in grades 1 and 2 state that, “the pupils began familiarizing
themselves with the basics of programming by formulating
and testing step-by-step instructions” thus supporting the
development of logical thinking and problem solving.

China

Computer technology has been utilized in Chinese education
since the 1980’s (Mok &Leung 2012) According to Niemi
and Jia (2016), the growing popularity of the Internet and
communication technology from the 1990’s onwards
brought a wider concept of ICT, which was then introduced
into China and Chinese education (Niemi and Jia 2016, 9).
In 2010, a national plan for educational reform and
development was issued by the central government. It
declared that ICT will have a revolutionary impact on
education (MoE China 2010). Since that time, there has been
a steady increase of government expenditure on education,
and vast investment from central and provincial
governments has gone to the application of ICT in education
(Niemi and Jia 2016, 9; Han and Ye 2017).

147

In 2016, the National People’s Congress approved the 13th
five-year plan for national economic and social development
which stressed to enhance the educational level of all people
and to promote modernization of education. The concrete
approaches detailed in this plan include the development of
online education and distance learning, the integration of all
kinds of digital resources and their service for society as a
whole, and the deep integration of ICT with teaching and
learning (National People’s Congress China, 2016). Based
on Jia and Niemi (2016), “The purpose of ICT integration
into ordinary teaching and learning is to cultivate students’
basic knowledge, skills, and literacy in the information era,
to foster their creativity, and to prepare them for the future
workplace” (Jia and Niemi 2016, 315).

A new round of high school curriculum reform program has
been announced in 2016 and enacted from 2017, which takes
CT as one of the four core elements of the discipline of
information technology. The move indicates that CT has
been be given more importance at the national curriculum
level which will influence the enactment of new curriculum
standards, composition of new teaching materials and
guidance of new college entrance examination.

Singapore

Singapore is a small city-state with key national focus on
developing human capital, its ICT in Education policies are
formulated with the goals of preparing its student citizenry
for the knowledge-based economy, and to enhance the
learning experiences of students in schools. Since 1997, the
government has launched four Masterplans for ICT in
Education to equip students with ICT-enhanced approaches
to learning.

In 2014, Singapore launched the Smart Nation Programme
which is a nationwide effort to harness technology in the
business, government and home sectors for improving urban
living, building stronger communities, growing the
economy and creating opportunities for all residents to
address the everchanging global challenges (Smart Nation,
2014). One of the key enablers for the Smart Nation
initiative is to develop computational capabilities.
Programmes are implemented to introduce and develop CT
skills and coding capabilities from pre-school children to
adults. To develop CT capabilities and support the Smart
Nation initiative, several programmes have been
implemented to introduce and develop CT skills and coding
capabilities in every Singaporean, from pre-school children
to adults (Seow, Looi, Wadhwa, Wu & Liu, 2017).

Singapore’ approach is to provide opportunities for students
to develop their interests in coding and computing skills
through touchpoint activities at various ages. Computing and
CT skills are introduced to the children that are age-
appropriate and engage them in learning. Children
progressively develop interest and skills leading them to
offer Computing as a subject for grade levels 9 and 10.

There are major differences between China, Finland and
Singapore in terms of their respective populations,
languages, history, cultural roots, and educational systems
(Jia and Niemi 2016, 318). However, when discussing new
ways to teach and learn, these countries face similar
opportunities and challenges. In these countries, ICT and

new learning environments are perceived as tools for
teaching and learning. These countries emphasize that new
digital tools and materials should be pedagogically relevant
and that teachers need support and training to learn how to
use them.

3. DESIGN OF SURVEY

The survey is designed based on three major guiding
questions: 1) What are the perceptions of teachers on ICT
use in schools? 2) What are the readiness levels of teachers
for teaching coding skills? 3) What are the perceptions of
teachers towards teaching coding skills? It comprises 74
questions in total, including 5 questions on teacher profiles,
14 questions on ICT use, 14 questions on teachers’ readiness
to teach coding skills, and 41 questions on teachers’
perceptions and attitudes related to coding skills. The survey
guestions on perceptions and readiness use a 5-Likert scale
(1-Strongly disagree, 2-Disagree, 3-Undecided, 4-Agree, 5-
Strongly agree).

4. FINDINGS OF SURVEY

In total there were 702 respondents, 406 from China, 143
from Singapore and 153 from Finland. The teachers from
China are all from the Shanghai region. According to Chi-
Square test, the gender distribution in the data is statistically
different, X2(2) = 21.26, p < .001. The majority of the
respondents were female teachers (79.4%). In China, there
were 84.2% female teachers and in Finland 78.9%. In
Singapore, 65.4% of all respondents were female.

According to Chi-Square test, in the age distribution of the
respondents there is a significant difference, X2(16) =
212.04; p < .001. Respondents in China are younger
compared to Singapore and Finland. From an one-way
ANOVA test, the teaching experience in school years in
Finland, Singapore and China is not statistically different,
F(2,696) = 4.48, p = .012.

According to one-way ANOVA test, the school level in
Finland, Singapore and China there is a significant
difference, F(2,633) = 214.21, p <.001. From Finland, there
were no respondents from early childhood teaching, whereas
from China 10.2% of all respondents were in early childhood
schools. In Finland, 36.6% of all respondents were in upper
primary schools (0% in China). Almost all respondents from
Singapore were from secondary school (99.3%).

4.1. Coding skills for all or for some

The question posed is: Coding skills should be taught only
to students that are aiming to work on the field of
information technology (1 Strongly disagree, 5 strongly
agree). The result indicates that there is a significant
difference between China, Singapore and Finland. Finnish
teachers (M = 2.46, SD = 1.34) think that coding skills are
needed also for those who are not aiming to be professional
programmers while Chinese teachers are undecided (M =
3.13, SD = 1.21). The teachers in Singapore (M = 2.46, SD
= 1.13) think similarly as the Finnish teachers, F(2) = 37.73,
N =701, p <.001.

According to one-way ANOVA, the were no differences
between the teachers in different age groups, F(8) = 2.03, p
=.041, or gender, F(1) = 3.06, p =.080. In addition, the were
no differences between the teachers who had different

148

amounts of school experience as a teacher, F(6) = 1.22, p =
292

4.2. Best method to learning coding skills

On the question on what is the best method to learn coding
skills (1 Strongly disagree, 5 strongly agree), teachers in all
countries agree that coding is learned best by writing the
code, with visual programming environments, building
robots and outside school clubs. Teachers in China agree that
coding is also best learned at school with the teacher’s
guidance, but Finnish teachers are undecided. The difference
is statistically highly significant, F(2) = 80.50, p < .001.
Teachers in China agree that coding is also best learned from
books and dedicated websites, but Finnish and Singapore
teachers are undecided. The difference is statistically highly
significant, F(2) = 76.58, p < .001.

M SD | N F(2) Sig.

At school, with the | China 423 | .71 | 393 | 80.50 | .000
teacher's Finland 3.34 | .84 | 153
guidance Singapore | 3.6 .97 | 138
From books and | China 4.00 | .78 | 393 | 76.58 | .000
dedicated Finland 3.12 | .85 | 152

websites Singapore | 3.39 | .83 | 138
By actually | China 3.99 | .82 | 391 | 3.55 .029
writing/rehearsing | Finland 3.86 | .91 | 153
the code Singapore | 4.13 | .88 | 138
Through visual and | China 3.98 | .82 | 394 | 2.64 .072

graphical coding | Finland 3.87 | .75 | 152

languages like | Singapore | 3.81 | .78 | 138

Scratch

Through building | China 3.85 | .85 | 396 | 2.01 135

and programming | Finland 3.95 | .80 | 152
robots Singapore | 3.76 | .76 | 138
In informal | China 398 | .79 | 394 | 4.09 .017
activities such as | Finland 411 | .70 | 153
coding clubs, and | Singapore | 3.86 | .75 | 138
other outside of
school events

When the gender is used as a factor in the one-way ANOVA,
there is a statistical difference only in the item “by actually
writing/rehearsing the code “, F(1) =10.98, p = 0.001. Male
teachers agree that coding should be learned by writing the
code (M =3.93, SD =.85) more compared to female teachers
(M =4.20, SD = .86).

In addition, according to one-way ANOVA, there is a
statistically significant difference in the item “at school, with
the teacher's guidance”, in different age groups, F(8) =4.26,
p <.001. In general, teachers under 45 more that the coding
should be learned at school, with the teacher's guidance than
the teachers who are over 46.

In addition, according to one-way ANOVA, there is a
statistically significant difference in the item “from books
and dedicated websites”, in different age groups, F(8) =
4.31, p <.001. In general, teachers under 45 more that the
coding should be from books and dedicated websites than
the teachers who are over 46. When the teacher’s school
experience is used as a factor in the one-way ANOVA, there
are no statistically significant differences between the
groups.

4.3. ICT used by students in schools

The question posed is: How often your students use the
following technologies in your classroom? A four point
scale was used, rated from 1 (not at all), 2 (once a month), 3
(once a week) to 4 (daily). The hypothesis we had is: The
amounts of use of technologies in the classroom does not
differ in China, Finland and Singapore.

The result indicates that computers are used more in China
(M =3.23, SD = 1.11) compared to Finland (M = 2.74, SD
=.92) or Singapore (M = 2.28, SD = 1.01). The difference is
statistically highly significant, F(2) = 43.96, p <.001.

Internet is used in Singapore (M = 2.69, SD = .95) less than
in China (M =3.21, SD = 1.05) or Finland (M = 3.14, SD =
.85). The difference is statistically highly significant, F(2) =
14.68, p < .001.

Digital cameras and videos are also used more often in China
(M =2.66, SD = 1.09) compared to Finland (M = 1.81, SD
= .83) and Singapore (M = 1.83, SD = .90). The difference
is statistically highly significant, F(2) = 57.34, p < .001.
Educational applications and games are used in Singapore
(M = 1.96, SD = .89) less than in China (M = 2.71, SD =
1.12) or Finland (M = 2.54, SD = .89). The difference is
statistically highly significant, F(2) = 126.57, p < .001.
Notebooks and tablets and mobile phones are used in
classroom similar amounts in both countries.

M SD N F(2) Sig.
Desktop/ China 3.23 | 111 382 43.96 | .000
laptop Finland 2.74 | .92 152
computers Singapore 2.28 | 1.01 138
Notebooks/ China 2.19 | 1.26 390 4.07 .017
tablets Finland 235 | 1.04 152
Singapore 1.95 | 1.01 133
Internet China 3.21 1.05 385 14.68 .000
Finland 3.14 | .85 152
Singapore | 2.69 .95 138
Educational China 271 | 112 | 393 26.57 | .000
applications/ | Finland 2.54 | .89 152
games Singapore 1.96 .89 134
Digital China 266 | 1.09 | 386 57.34 | .000
cameras/ Finland 1.81 .83 149
videos Singapore | 1.83 | .90 136
Digital China 298 | 1.16 | 389 38.49 | .000
projectors/ Finland 2.74 | 1.31 | 153
interactive Singapore 1.93 1.20 134
whiteboards
Mobile China 235 | 1.30 | 392 4.34 .013
phones Finland 2.69 | 1.08 | 151
Singapore | 2.43 .97 136

When the teacher’s age is used as a factor in the one-way
ANOVA, there is a statistically significant difference only
in the use of digital cameras and digital videos in the
classroom, F(8) = 4.74, p < 0.001. The teachers in the age
groups 20 to 25 (M = 2.68) and 40 to 45 (M = 2.65) use
digital cameras and videos the most, whereas the teachers
from 60 to 65 use the least (M = 1.67). There are no such
differences in the use of other technologies.

4.4. Teachers’ levels of programming skills

The subscale had 2 questions (Cronbach alpha = 0.868):
How would you evaluate your own competence on the
following skills?

. Programming languages (e.g. Python)

149

. Visual coding software (e.g. Scratch)

The results suggested that there was no difference in the
programming skills of the teachers for China (M = 3.45, SD
=1.90), Singapore (M =3.93, SD = 2.56) and Finland (M =
3.65, SD=1.87), F(2,684) = 2.93, p = 0.054.

According to Kruskall-Wallis test, there is statistically
highly significant difference between the male (M = 4.74,
SD = 2.48) and female (M = 3.29, SD = 1.82) teachers in the
programming skills, H(1) = 44.00, p < .001, N = 675. From
an one-way ANOVA, there is not a significant difference in
the programming skills between the teachers in different age
groups, F(8) = 2.30, p =.019. In general, in the scale from 2
to 10 (a sum of two 5 point Likert items), the programming
competence of the teachers is low (M = 3.59, N =677, SD =
2.05).

4.5. Attitudes towards the importance of the future skills in
students’ future jobs

The subscale had 8 questions (Cronbach alpha = 0.908): The
following skills have a great importance in your students'
future jobs: logical thinking, problem solving, creativity,
programming, social and collaboration skills,
entrepreneurialism, language and communicational skills,
analytical thinking.

The results show that there was statistically highly
significant difference in the attitudes towards the importance
of futures skills of the teachers for China (M = 37.18, SD =
4.03), Singapore (M = 35.89, SD = 3.65) and Finland (M =
35.04, SD = 3.96), F(2,673) = 17.68, p < .001. The Chinese
teachers attitudes towards the importance of future skills are
more positive compared to the Singapore and Finnish
teachers attitudes.

According to Kruskall-Wallis test, there is statistically
significant difference between the attitudes towards the
importance of futures skills between male (M = 35.88, SD =
4.20) and female (M = 36.60, SD = 4.00) teachers in the
skills, H(1) = 4.49, p = .034, N = 664. The female teachers
attitudes towards the importance of futures skills is more
positive that the male teachers attitudes.

In addition, according to one-way ANOVA, there is a
statistically significant difference in the attitudes towards the
importance of futures skills in different age groups, F(8) =
4.22, p < .001. In general, teachers under 45 have a more
positive attitude the importance of futures skills than the
teachers who are over 45.

4.6. Attitudes towards teaching future skills in basic
education

The subscale had 8 questions (Cronbach alpha = 0.884): The
following skills should be taught to everyone in primary
schools: logical thinking, problem solving, creativity,
programming, social and collaboration skills,
entrepreneurialism, language and communicational skills,
analytical thinking.

We found that there was statistically highly significant
difference in the attitudes towards the teaching the futures
skills already on basic education of the teachers for China
(M =36.19, SD = 5.37), Singapore (M = 33.98, SD = 4.01)
and Finland (M = 34.61, SD = 4.25), F(2,682) = 13.06, p <

.001. The Chinese teachers’ attitudes towards the
importance of teaching the future skills already in basic
education are more positive compared to the Singapore and
Finnish teachers attitudes.

According to Kruskall-Wallis test, there is no difference
between the attitudes towards the teaching the future skills
between the male (M = 34.96, SD = 4.997) and female (M =
35.54, SD = 4.97) teachers, H(1) = 1.52, p =.217, N = 673.
In addition, according to one-way ANOVA, there is a
statistical difference in the attitudes towards the teaching the
future skills in different age groups, F(8) = 3.04, p =.002. In
general, teachers under 45 have a more positive attitude
towards the teaching the future skills than the teachers who
are over 46.

4.7. Attitudes towards the technological change
The subscale had 4 questions (Cronbach alpha = 0.712):

* | believe that almost all businesses will be computerized in the
future
« | have a good understanding of the effects of technology on

the environment, society, and individuals.

« | think most well-paying technology jobs will require workers
who are highly-skilled.

« | think that most jobs in the future that require the use of a
computer will require strong thinking skills.

The results show that there was a statistically highly
significant difference in the attitudes towards the
technological change of the teachers for China (M = 17.45,
SD = 2.58), Singapore (M = 16.46, SD = 1.95) and Finland
(M = 14.62, SD = 2.30), F(2,696) = 77.22, p < .001. The
Chinese and Singapore teachers’ attitudes towards the
technological change are more positive compared to the
Finnish teachers attitudes.

According to Kruskall-Wallis test, there are no statistical
differences between the genders in the attitudes towards the
technological change, H(1) = 1.65, p =.199, N = 683.

In addition, according to one-way ANOVA, there is a
statistically significant difference in the attitudes towards the
technological change in different age groups, F(8) = 3.77, p
< .001. In general, teachers under 45 have a more positive
attitude towards the technological change than the teachers
who are over 46.

5. DISCUSSION

5.1. Differences between countries

There was not a significant difference in the programming
skills of the teachers when we examined both the scripting
languages and visual programming languages together.
However, the level of programming skills with Python or
similar scripting languages was quite low in Finland (M =
1.58, SD = 0.923) and China (M = 1.66, SD = 0.940). In
Singapore, the programming skills with Python or similar
languages level was higher (M = 2.06, SD = 1.382). In
contrast, the skills for using visual programming
environments were higher in Finland (M =2.08, SD =1.097)
compared to China (M = 1.79, SD = 1.050) and Singapore
(M =1.87, SD = 1.260). In the open-ended question, several
teachers from Finland and China said that coding is a totally
unknown area to them.

150

In general, Chinese and Singapore teachers’ perceptions of
their ICT skills are higher compared to the Finnish teachers.
The Chinese teachers’ attitudes towards the importance of
teaching the future skills in basic education and the
importance of role the future skills in their students’ future
jobs are more positive compared to the Finnish teachers. In
addition, the Chinese teachers’ attitudes towards the
technological change are more positive compared to the
Finnish teachers’ attitudes.

Based on our study, the Chinese and Singapore teachers’
perceptions towards the usefulness of ICT in the classroom
and school ICT support are more positive compared to the
Finnish teachers’ perceptions. There are differences in the
ICT and programming skills of male and female teachers. In
general, male teachers evaluate their ICT and programming
skills higher than female teachers. In addition, there is
statistically significant difference in the attitudes towards the
importance of the future skills in students’ future jobs
between male and female teachers. The female teachers’
attitudes are more positive.

5.2. Differences between genders

Based on our data, there is no gender difference on teachers
perceptions on to whom should be taught coding skills.
However, when we asked what the best method to learn
coding skills is, there was a difference between male and
female teachers. Male teachers agree that coding should be
learned by writing the code (M = 3.93, SD = .85) more
compared to female teachers (M = 4.20, SD = .86).

5.3. Differences between the age groups

There were no difference between the age groups on the item
“Coding skills should be taught only to students that are
aiming to work on the field of information technology”.
However, when asked about what is the best method to learn
coding skills, teachers under 45 think that the coding should
be learned at school, with the teacher's guidance compared
to the teachers who are over 45. In general, teachers under
45 think that the coding should be learned from books and
dedicated websites compared to the teachers who are over
46 who are less likely to think so.

5.4. Differences between perceptions of computing for all
or for some

Singapore and Finland teachers believe that coding is useful
even if it is not for ICT jobs; China teachers are undecided.

6. SUMMARY

Teaching coding skills does not happen without the teacher.
It is important that teachers are educated, guided, and
supported at a practical level to meet the requirements of the
coding skills in the curriculum. Many countries are
including 21st century skills, computational thinking, and
coding skills, as a part of the curricula, but many countries
are lacking, at the national level, official and adequate
education and training of the teachers on how to implement
coding-based activity into their school work.

Singapore and Beijing teachers’ preparedness to use ICT is
high, compared with Finland. Singapore and Finland
teachers believe that coding is useful even if it is not for ICT
jobs; Beijing teachers are undecided. Singapore and Finland

have more positive views towards how to prepare future-
ready learners

Chinese and Singapore teachers’ attitudes towards the
importance of teaching future skills already in basic
education are more positive compared to the Finnish
teachers’ attitudes. The Chinese and Singapore teachers’
attitudes towards the importance of teaching future skills in
basic education, and the importance of the role the future
skills will play in their students’ future jobs are more
positive compared to Finnish teachers. Additionally, the
Chinese and Singapore teachers’ attitudes towards
technological change are more positive compared to Finnish
teachers’ attitudes.

One of the most striking findings that concern all three
countries is the fact that the majority of the teachers in all
three countries are not yet competent in any coding
languages. While this result is to be expected, that teacher
educators cannot expect teachers to effectively teach 21st-
century information and media literacy skills that they
themselves lack (Fry and Seely 2011, 217). This particular
finding clearly suggests adding basic coding skills as a part
of the teacher training and in-service, professional
development, but also not forgetting the other aspects of
teaching the 21st century skills as well. According to
Lambert and Gong (2010), there “exists a critical need for
suitable curriculum materials to train pre-service and in-
service teachers in 21st century concepts related to
pedagogy, content, and technology” (Lambert and Gong
2010, 67).

Teachers in all countries agree that coding is learned best by
writing the code, with visual programming environments,
building robots, and through participation in outside school
clubs. Teachers in China and Singapore agree that coding is
also best learned at school with the teacher’s guidance and
from books and websites, but Finnish teachers are
undecided. The Chinese teachers consider all presented
methods as potential for learning coding. The study indicates
that Finnish teachers favour the active learning methods
(writing the code in a programming environment, by
building robots, and learning in informal learning
environments).

The lack of programming and computer education at K-12
level is increasingly recognized as a serious issue in many
Western countries (Dagiene et al. 2014; Guerra et al. 2012).
Dagiene et al. (2014) states that, “although informatics has
been taught as a subject in many European countries as early
as in the 1970’s, many of these efforts were dropped for
various reasons” (Tuomi, Multisilta, Saarikoski, &
Suominen 2017, 13). As a result, students graduate from
secondary school with a lot of experience using computers
and software, but they do not have computational thinking
and coding skills, and do not understand the basic principles
of how computers and networks operate (Dagiene et al.
2014). This is why it is important to obtain information
relating to best practices of having coding as a subject in
schools. The best practices could contribute to the
modernisation of education and training systems. The results
obtained in this study benefit the school principals, teachers,
and educational policy-makers. In all, computational
thinking and coding skills are challenges that many countries

151

and schools face. New research that results in providing
functional guidelines for teachers, as well as students, to
teach and learn coding skills, contributes to the creation of
high-quality schools of the future (Tuomi, Multisilta,
Saarikoski, & Suominen 2017, 13).

Caveats of this study include: Small sample size from each
country, and teachers are not from equivalent school levels
(early childhood, primary and secondary from each
country). For future research, it is planned to gather similar
data from other Asian and European countries and regions
such as Hong Kong, the Netherlands, South Korea, Taiwan
and USA in order to execute more comparisons and cross
analysis between participating countries.

7. REFERENCES

Christensen, R., and Knezek, G. 1999. “Stages of adoption
for technology in education.” Computers in New Zealand
Schools, 11(3), 25-29.

Dagiene, V. Mannila, L. Poranen, T., Rolandsson, L., and
Soderhjelm, P. 2014. “Students’ performance on
programming-related tasks in an informatics contest in
Finland, Sweden and Lithuania.” In Proceedings of the
2014 conference on Innovation; Technology in computer
science education, ITiCSE 14, 153-158. New York,
USA, 2014: ACM.

FNBE (Finnish National Board of Education). 2016.
National Core Curriculum for Basic Education [National
Core Curriculum of Basic Education 2014]. Retrieved
from,
http://www.oph./download/163777_perusopetuksen_opet
ussuunnitelman_perusteet 2014.pdf

Fry, S. and Seely, S. 2011. “Enhancing Preservice
Elementary Teachers' 21st Century Information and
Media Literacy Skills”. Action in Teacher Education,
33:2, 206-218, DOI: 10.1080/01626620.2011.569468

Lambert, J. and Gong, Y. 2010. “21st Century Paradigms
for Pre-Service Teacher Technology Preparation”.
Computers in the Schools, 27:1, 54-70.
http://dx.doi.org/10.1080/07380560903536272

Jia, J. and Niemi, H. 2016.” In search of the future of
educational challenges in the Chinese and Finnish
context.” In New Ways to Teach and Learn in China and
Finland, edited by Niemi, H., and Jia, J. Bern,
Switzerland: Peter Lang D.

Mok, K. H. and Leung. D. 2012. “Digitalisation,
educational and social development in Greater China”.
Globalisation, Societies and Education, 10:3, 271-294,
DOI:10.1080/14767724.2012.710118

National People’s Congress China. 2016. The thirteen
Five-Years Plan. Retrieved from
http://www.sh.xinhuanet.com/2016-
03/18/c_135200400_2.htm

Niemi, H., and Jia, J. 2016. “What are the new ways to
teach and learn in China and Finland?” In New Ways to
Teach and Learn in China and Finland, edited by Niemi,
H., and Jia, J. Bern, Switzerland: Peter Lang D.

Smart Nation. (2014). Why Smart Nation. Retrieved Feb
13, 2017, from https://www.smartnation.sg/about-smart-
nation

Tuomi, P., Multisilta, J., Saarikoski, P., and Suominen, J.
2017. “Coding skills as a success factor for a society.”
Education and Information Technologies. Springer US.

Vahtivuori-Hénninen, S., and Kynislahti, H. (2012). “ICTs
in a school’s everyday life.” In Miracle of education: The
principles and practices of teaching and learning in
Finnish schools, edited by H. Niemi, A. Toom, and A.
Kallioniemi, 237-248. Sense Publishers.

152

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

“It Opens Up a New Way of Thinking, but...”: Implications from

Pre-Service Teachers’ Introduction to Computational Thinking

Yu-hui CHANG", Lana PETERSON

Department of Curriculum & Instruction, Learning Technologies Program,
University of Minnesota, Twin Cities, U.S.
chan1173@umn.edu, pete6118@umn.edu

ABSTRACT

The purpose of this study is to investigate how pre-service
teachers perceive and conceptualize computational thinking
(CT) concepts within K-12 education. We conducted a pilot
case study that was situated in a teacher technology licensure
course in the United States. After the CT exposure through
a hands-on exploration of programming and robotics as well
as an extension research activity, forty-four pre-service
teachers’ learning artifacts were collected for a content
analysis.

In the initial findings, we found that pre-service teachers
were trying to understand practical examples of CT, were
inspired by the social justice issues related to computing, and
shared CT is in alignment with their educational beliefs.
Though a conceptual change of CT occurred among pre-
service teachers, there were assumptions and concerns
among the pre-service teachers about its application in the
classroom.

KEYWORDS
Computational Thinking, Teacher Education, Pre-service
Teachers, Technology Integration, Professional

Development.

1. INTRODUCTION

Computational Thinking (CT) is becoming a fundamental
ability to have in the digital age (Barr, Harrison & Conery,
2011). Despite its importance, most pre- and in-service
teachers lack the knowledge and ability to purposefully
incorporate CT into classrooms (Freeman, Adams Becker,
Cummins, Davis, & Hall Giesinger, 2017; Grover & Pea,
2013). The majority of research on training teachers about
CT as a concept and how to integrate CT into the curriculum
has focused on in-service teacher professional development
(‘Yadav, Gretter, Good, & McLean, 2017).

Enabling a student to become a “computational thinker” has
been added to the International Society for Technology in
Education’s Standards for Students (ISTE, 2016). In
collaboration with the Computer Science Teachers
Association (CSTA), ISTE has suggested that teachers
cultivate students’ use of CT as a process for problem
solving, algorithmic thinking, and solution building.
Shifting CT to a central role within education requires a
comprehensive approach including integrating CT into K-12
pre-service education programs (Yadav, Mayfield, Zhou,
Hambrusch, & Korb, 2014; Yadav et al., 2017).

As both researchers and teacher educators, we found a lack
of CT training within our pre-service education program and
wished to explore what could be done to change this within
our context. To examine this issue, we provided an

opportunity for pre-service teachers to engage in CT
experiences in a teacher-licensure course.

This case study is an attempt to introduce pre-service
teachers to CT through hands-on exploration. Our driving
research questions for this case study are: (a) how do pre-
service teachers conceptualize the role of CT within K-12
education? (b) what are implications for teacher educators to
support pre-service teachers’ understanding of CT?

2. SUPPORTING LITERATURE

There are myriad of definitions and approaches to the
concept of CT. It has been described as a problem-solving
process (Balanskat & Engelhardt, 2015), a “cognitive skill”
(National Research Council, 2010), a framework of concepts
and capabilities (Barr & Stephen, 2011), and an identity
(ISTE, 2016). Google (2015) broke down CT into four
components for educators: decomposition, pattern
recognition, abstraction, and algorithm design. Educators
are encouraged to incorporate the four CT components into
teaching, such as having students discover the principles of
a pattern within learning materials. Brennan and Resnhick
(2012)’s definition of CT has three components: (1)
computational perspectives- how young people identify with
computing participation; (2) computational concepts-
vocabulary and skills needed to engage in computing; and
(3) computational practices- processes used to work with
computers. There are clear overlaps with the different
definitions of CT but also unique lenses to the various
approaches (Voogt, Fisser, Good, Mishra, & Yadav, 2015).

Moving from “what is CT” to “how to use CT”, we look to
Yadav et al. (2014) who provided CT modules in a teacher
education program to develop pre-service teachers’
understanding of CT and learn more about their attitude
towards the concept. As for professional development in
general, previous research (Israel, Pearson, Tapia, Wherfel,
& Reese, 2015) identified limited instructional time and lack
of technology and support as barriers to integrating CT into
classrooms. Their findings indicated that supportive
resources such as ongoing professional development and
coaching play a vital role in increasing teachers’ ability to
integrate CT seamlessly. Their findings also showed that
struggling learners, students with disabilities, and low
socioeconomic status students benefit from building CT
skills.

There are more opportunities than ever for students to
experience coding and computational thinking through
online platforms such as code.org or new robots and tools
designed for the K-12 context (Shellenbarger, 2016).
Researchers are concerned that CT skills should not be
learned only through separate coding programs but

153

integrated into core content (Barr & Stephenson, 2011). We
need to re-design instructional approaches (e.g., problem-
solving) and pedagogical strategies (e.g., group
collaboration) in curriculum and interdisciplinary subjects to
engage learners in practicing CT (Grover & Pea, 2013; Lye
& Koh, 2014). Goode, Margolis, and Chapman’s (2012)
Exploring Computer Science teacher professional
development is one exemplar model for helping teachers
integrate CT into the core curriculum.

3. METHODOLOGY

3.1. Context

This case study was situated in a 1.5 credit, required course
for teacher candidates on technology integration in K-12
education, at a Midwest public university in the United
States. This teaching-licensure course had to address ten
state standards for effective teaching related to topics such
as instructional strategies, assessment, and learning
environments. The instructor had complete autonomy over
pedagogical approaches and the exact curriculum to address
the standards. The blended course met seven times face-to-
face with online activities between classes. One of the
researchers on this study was also the instructor for three
sections of this course during the spring and summer of
2017. Pre-service teachers who completed the course session
on CT exploration met the criteria in this study for research.
They were asked to share their coursework for research
purposes after the end of the course. Participants included
forty-four pre-service teachers, 5 male and 39 females, who
are majoring in elementary education, special education, or
early childhood education.

CT is not a topic that is traditionally addressed in this course
but given its increased presence in K-12 education and
implications for students we felt it was important to expose
pre-service teachers to the concept. One barrier to including
CT was the lack of time in an already full curriculum. In this
case, CT exposure took place three activities: (1) a 10-min
introduction about the coding movement, (2) an hour-long
unstructured exploration of hands-on tools and resources,
and (3) an online extension activity. To be more specific,
during the one hour free exploration, pre-service teachers
had access to a Makey-Makey, a Blue-Bot robot, a Dash and
Dot robot, an Osmo, an Ozobot and a stations of coding
platforms designed for elementary students, such as
Code.org and Scratch. The classroom was set up by having
each resource displayed at one station around the classroom.
Participants were encouraged to interact with at least one
resource to help them gain new ideas from hands-on
experiences. After the in-class CT exploration, teacher
candidates were asked to find one online resource related to
CT or coding and share their own reflective ideas about CT.
Their responses to this activity were posted in the course’s
online learning management system. Their responses were
visible to their peers but it was not a requirement for them to
interact with their peers within the discussion thread.

3.2. Data Analysis

Forty-four reflective posts were collected from teacher
candidates. To analyze these posts each researcher
independently open coded all of the journals. We then
compared our initial codes with each other to find alignment

and missed insights. Next, we collaboratively utilized
pattern coding to develop major themes from the data. To
enhance internal validity, we continued to member check as
we tested the themes against the data. Within this stage, five
patterns emerged: (1) CT resources, (2) personal meaning of
CT, (3) CT and teachers’ expertise, (4) conceptual changes
of CT, (5) assumptions of CT. During coding process, the
researchers also used the constant comparative method to
enhance the validity of results.

4. PRIMARY FINDINGS

The pre-service teachers started to gain awareness of CT
through their own educational beliefs and teacher expertise.
Among all the resources that they shared in the extension
activity to support their understanding of CT, pre-service
teachers revealed a need to find concrete teaching examples.
This included the desire to explore how CT works in
classrooms, subjects, and curriculum by utilizing YouTube
to view classroom showcase videos and blogs from
Edutopia. They also demonstrated their interest in looking
for free online coding platforms as a useful teaching
resource and learning environment. Practical resources
were the most sought after to translate the experience they
had just had into a tangible tool for their future students.

Particularly for the pre-service teachers specializing in early
childhood and special education, it was difficult to identify
specific resources or address concerns in order to support
their students’ development. Additionally, we found that
pre-service teachers described the nexus of CT with their
educational beliefs in creativity and constructivist learning
theories. They showcased the role CT could play in content
and pedagogical style. For example, some teachers
mentioned potential ways to design a group discussion such
as “getting students working together to figure out how to
create a story using critical thinking and problem solving
skills” (PT#202) and another shared an idea for formative
assessment “frack students’ progress as well as view student
solutions for each level” (PT#103).

The pre-service teachers communicated a variety of
perceptions of the importance of CT. The most influential
factor on their conceptualization seemed to be the
implication on humanity. Some of the participants talked
about the intersection of computing with social justice issues
such as gender, race, and socioeconomic status. For them,
seeing non-profits focused on addressing representation with
computing gave the topic importance. Giving their future
students opportunities to succeed and career options was a
motivating factor to integrate CT.

During their extension activity research, many of the pre-
service teachers referenced campaigns and non-profits such
as Hour of Code, Code.org, Made with Code by Google,
Girls Who Code, Code2040, or Black Girls Code. The
exposure of these social justice centered campaigns
prompted reflection on gender, race and socioeconomic
issues in the technology field. One pre-service teacher stated
that “I am amazed about the amount of girls that have begun
to code, and have become interested in computer science
and [1] love [that the coding program] empowers women”
(PT#106). Likewise some pre-service teachers were amazed
by free coding resources like Code.org “can make learning

154

computer science more accessible for female and minority
students [...] in the hopes of changing [the] narrative”
(PT#305), or like Code2040 which “believes that as
minorities rise, their presence in technology and innovation
related companies needs to increase as well” (PT#313).

One implication of the pre-service teachers referencing the
non-profits is the programming that these organizations
provide primarily resides in out-of-school time. This seemed
to confuse some of the teacher candidates and position CT
and coding as an ‘extra’ activity.

Many of the pre-service teachers connected CT with their
with their specialty within education. For example,
participants discussed the unique role of early childhood,
elementary and special education settings. This reflection
also brought about questions of how to use CT for students’
learning such as ‘what does this look like for early learners?’
or ‘what is age appropriate?’. The participants also shared
confusion on how to use CT pedagogically and how to
integrate CT into different subjects. Pre-service teachers
demonstrated their student-centered beliefs that align with
computational thinking and the teaching sector that they
focus on. This implies that we should not lose the insight of
teachers’ professional knowledge since this could add
pedagogical insights on infusing computational thinking
into curriculum.

We found that pre-service teachers strongly demonstrated a
positive attitude toward CT after the classroom exposure and
the extension activity. However, pre-service teachers started
to recognize the value of teaching CT to build problem
solving skills within their future students. Some of the
teacher candidates also reflected on the alignment of
students having these skills and successful technology
integration.

Though most participants had positive attitudes about CT,
some pre-service teachers shared assumptions about is
applicability. For example, a few of the teacher candidates
already assumed only particular students would be interested
in CT practice. They did not recognize the bias their
reflections carried. In addition, while recognizing CT’s
value in education, some were inclined not to include CT in
their teaching due to perceived age appropriateness, time
restrictions, and access to resources.

5. DISCUSSION

The findings from this case study provide an account of a
first attempt to integrate CT into a teacher preparation course
on educational technology. Our findings showed (a) an
initial understanding of how computational thinking can be
conceptualized for pre-service teachers’ expertise and (b) a
clearer understanding of barriers among pre-service teachers
to translate CT into classroom. We will use these findings
personally to update the design of the course.

In the context of a 1.5 credit teacher preparation educational
technology course with a long list of required contents, we
struggled with a limited time frame to expose the pre-service
teachers to CT. Our instructional design had positioned the
hands-on exploration as the motivational factor within the
CT activity. We had not anticipated the pre-service teachers
being as interested in the larger societal impacts of

computing. In the future, we intend to outline these social-
justice issues as a hook to increase interest at the beginning
of the CT activity.

Additionally, it seemed the bulk of their content knowledge
on CT came from the extension activity research where the
teacher candidates found a resource to share. This self-led
online research resulted in a wide variety of
conceptualizations of CT. Misconceptions of CT amongst
pre-service teachers is a common finding in similar research
on training teacher candidates on CT (Sadik, Ottenbreit-
Leftwich, Nadiruzzaman, 2017; Yadav et al., 2014). In the
future, we will present a specific model of CT and give time
for the pre-service teachers to discuss as a group how they
could integrate CT into their future instruction.

6. SUBSTANTIATED CONCLUSION
Educational technology courses such as the one in this study
need to be updated to build pre-service teachers’
competencies of CT integration in content areas (Yadav et
al., 2017). While these teacher candidates are new to the
profession they brought to the course knowledge, skills, and
beliefs about education that should not be undervalued.
Exposing pre-service teachers to CT helped the teacher
candidates understand the relationship between ‘what is
taught’ (content), ‘how it is taught’ (pedagogy) and ‘why it
is taught’ (rationale and relevance) (Yadav, Hong, &
Stephenson, 2016).

7. ACKNOWLEDGEMENT

Our thanks to the Learning Technologies Media Lab
(LTML) at the University of Minnesota for providing
robotics, programming materials and environments to
support professional developments. A special thanks to
Professor Dr. Cassandra Scharber, for sparking our interest
in this subject and her continued advising support.

8. REFERENCES

Balanskat, A., & Engelhardt, K. (2015). Computing our
future. Computer programming and coding. Priorities,
school curricula and initiatives across Europe. European
Schoolnet, Brussels.

Barr, D., Harrison, J., & Conery, L. (2011). Computational
thinking: A digital age skill for everyone. Learning &
Leading with Technology, 38(6), 20-23.

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to K-12: what is Involved and what is the role of
the computer science education community? ACM
Inroads, 2(1), 48-54.

Brennan, K., & Resnick, M. (2012, April). New
frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research
Association, Vancouver, Canada (pp. 1-25).

Freeman, A., Adams Becker, S., Cummins, M., Davis, A.,
and Hall Giesinger, C. (2017). NMC/CoSN Horizon
Report: 2017 K-12 Edition. Austin, Texas: The New
Media Consortium.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond

curriculum: the exploring computer science program.
ACM Inroads, 3(2), 47-53.

155

Google. (2015). Computational Thinking for Educators.
Retrieved from
https://computationalthinkingcourse.withgoogle.com/

Grover, S., & Pea, R. (2013). Computational thinking in
K-12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

International Society for Technology in Education. (2016).
ISTE Standards for Students. Retrieved from
https://www.iste.org/standards/for-students

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., &
Reese, G. (2015). Supporting all learners in school-wide
computational thinking: A cross-case qualitative
analysis. Computers & Education, 82, 263-279.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 41, 51-61.

National Research Council. (2010). Report of a workshop
on the scope and nature of computational thinking.
Washington, DC: National Academies Press.

Sadik, O., Leftwich, A. O., & Nadiruzzaman, H. (2017).
Computational thinking conceptions and misconceptions:
progression of preservice teacher thinking during
computer science lesson planning. In Emerging Research,
Practice, and Policy on Computational Thinking (pp.
221-238). Cham, Switzerland: Springer.

Saldafia, J. (2016). The coding manual for qualitative
researchers: 3rd edition. Thousand Oaks, CA: Sage.

Shellenbarger, S. (2016, February 9). New ways to teach
young children to code. Wall Street Journal. Retrieved
from https://www.wsj.com/articles/new-ways-to-teach-
young-children-to-code-1455049777

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.
(2015). Computational thinking in compulsory education:
Towards an agenda for research and practice. Education
and Information Technologies, 20(4), 715-728.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., &
Korb, J. T. (2014). Computational thinking in elementary
and secondary teacher education. ACM Transactions on
Computing Education (TOCE), 14(1), 5.

Yadav, A., Hong, H., & Stephenson, C. (2016).
Computational thinking for all: pedagogical approaches
to embedding 21st century problem solving in K-12
classrooms. TechTrends, 60(6), 565-568.

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017).
Computational thinking in teacher education. In
Emerging Research, Practice, and Policy on
Computational Thinking (pp. 205-220). Cham,
Switzerland: Springer.

156

https://www.iste.org/standards/for-students

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

The Readiness of Computational Thinking Education in Taiwan:

Perspectives from the K-12 Principals in 2017

Ting-chia HSU
National Taiwan Normal University, Taiwan
ckhsu@ntnu.edu.tw

ABSTRACT

This study investigated the perspectives of the K-12
principals who took part in the teacher education of
computational thinking. The scales of the readiness survey
questionnaire included object readiness, teacher readiness,
instructional resource readiness, and leadership support.
Moreover, this study also explored the TPACK of teachers
for computational thinking education. The integrated
questionnaire reports two validity statistics — the acceptable
internal consistency (alpha reliability coefficient), and
discriminant validity — for the refined 35 items. The results
of the survey showed that those principals perceived the
present situation which was significantly lower than the
degree of importance they preferred. In other words, all the
dimensions of the survey will have to be strengthened in the
2 years before conducting computational education for the
12-year compulsory education from August 2019 in Taiwan.

KEYWORDS
Computational thinking, teacher education, leadership,
TPACK, readiness

1. INTRODUCTION

Computational thinking (CT) is a necessary form of literacy
in the world with digital devices everywhere. CT is not only
a kind of expertise which only computer engineers use in our
stereotypical thinking. On the contrary, everyone should
have an active attitude toward CT in order to understand and
make use of this attainment (Wing, 2006). The competence
and limitations of CT are both based on the process of
operation and computing processing. No matter whether the
computational process for solving a problem is executed by
the human brain or computed by a computer, we can classify
it into the process of CT. For example, through the process
of reduction, embedding, transformation, and simulation, the
operation of CT can decompose a seemingly complicated
problem into several understandable and solvable ones
(Wing, 2006). To put it simply, CT is a way of thinking
which uses the basic concept of computer science to do
problem-solving, system design, and understanding of
human behavior. In the meantime, CT makes people adopt a
thinking mode which the computer scientists adopt when
they encounter difficulties (Grover & Pea, 2013). A previous
study has found that most countries have tried to integrate
CT courses into K-12 curricula based on a survey of 17
European countries (Balanskat & Engelhardt, 2014). In
addition, the elementary and secondary schools in Australia
have introduced CT into courses for a period of time, and
have placed the literacy of CT in the national education
curricula (Falkner, Vivian, & Falkner, 2014). Therefore,
currently, many teachers are trying to integrate CT into

various courses (Heintz, Mannila, & Farnqvist, 2016). With
the development of digital technologies and the present
concerns about CT literacy, how should the teacher
education be prepared for CT?

Recently, Orvalho indicated that teachers should follow the
methodology for pre-service teachers: Before teaching
students how to do CT, teachers should learn knowledge and
abilities related to CT first (Orvalho, 2017). Yadav also
pointed out that introducing computer science into pre-
service courses can efficiently enhance teachers’
understanding of CT. Moreover, students’ reactions during
their learning process tend to be more complicated.
Therefore, the teacher can not only learn how to involve the
literacy of CT in their courses, but can also help the students
cultivate their problem-solving capabilities (Yadav,
Mayfield, Zhou, Hambrusch, & Korb, 2014). Mouza
combined CT with the TPACK (i.e., Technology, Pedagogy,
and Content Knowledge) instructional method, and teachers
designed CT courses associated with K-8 education when
they were trained in teacher education. The result showed
that the pre-service training not only had a positive influence
on the teachers, but could also help them to develop and
practice instructional content embedded with CT (Mouza,
Yang, Pan, Ozden, & Pollock, 2017).

As CT is applied to teachers’ training, the teachers know
what CT is and how to integrate it into their courses.
Moreover, the teachers can be earlier confronted with the
possible failure that may happen in their teaching process in
the future. Israel (2015) has applied CT to teacher education
to overcome the obstacles for the teachers to achieve the
expertise of the introduction to computer science course. On
the other hand, the teachers would realize what difficulties
the students with deficient resources may encounter.
Through the teacher education for pre-service teachers,
those pre-service teachers would benefit a lot and could
know how to give support and assistance to their students
(Israel, Pearson, Tapia, Wherfel, & Reese, 2015). In
addition, when it comes to CT, visual programming cannot
be forgotten. When the teachers design CT-related courses,
they mostly use Scratch for the basic level. Cetin (2016)
considered CT to be the foundation, and applied Scratch to
pre-service teachers’ training. The result indicates that this
did indeed help teachers in arranging beginner courses, and
the visual programming environment could help teachers
better understand CT (Cetin, 2016).

The current study applied the same course mentioned above
before research questions one to three (i.e., visual
programming for mathematical learning unit) in the teacher
training for the K-12 newly appointed principals. We then
investigated the readiness of their schools via four scales:

157

technology readiness, teacher readiness, instructional
resource readiness, and leadership support. In addition, we
also investigated the technology, pedagogy, content,
knowledge and the overall TPACK of CT based on the real
conditions they perceived at present. At the same time, we
also surveyed the preferred importance which the principals
revealed for the same eight scales. We then explored the
difference between the perceived present situation and the
preferred importance demonstrated by the principals.

2. METHOD

2.1. Sample

There are 24 newly appointed principals participating in the
teachers’ training course for cultivating their literacy of
computational thinking.

2.2. Questionnaire and Reliability Analysis

There are eight scales in the questionnaire. The first four
scales were revised from the readiness questionnaire of
mobile learning (Yu, Liu, & Huang, 2016). That
questionnaire was named the support-object-personnel (SOP)
m-learning readiness model, and was developed to assess the
capacity for mobile learning readiness in primary and
secondary schools in the previous study (Yu, Liu, & Huang,
2016). Darab and Montazer (2011) proposed an eclectic e-
learning readiness scale which includes object readiness,
software readiness, and leadership support (Darab &
Montazer, 2011). In addition, Machado (2007) emphasized
the importance of teacher readiness such as the professional
application capabilities for e-learning. Cheon (2012)
proposed the higher education m-learning readiness model
based on the theory of planned behavior (TPB), and found
that the attitude of a school had impacts on the
undergraduates’ perspectives on mobile learning (Cheon,
Lee, Crooks, & Song, 2012). Accordingly, object readiness,
teacher and instructional readiness, and leadership support
are important scales for evaluating the readiness for putting
something into practice at school, such as e-learning, mobile
learning, or computational thinking, and so on.

Table 1. Descriptive Information for the first four Scales:
Readiness

Scale Name Description Sample Item
Object readiness For the current There are enough
situation of information appliances
equipment in the such as computers for
school, please learning in the school,
answer the providing resources for
following questions. technological courses.
Teacher For the current There are full-time
readiness condition of Information ~ Technology

teachers in your
school, please
answer the
following questions.
For the arrangement The teachers in my school

teachers in my school.

Instructional

resource of teaching have capabilities to employ
readiness materials for the official textbooks in the
Technology domain, information technology
please answer the courses.
following questions.
Leadership For the attitude of ~ School management
support school management, proposes visions, policies,

or projects that support and

please answer the encourage the teaching as
following questions. well as learning in the
technological domain.

Scholars have revised the model of pedagogical, content and
knowledge (PCK) and proposed the model of TPACK (i.e.,
Technological Pedagogical Content Knowledge) (Mishra &
Koehler, 2006). The framework clearly pointed out the relationship
between the technological, pedagogical, and content knowledge of
the teachers. Therefore, many studies have employed the TPACK
model to evaluate the professionalism of teachers or the
effectiveness of teacher education (Chai, Koh, & Tsai, 2010;
Koehler, Mishra, & Yahya, 2007). Moreover, another study has
introduced this model for the teachers to do self-assessment
(Schmidt, Baran, Thompson, Mishra, Koehler, & Shin, 2009). This
study also employed the TPACK model for the principals to do
self-description for the school teachers in the technology domain at
their schools.

Table 2. TPACK for Computational thinking teachers

Scales Questionnaire items
Knowledge of TK1-Our teachers know how to solve their own
technology technical problems.
TK2-Our teachers can learn new technology
easily.
TK3-Our teachers have the technical skills and use
the technologies appropriately.
TK4-Our teachers are able to use computational
thinking tools or software to do problem-solving.
Knowledge of PK1-Our teachers can adapt their teaching style to
pedagogy different learners.
PK2-Our teachers can adapt their teaching based
upon what students currently understand or do not
understand.
PK3-Our teachers can use a wide range of
teaching approaches in a classroom setting
(collaborative learning, direct instruction, inquiry
learning, problem/project based learning etc.).
PK4-Our teachers know how to assess student
performance in a classroom.
Knowledge of CK1-Our teachers have various ways and
content strategies of developing their understanding of
computational thinking.
CK2-Our teachers can think about the subject
matter like an expert who specializes in
computational thinking.
CK3-Our teachers have sufficient knowledge
about computational thinking.
TPACKZ1-Our teachers can teach lessons that
appropriately combine computational thinking,
technologies and teaching approaches.
TPACK2-Our teachers can use strategies that
combine content, technologies and teaching
approaches.
TPACK3-Our teachers can select technologies to
use in the classroom that enhance what they teach,
how they teach and what students learn.
TPACKA4-Our teachers can provide leadership in
helping others to coordinate the use of content,
technologies and teaching approaches at my
school.

TPACK

Table 3 reports two validity statistics — namely, the internal
consistency (alpha reliability coefficient), and discriminant
validity — for the refined 35 items, including 20 items for
readiness and 15 items for TPACK. Data are reported

158

separately for the perceived and preferred versions. The
reliability data suggest that the refined version of each scale

for

readiness and TPACK has acceptable

internal

consistency. The reliability data suggest that the refined
version of each scale has acceptable internal consistency.

Table 3. Internal Consistency (Cronbach Reliability
Coefficient), and Discriminant Validity (Mean Correlation
with other Scales), for Perceived and Preferred Versions.

Mean
Scale Form A'Iphg Nu_mber Correlat
Reliability of items ion
Technology Perceived
readiness: The present situation 0.701 5 0.17
educational
hardware of Preferred
technology importance 0.728 5
domain at school
Professional Perceived 0673 5 017
development of present situation ' '
the teachers in Preferred
Technology - 0.804 5
. importance
domain
The resource of Pferg:rll\tles?tuation 0.646 5 0.20
instructional greferre d
material - 0.759 5
importance
Perceived
Leadership present situation 0.835 > 0.28
support Preferred
importance 0.766 5
Perceived
Knowledge of ~ present situation 0.840 4 0.28
technology Preferred 0.876 4
importance '
Perceived
Knowledge of present situation 0.884 4 0.27
pedagogy Preferred 0.795 4
importance '
Perceived
Knowledge of ~ present situation 0.943 3 042
content Preferred
importance 0.869 3
Overall TPACK Ferceived 0.908 4 038
) present situation
of computational Preferred
thinking - 0.939 4
importance

3. DIFFERENCE BETWEEN PERCEIVED

AND PREFERRED SITUATION

The results found that the principals perceived that their
teachers had not fully prepared 2 years before conducting the
12-year compulsory education for computational thinking.
The 12-year compulsory education will be carried out in
August, 2019 while the investigation was done in 2017.
From Table 4, it could be found that the preferred situation
was significantly higher than the present situation in each
dimension.

In terms of readiness, the technology readiness should be
improved in 2 years. This part seems to be the easiest part to
achieve in the future, but the teachers have to be trained at
the same time. Otherwise, they may not know how to use the
new equipment in their teaching.

Table 4. Paired Sample t test between perceived present
situation and preferred importance.

Scale Forms N Mean SD t P
Technology readiness: The perceived present situation 24 3.00 0.82 -7.52™" .000
educational hardware of

I i 2
technology domain at school Preferred importance 24 4.46 0.51
Professional development of Perceived present situation 24 3.28 0.93 -5.99"" .000

the teachers in Technology 2
K Preferred importance 24 4.54 0.48
domain
The resource of instructional Perceived present situation 24 3.18 0.80 -4.19""* .000
24 3.94 0.59
2

4 3.77 0.74 -4.00™ .001

material Preferred importance

Perceived present situation

Leadership support

Preferred importance 24 4.39 0.50

Perceived present situation 24 3.95 0.69 -3.94** .001
Knowledge of technology X

Preferred importance 24 4.58 0.43

Perceived present situation 24 3.83 0.87 -4.11"" .000
Knowledge of pedagogy X

Preferred importance 24 4.64 0.44

Perceived present situation 24 3.74 0.99 -4.01" .001
Knowledge of content o

Preferred importance 24 4.56 0.50
Overall TPACK of Perceived present situation 24 3.58 0.97 -4.51"" .000
computational thinking Preferred importance 24 4.55 0.54

*##4p<0.001; **p<0.01

In terms of TPACK, it was worrying to find that the
principals tended to not have confidence in their teachers as
they perceived that their knowledge of technology,
pedagogy and content had not achieved the degree they
expected. Therefore, the teacher education institutes have to
put more effort into the development of instructional
material and train the teachers to have the capabilities to
develop their own material for computational thinking in the
near future.

4. CONCLUSIONS

Based on the results of this investigation of the K-12
principals in Taiwan, there are some suggestions to enhance
the preparation for involving computational thinking
education in the 12-year compulsory education.

For object readiness, which refers to the educational
hardware of the technology domain at school, it looks like it
is the easy part if the government devotes money to the K-
12 schools. However, the teachers have to be trained to know
how to operate the new equipment, regardless of whether
they are maker environment or computer technology
products; otherwise, the payment for the hardware will be
wasted. That perfect environment which is supposed to be
constructed in the 2 years could not work without
professional teachers. Therefore, future studies could further
analyze the regression between the readiness of the teachers
in the technology domain and the readiness of the hardware,
and find direct evidence for this inference.

Unfortunately, the participants perceived that the leadership
and management levels have not provided enough support
for conducting computational thinking education. In other
words, many people agree that computational thinking
education is important; nevertheless, the leadership has not
put enough emphasis on it. This study infers that the reason
for this strange situation is that the literacy of computational
thinking will not be regarded as one part for the senior high
school or college entrance examination. However, normal
education is also important. Schools should not only pay
attention to the subjects related to the senior high school or
college entrance examinations. Liberal education should be
encouraged more.

159

In the 2 years, the related institutes have a large amount of
work to do. The most important part is teacher education.
The teachers in the technology domain should be trained to
afford the requirements of instruction in the technology
domain.

ACKNOWLEGEMENTS

This study is supported in part by the Ministry of Science
and Technology in Taiwan under contract number; MOST
105-2628-S-003-002-MY 3.

5. REFERENCES

Balanskat, A., & Engelhardt, K. (2014). Computing our
future: Computer programming and coding-Priorities,
school curricula and initiatives across Europe: European
Schoolnet.

Cetin, 1. (2016). Preservice Teachers’ Introduction to
Computing: Exploring Utilization of Scratch. Journal of
Educational Computing Research, 54(7), 997-1021.

Chai, C. S., Koh, J. H. L., & Tsai, C. C. (2010). Facilitating
Preservice Teachers' Development of Technological,
Pedagogical, and Content Knowledge (TPACK).
Educational Technology & Society, 13(4), 63-73.

Cheon, J., Lee, S., Crooks, S. M., & Song, J. (2012). An
investigation of mobile learning readiness in higher
education based on the theory of planned behavior.
Computers & Education, 59(3), 1054-1064.
doi:10.1016/j.compedu.2012.04.015

Darab, B., & Montazer, Gh. A. (2011). An eclectic model
for assessing e-learning readiness in the Iranian
universities. Computers & Education, 56(3), 900-910.
doi:10.1016/j.compedu.2010.11.002

Falkner, K., Vivian, R., & Falkner, N. (2014). The
Australian digital technologies curriculum: challenge and
opportunity. Paper presented at the Proceedings of the
Sixteenth Australasian Computing Education Conference-
Volume 148.

Grover, S., & Pea, R. (2013). Computational thinking in K—
12: A review of the state of the field. Educational
Researcher, 42(1), 38-43.

Heintz, F., Mannila, L., & Féarnqvist, T. (2016). A review of
models for introducing computational thinking, computer
science and computing in K-12 education. Paper presented

at the Frontiers in Education Conference (FIE), 2016
IEEE.

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., &
Reese, G. (2015). Supporting all learners in school-wide
computational thinking: A cross-case qualitative analysis.
Computers & Education, 82, 263-279.

Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the
development of teacher knowledge in a design seminar:
Integrating content, pedagogy and technology. Computers
& Education, 49(3), 740-762.

Machado, C. (2007). Developing an e-readiness model for
higher education institutions: Results of a focus group
study. British Journal of Educational Technology, 38(1),
72-82.d0i:10.1111/j.1467-8535.2006.00595.x

Mishra, P., & Koehler, M. J. (2006). Technological
pedagogical content knowledge: A framework for teacher
knowledge. Teachers College Record, 108(6), 1017-1054.

Mouza, C., Yang, H., Pan, Y.-C., Ozden, S. Y., & Pollock,
L. (2017). Resetting educational technology coursework
for pre-service teachers: A computational thinking
approach to the development of technological pedagogical
content knowledge (TPACK). Australasian Journal of
Educational Technology, 33(3).

Orvalho, J. (2017). Computational Thinking for Teacher
Education. Paper presented at the Scratch2017BDX:
Opening, Inspiring, Connecting.

Schmidt, D. A., Baran, E., Thompson, A. D., Mishra, P.,
Koehler, M. J., & Shin, T. S. (2009). Technological
Pedagogical Content Knowledge (TPCK): The
development and validation of an assessment instrument
for preservice teachers. Journal of Research on
Technology in Education, 42(2), 27.

Wing, J. M. (2006). Computational
Communications of the ACM, 49(3), 33-35.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb,
J. T. (2014). Computational thinking in elementary and
secondary teacher education. ACM Transactions on
Computing Education (TOCE), 14(1), 5.

Yu, Y.-T., Liu Y.-C., & Huang, T.-H. (2016). Support-
Object-Personnel Mobile-Learning Readiness Model for
Primary and Secondary Schools. Journal of Research in
Education Sciences, 61(4), 89-120.

thinking.

160

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Two Studies of Perceived and In-Situ Readiness for

Implementing the Computing Education in Singapore

Longkai WU*, Chee-kit LOOI*, Meng-leong HOW, Liu LIU
National Institute of Education, Singapore
longkai.wu@nie.edu.sg, chee-kit.looi@nie.edu.sg, mengleong.how@nie.edu.sg, liu.liu@nie.edu.sg

ABSTRACT

Computing education is garnering more attention from
policy makers and educators both locally and globally. In
Singapore, nineteen schools are beginning to offer the
computing curriculum at the GCE “O” level, that is, for
grades 9 and 10. If it is the case that computing education is
standing on the verge of being formalized and offered as a
mainstream subject, it will be important to understand
teacher and student readiness towards the status quo of
computing education in schools. This paper describe two
studies: a survey study of computing teachers’ from the
nineteen schools on their perceived readiness towards
implementing computing curriculum; and an ethnographic
study of four secondary schools with different degrees of in-
situ readiness for both teachers and students during their
implementation of the computing curriculum. Based on the
two studies, we propose more systematic ways of preparing
teachers to teach and students to learn the computing subject.

KEYWORDS

Computing Education, Computational
Readiness, Student Readiness

1. INTRODUCTION

In 2017, Singapore’s Ministry of Education (MOE)
implemented a new curriculum for the Computing subject
for grade 9 and 10 students in 19 schools. The new
curriculum is a distinct shift teaching students from informal
activities (infocomm clubs, code for fun, extracurricular
activities et al.) to formal school education in development
of students’ Computational Thinking (CT) skills and
programming competencies. O Level MOE curriculum has
provided guiding framework for computing teachers and
students to take up their practices, but it takes time for them
to build capacities and alignment in enactment. This paper
tries to investigate different degrees of teacher and student
perceived and in-situ readiness in local secondary schools
prior to and during their implementation of computing
curriculum and address the issue of formalization for
teaching CT and programming in K-12 schools.

2. PREPARE TEACHERS AND
STUDENTS FOR COMPUTING
CURRICULUM

It is paramount to prepare in-service and future teachers to
face the challenges of teaching Computational Thinking
(Garci-Pefialvo et al., 2016). Hodhod, Khan, Kurt-Peker,
and Ray (2016) argue that for students to acquire this
important skill, teachers must acquire in-depth knowledge of
the problem-solving strategies that utilize CT, and the
strategies for integrating CT into their lesson plans. Some
CT training workshops for teachers focus on K-12 students,

Thinking, Teacher

such as the one offered by Franklin et al. (2015) which
provides advice for best practices in curriculum, content
delivery, interfacing with schools, and classroom layout.

In the preparation of teachers for the teaching computing,
Voogt, Fisser, Good, Mishra, and Yadav (2015) suggest
adopting a multi-perspective approach, because many EU
countries have computing teachers at the upper secondary
school level, but too few at the lower secondary and primary
school levels. At the primary school level, Voogt et al.
(2015) assert that it is imperative for teacher education
programs to recruit computer science specialists who can at
least teach the basic notions of computing. In Israel, there is
a shortage of computing specialists to teach in high school
and it was necessary to train teachers of other subjects to
teach CS by training them through a crash course which was
comprised of about ten courses that form the basics of
computer science (Gal-Ezer & Stephenson, 2014). Lepeltak,
the director of learning focus in the Council of European
Professional Informatics Societies (CEPIS), calls for a
professionalization of teachers who are asked to impart CS
lessons, even in other non-CS classes. Further, both Voogt
and Lepeltak concur that teacher training could be pushed at
the EU level to embark on the professionalization and the
training of teachers (Bocconi et al., 2016).

3. STUDY 1: A SURVEY STUDY OF
COMPUTING TEACHERS’ PERCEIVED
READINESS TOWARDS IMPLEMENTING

COMPUTING CURRICULUM

In Dec 2016, prior to the formal implementation of
computing curriculum, we conducted a survey on computing
teachers to seek their degrees of understanding, interest
levels, capacities and challenges regarding the teaching of
computing. 36 computing teachers (27 male and 9 female)
from 19 schools participated in our survey.

Percieved Teacher Confidence
in Teaching Computing Subject

459% 41%

40%
35%
30%
25%

35%

20% 14%
15% 10%
10%
5% 2%
0%
Strongly Agree Neutral Disagree Strongly
Agree Disagree

I am confidentin my ability to in teaching CT.

Figure 1. Perceived Confidence in Teaching Computing
Subject

161

As to perceived teacher confidence to teach in computing
subject (Figure 1), 56% teachers agreed that (14% strongly
agree) they are confident to teach and implement CT in their
classes. 24% are neutral while 14% consider that they are
not ready.

Perceived Teacher Readinessto
Implement CT in Class

60%
50%
40%

30%
10 ' - o
109% -

%

Strongly Agree Neutral Disagree Strongly
Agree Disagree

| know how incoprate CT in my class

Figure 2. Perceived Readiness to Implement CT in Class

As to perceived teacher readiness to implement CT in Class
(Figure 2), 63% teachers agree (7% strongly agree) they
have been ready to incorporate and implement CT in their
classes. 24% are neutral while 14% consider they are not
ready.

As to perceived student readiness to learn computing in
Class (Figure 3), 52% teachers considers (4% strongly
considers) their students have been ready to learn
computing. 28% are neutral while 21% consider they are not
ready and CT is too complex to learn at the level of their
students.

Perceived Student Readiness to
Learn Computing

50%
40%

30%
i '
10%
’ v =y

0%
Strongly Agree Neutral Disagree Strongly
Agree Disagree

CTistoo complex to learn at the level of my classes.

Figure 3. Perceived Student Readiness to Learn Computing

Thus, a discrepancy on the confidence and readiness in
computing subject and to incorporate CT into the teaching
and learning is observed among the computing teachers. A
considerable portion of teachers lacks confidence in
teaching CT and is unclear on how to bring out expected
learning outcomes.

As to the challenges in teaching computing, lack of teaching
resource (94%) ranks the first and lack of pedagogical
knowledge (83%) ranks the second among the seven options
(Table 1). When responding to open-ended questions, they
also mention that they would need shared lesson plans and
best practices by other schools to help their teaching. It is
obvious that teachers are much more concerned about the
resource for teaching and how to teach rather than what to
teach, i.e. content knowledge.

Table 1. Perceived Challenges in Teaching Computing.

Percentage Count Ranking

Teaching 94% 34 1
Resources

Pedagogical 83% 30 2
Knowledge

Ways to 69% 25 3
Motivate and

engage

students

Instructional 67% 24 4
Skills

Community 64% 23 5
Support

Content 61% 22 6
Knowledge

Computing 42% 15 7
Infrastructure

in school

4. STUDY 2: AN ETHNOGRAPHIC
STUDY OF TEACHERS’ IN-SITU
READINESS IN IMPLEMENTING

COMPUTING CURRICULUM

The literature has been mainly focused on preparing in-
service and future teachers through professional
development programs or workshops before computing is
introduced into the curriculum at schools. It has been rare or
lacking to develop an in-situ view to understand the
readiness for computing of in-service teachers, as well as
their students, as computing curriculum have been
implemented in authentic classrooms.

To this end, we have adopted an ethnographic approach to
conduct a field study in four local secondary schools which
have implemented computing curriculum during the whole
year of 2017. The researchers participated in the building
and enactment of computing curriculum as active
participants and took extensive field notes to record the
observations, surveys and interviews. After the whole year
implementation, we differentiate the four schools
considering their different degrees of readiness to implement
computing curriculum with respect to teachers and students.

4.1. School A — Basic Student and Teacher Readiness

As the teacher is new to teaching the computing subject,
School A does not have a specific plan about what they are
going to teach for the following weeks although provided
with the Scheme of Work (SoW) by MOE. The topic and
content may just be decided just before the class. The
reasons could be the inexperience of teaching computing, as
well as unfamiliarity with the computing curriculum.

Meanwhile, quite a large number of students respond to our
survey revealing that they have chosen computing subject
under the circumstance that they are not able to be enrolled
into additional mathematics for the O-Level, which could be
a better choice for them. Besides low motivation, it is also

162

noticed that this batch of computing students may not have
sufficient English proficiency to do well in computing as
language proficiency is considered by the teachers as
important in articulating their answers in paper exam.

Thus, the degree of preparedness of the teachers and the
students in School A to implement the computing
curriculum can be further improved. More engaging
activities can be incorporate into the learning of computing
which the teachers are starting with be more familiar with
over the year. Over the school year, the teacher is seen to be
gaining more proficiency in teaching.

School B — Basic Student Readiness, High Teacher
Readiness

In School B, the teacher has a high passion for teaching
computing as he is highly interested in computing related
knowledge or gadget. He advocates the coupling of 5E
framework with the unplugged activities and argues that
unlike the scientific inquiry process, computing subject can
develop a cross-disciplinary mindset stressing for logic and
conceptualization. He also believes that CT is not only about
coding but also high-level planning that involves designing,
decomposition and implementation. The students, in his
opinion, should not become mere coders or coding workers.
Instead, they should be equipped with a systematic mindset
to solve complex problems.

During the class observation, researchers find that the
teacher’s scaffolding plays a significant portion in guiding
students’ actives. However, the students are not passionate
or active in computing classroom as we have expected or
comparing to other schools. They are also not quite used to
teacher’s scaffolding. The teachers explain that school B is
a neighborhood school which the enrolled students are likely
to be considered as low achievers since they have not
performed well in The Primary School Leaving Examination
(PSLE).

Therefore, school B teacher has developed a high degree of
readiness in teaching computing in terms of beliefs and
strategies. But the enactment has not been quite satisfying in
the classroom with a relatively basic degree of readiness of
students towards computing subject.

School C — High Student Readiness, Medium Teacher
Readiness

In school C, the researchers conduct a focus group interview
with seven Sec 3 students and find that all of them chose the
subject out of their interests in technology. They believe the
computing subject has met their interest and satisfied their
curiosity to technology after taking the subject for the whole
year. More surprisingly, the school actually does not provide
any computing related course at levels of Sec 1 or Sec 2.
These students’ interests derive more from their parents’
impact or future job considerations. Most of these students
claim that they would continue to study computing when
they are to be enrolled in polytechnic or university. They
have also been very active and highly motivated in
computing class. They tend to work in groups and initiate
their own discussions about the computational problems.
Peer learning has been undergoing when the high-achieving
students actively help the low-achieving students. Their

proficiency and creativity in coding has also been
surprisingly high as exhibited in their mini projects.

To meet the students’ need, the two teachers who co-teach
in this class intentionally enact their computing lessons at a
difficulty level a bit higher than the O-level computing
syllabus. However, they fell that their competency regarding
content and pedagogy is not sufficient to teach this group of
students as students always ask questions beyond their
capacities. They also found difficulties in designing suitable
practice tasks and exam questions for students. They rely a
lot on an online learning system for homework assignment
and grading which would save them time in grading
students’ codes. They complain that they do not have the
one-year training in teacher training institute on computing
like other subject teachers. Thus, they have to learn and
teach at the same time all by themselves.

Thus, school C has a situation where the students are more
ready to learn computing based on their own interests to an
extent whilst the teachers are not sufficiently ready to teach.

4.2. School D — High Student Readiness, High Teacher
Readiness

School D has two teachers and sixteen students in the
computing class. Both of the teachers have gone through a
computing education training course, which focuses mostly
on content knowledge rather than the pedagogy or the
knowledge about how to teach a specific computing topic.
The teachers have to enhance content delivery with their
own experiences in pedagogical aspects. Through the class
enactment, the leading teacher creates his own version of
unplugged activities (e.g., kinesthetic activities) to introduce
computing topics and motive students to explore, corporate
and present. He believes that communication and
presentation is key in computing subject instead of being a
silent coder who cannot make the design and solution to be
understood. As to the student feedback, they have developed
their interests in computing subject mainly because the
teachers are highly enlighteningly in helping them to realize
computing is to affect everybody’s life and what they have
learnt can be linked with real applications.

The 16 students in the computing class are mostly
considered by teachers as high achievers. They like the
computing subject since the interactive and immersive
process has made it more interesting and attractive
comparing to other O’ level subjects. In the focus group
discussion, they are confident and determined to be “A”
scorers in the coming O’ Level exam for computing subject.
Their concern are more with the opaque opportunities to
continue to learn computing subjects after secondary school
level.

Therefore, both teachers and students in School D have a
high level of confidence and competency in computing.
Comparing to other schools, they are capable to implement
computing curriculum mainly with their resources and
capacities.

5. DISCUSSIONS AND CONCLUSION

In this paper, we describe a survey study and an
ethnographic study on both perceived and in-situ readiness
in the implementation of the computing curriculum. We find

163

that the degrees of perceived and in-situ readiness of
teachers and students to teach and learn in computing subject
vary among the different schools. The factors influencing
students’ readiness have mainly been their interests,
motivation, and learning competencies. For teachers, their
degrees of readiness are more related to their beliefs,
teaching strategies, pedagogical preparations and available
teaching resources. Readiness towards computing of
teachers and students seem to be more self-initiated, rather
than school-initiated. A lack of systematic ways to prepare
more teachers and students to be enrolled in computing
subject, is perceived. Students need more resources to
cultivate their interests in computing, whilst teachers require
more training and teaching resources to develop adaptive
expertise to instruct different groups of students. The
schools also need to adopt more adaptive strategies for
different computing teachers and different groups of
students to maximize learning effectiveness.

6. REFERENCES

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., &
Engelhardt, K. (2016). Developing Computational
Thinking in Compulsory Education-Implications for policy
and practice. EdMedia 2016.
https://doi.org/10.2791/792158

Gal-Ezer, J., & Stephenson, C. (2014). A Tale of Two
Countries: Successes and Challenges in K-12 Computer

Science Education in Israel and the United States. ACM
Transactions on Computing Education, 12(2), 8:1-8:18.

Garcia-Pefialvo, F., Reimann, D., Tuul, M., Rees, A., &
Jormanainen, 1. (2016). TACCLE 3, O5: An overview of
the most relevant literature on coding and computational
thinking with emphasis on the relevant issues for teachers
KA2 project " TACCLE 3 — Coding " (2015-
1-BE02-KA201-012307), 72.
https://doi.org/10.5281/zenodo.165123.

Hodhod, R., Khan, S., Kurt-Peker, Y., & Ray, L. (2016).
Training Teachers to Integrate Computational Thinking
into K-12 Teaching. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education -
SIGCSE ‘16 (pp. 156-157).
https://doi.org/10.1145/2839509.2844675

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.
(2015). Computational thinking in compulsory education:
Towards an agenda for research and practice. Education
and Information Technologies, 20(4), 715-728.
https://doi.org/10.1007/s10639-015-9412-6

Acknowledgements:

The work reported in this paper is funded by NIE grant OER
04/16 LCK. We thank Peter Seow and Wendy Leong for
their assistance in this research.

164

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

TR HREIE

B
BE

F 0 F et

FRLAFHKEN I DA

) _} + 52

CEFE TR

myt@ntnu.edu.tw, chihwu@ntnu.edu.tw, chihung@ntnu.edu.tw

&
L4 KA2 eted o DT LR AT s £
AEE LGS A Bh o 35 R 2010 B E R D % 0 LB
P F

T AL EF (computing teachers) it B EE T F a4
ﬂ:J BRREwBIAATREF TS O eEFF - £
EEIRL SR E SR T A
FHEHKFom > £ dc 50 3 F ek ¥ o B % AT
FERE Y o RKEFp a2 sz@z%aﬁﬂkw&%oL_
Pl FE LA | 6w PpiEss% ?_\epm/;q
“ri $?IF* At 2ET I kA0 B P K %‘“[vﬂ“ KEF

M 2 %hﬂ 3 5 G SO LE L BHE O S R NN
?&% Fyth o BEEP R PCK RLF
» IS AT e

MatF
TSR FRRE TR AR ER L
1. 3

I ERLS S RBTRRAAGREFIETRAEHR
mﬂ&%F’a%$W~¢W‘@W‘”3?%@W
FALERFG C EATAF T AP FRLE LB F
ﬁwiaigﬁ%ﬁfﬂJ%ﬁ% WH T AR
BAFTAKTHER pABE R o § B4 P EITH%

W B E o LERRT %#ﬁﬂﬁ”ﬂ RE R

i&’*/frw’frﬁﬁ'hf'_/%;\j\ A2 B F T A
%%mﬂﬁaF%#%ﬁJ’i%%_FAm%ﬁJ

T s gL A FTALEHD S
N%ﬁﬁﬁsﬁ&;wﬁ%ﬁ(ﬁ?ﬂ7NM)oﬁ
o G EN A FERLANAEY AT A
TR FEE LN AP AT T R AR
oot Rl LE A Y SRS
FERIEGFZ 3 %R (v B~ L 22
2016) -

Shulman (1986, 1987) #&-# 7fi % & sz (pedagogical
content knowledge, PCK) % #_5 £ p % ff‘?*—'fi’ wE v
i gmﬁﬁg s AW HELRENE R T L3 F
%*’ IR E F 22 PCK andvii fisg ~ p ik~ T &
2o Bokd Aulk D2 b F# (Grossman, 1988 ;
Tamir 1988 ; Cochran, DeRuiter, & King, 1993) - PCK
P?"]‘*‘“m?fﬁﬁ Wi{'k?(%rifafﬁ"/ﬁﬂbgqfqﬁ e
mZ\»{%C_‘ 7 ff’ﬁfuff Rk R TE 7}'1‘ mpr ok
R EEE S A R g Y R g i
24 532 > %% - NARST (National Association
for Research in Science Teaching) ¥# # & NRC (National
Research Council) *7 4% 41 2 B 74 & & v % ¥
(' National Science Education Standards, NRC, 1996) -~

\

45 PCK 2 £ & |+ 5 ¥ 32 75
PR

PCKF%%£%$%WW@ & eharg
RKEF ”“r/E L cn PCK i 225 %] o i1 & PCK chjp Fahﬂ i
L:AA _;-S;;fil_‘,p‘i—\t‘ 3%;’“;\ ,»ﬁg__bp;tyw’gr,ﬁ—é;h
#ﬁ?*ffﬁﬁ'* PCK e3¢ B ~ PCK 5§ e’ 8~ & P T
PR PCK gL B (Grossman, 1988 RE
/J-iﬁ'% 1997) s 3 EFF MBI EHFLIHR
BAAKE Sl TR A kammm
38 (Lederman, Gess-Newsome, & Latz, 1994 ; 3 B &=
ootk ~ R A > 1988) o P aE (2014) Rl p (5
% %l # MPCK (Mathematics Pedagogical Content
Knowledge) £ # 3 & &/ #& % #&fF p 232 PCK it
3 B r“W%%iJf%lPCKrnpxﬁa/a1ng§%W
FIFFT A B L 5 4 #3) (Competences for
Teachlng Computer Science Model) * FiF& i7+ F 2
FB 2 B L f o PCK & 4 i {7473 (Berges et
aI 2013 ; Margaritis & Magenheim,2015) > 2 #= 3) %
§RIE ¥ - AR F g o @t,vﬂyfxmy
FHEF 74 PCK B (74854 o

O AT LR 0 AR ATRE LA
#Hrsg Iﬁ.‘ﬁ"é’ﬁﬁ 2 ﬁiii?i?*f”{ﬁfrm#“%‘frﬁ F
PP RIS A RA TSRS PP F o
FAT h PCK k@ Faf s - pod s
TR g PCK chip AT - IR A
P OPCK iLd o3 105t 4 i S it

4 m’T—fV‘

E g

A }F?ﬁiép

e K

pES)

PEFEFERLG 5w PCK 2 FH{ £ % 55 « A5
TaM ﬁﬁnﬁl ' Hiﬁifﬁﬁ PCK g 23=8 % | -3
ﬁi«f‘ﬁu WA B K PCK 2 3% > A 477

kﬁﬁﬂ%ﬁﬁﬁﬁ*rﬁ\&%ﬁﬁgwﬂJ&@
PCK 2 88 M - FIRATHRE F ¥ T AP HFRE
L YRR mxi’ o RTINS B 5 A*m;fi:}i AR
AEF P BEFLFETHY > WIET D aHeT

(=) TBRBETAPHLKFE PR BRI -
(2) BEADFF B AT ARRET L TSR
FRLA e EpAKEoRL L8 o

2. By

2105 224
AELAEEF LS B FEL L RT AP RIS
BoEF TARY RREFEE 6L L REEERNE
A X300 cBEFFAFTHILL ¢35
28 9 13 22 ik M HEE xi?(éﬁﬁffr’fl‘?ﬁ;lx}‘ﬁi

B WY i (48%) - B ¢ FEF (52%) 5 <

165

’

’

o

o

2R fx?ft)ﬁﬁﬁ 6 £+ (86%) » =~
Bk (80%) -

TR R

e N %

3%
o) g 28 56.0
+ 22 44.0
su 40k (3) M~ 16 32.0
Al (7)) 34 68.0
1-5 # 7 14.0
. &Eﬁ, 7 14.0
16-25 & 20 40.0
25 & 1 16 32.0
e *%ww&% 40 80.0
ZEFE AR K 10 20.0
B2 KT EE f%m«% 37 74.0
AR S A RT A8 13 26.0
BEFHEM FFEART A F 21 42.0
o g R A RAKT LS 29 58.0
ErRERKkT HY 24 48.0
e B % ¢ 26 52.0
£ e 4 A3 27 54.0
ST ¢ 2R 11 22.0
& % 12 24.0
BREhE RE R 30 60.0
BT 2 - ASRAEE T 20 40.0

2R BHALLE

AP A B BREEREE

(1) ZATAPHEKEF PCKRP &

34 ARB < 1% PCK G5 5 % Hvits o 2 4l
N R R TRt
B2 2088 RARFEFTELAZ FREY 2
P AT o

(2) WK LW 5

”%?%?%(mm)rﬁ#%%ﬁ?%ﬁﬁséﬁ
iﬁtﬁ%i“EJiﬁ’éﬁf:&_‘sﬁ,lg TR S
£ td S (MMK)Wfﬂ%J(mp&,mu)
Ergtd oo s SR S AP A fR 0 £ 403 -

G)F%iﬁ

FF F'- F%;?(qgﬁﬁ—*&\zﬁt‘?} “‘%ﬂﬁ%{ﬁ;’%ﬁ
;fﬁ,}’ﬁ%}l\"‘ﬁ“;f!iz_d:-l};{ﬁig’lﬂ Trak FEE S g
S UF A EHKEF PCK p =g L) - LR 3 ‘,/T‘
2 R :?rﬁzgzk T & ARG » o PCKY &
¥ 38 TL%B?"—FJ%EO p 4% Likert 7 g8 £ 3554 > w13
AR E A, S N A R \zpaﬁxg‘@\}bg_a,
#ktig}*%of - REH R AT A K

WHEFAY 2 k5L 25 EHAwi 41 -

4) %R X84

WEYET m%#&ﬁ*+ﬂ¢%hvgaﬁima
X 5 ?—:?(E?Fi.“fsﬂ_} BB - EBAE 2 p 74 =
?fFH’—ﬁ‘ B

3. BE:Eitwm
?%ﬁﬁﬁﬁ%%%¥éf%§4gimﬁvﬁé%
%*d REFL LT APEHKF Y TSR EE
LE, R peE LA (322 33) "rﬂﬁ%#ﬂ*
iﬁa M REF & E oo w2 p =% (31) -

31 ZarE 5 PCK g it &
TP HEF PCK p 3= % 4o 20 BORY ’?IEW;’&:;
#WirE g PCK su g% & F F%ﬁpﬁ EE T R & s
Ei'?'-li‘!/w\ﬁ'{»b# 4 » (H?-,L) ER L gg_tw;r
(M =409) B25F » $ELFY 5 HF R
(M—403) o BETHFFILL P E T A ?—#E_\@%ﬁiii
FHA L SR RE LR Y AN o o 20k

Mo p o E PR Y S aoph (M =385) AT
KEFPLep e 6B VmE 2 o vl 7 & -
£22%xw#a w PCKA®2% (N=50)
oG 3#Hc Mean SD
1. 342 5 3.95 55
2?”—‘*‘i H A o 3 4.03 .53
3.5 AR 6 4.09 49
4.5 f 58> Rl S 14 3.88 53
ARk EFEy L 7 3.89 .50
&§%§?$&?%%ﬁ 3 3.85 .60

32 THE;x

AU R TR Lt
3”‘1“1‘ o L_ﬁg_}v—m—u.ég/,,\ » & 2 &E;]i{, 43T P=UAR 4
| #2.

FELE, PCK jpEgd

AR ATREFEHT FEFURNKIEY 2
—,E—\m«fjfl”*’Tul%"?ji‘m{iﬁﬂ lﬂ,ﬂapgj_ﬂﬁ*g;
4§337‘F§_\‘£;"‘mﬂ§ﬁl L rﬂb?kwi"'

VRN R) DE AR (% 148 M=
376) ’S:\E-',ﬁ V%‘K?{Eﬂ'_?fﬁ LD I’éq’m‘}s{?/zsbg > %T
M§4§”ﬁ$$p?ﬁmﬁ#ﬁcd%ﬁ*WﬁW
g F v Zﬁfﬂfﬂ“ﬁﬁ%’ St Ao A HE
e N A ‘Li?(%?/zi‘asbpﬁtﬁfg ﬁﬁﬁ
23 TR wEd@FLra, dwpi®2% (N=50)
MR wE@inm, 6w Mean SD
1. NargiF gk & X
ejﬁk i JEEN KPAR 5 376 66
wFoe
2. AT U R FoanfeiE B
(4ot 2 F 8 v AN e m 408 75
“) j\ﬁ*/i‘ﬁri"
3. A R FEABRESRE LG OENK
FEYIE (4o 2zt ~FE A 406 .68
\‘ ‘/u firi;]}:)
4. N & 4 i3 g_\. 21 2z
AEGFLIARSREFEEEL 00 5
B eFEE -
5. A fEEFE L RSF R o 4.00 .61
6. AEXFREFEAFT L ANFY
ui*““?g“k o3 s
e e
7. AN BLE g Y HRnEELY
, 344 76
x5 o

166

FTRHEL LA G o KFmEp e L1 BEE LA
B (% 540 M=400) - & e K EE L sy
Eﬁj —rﬁ'ir’(:;:6’$\ M_384)5% _/‘F_!jé%ﬂﬁi?ﬁzi?ig

%5 b o %

&EW i oo 2 d *“3\"" &{“Fﬁiﬁﬁi#% N g
W3 AR BT T AT 0 MARBKEEL T
FALGEHFARN FhREL > apths FRAER
3z ;N B J;\m\?«égd , ;g;;(wjﬂ th,fj_r):
S E PR Y AR

e gLz th > b F%fi% PR o | g e
- ‘H v —{}\I)}a 17‘”—13_”'“ g_#gﬁ,’g ,,{F}\E} F\ ? ; I';\.Hh
g*@im?iﬂéﬁ*§4ﬂbﬁﬂmﬁﬁ L
kAR Esn+ , (M=378) > &vﬂlb
e
A 4 REPFFE - PR (2015) a‘F] AT 5
WAL TG SRR 0 5 e
KA G R A e R L
ATIRE N BB E W bR

&
o RESRERFIKE G

TR o
33&ﬁfiﬁﬁﬁ%#ﬁg*&ﬁﬁéﬁﬁi£
PR TR F H TS R AT ot *.*M%tfé’r

ﬁ%k*%%ﬁﬁﬁrﬁ*&ﬁﬁ
2 o
”]
T EHEA 2R A IRE AL T B
SrF A BN U xS ¥k (F=558,p<.05) -~ it
* gzt 2 (F=1436,p<.05) - f;?,;’* iR E

g_JPCKm

?ﬁf_‘\‘,}:”'ﬁﬂ_l 2 (F=818,p<.05) ~ "2 4 &
YR b8 FEE (F=1911, p< .05) ~®e 4
Ea&hmﬂ%?/w<$ 4.97,p<.05) ¢ éeﬁwﬁ
PATREE L ks (F=6.66p<.05) }chpmid

BB OTEY R e

Ha o & TRE A LT3 FTAMA L, ¥R
AT REERT o BE KA FTARM AL 2 KEF AR
g4 %Efii%’“ﬁii“?{“?“l g (F=6.29,p<.05) £
BLEHEFY AR FTT LA KY (F=449,p<.05)

L TR R TR ARM ALk B E K o

LRl FREFLPRPART A F
WA B RS ET A BB ERT &

—A

¥ oz ?rﬁ?" bebtdegygrr@iLaky (F
=5.47,p<.05) } f R A B 2 KT

B R AT R

*ﬁ’ﬂkﬁw\ﬁwxgﬁﬁf BEFAL PR
B ROR I~ E R R R A A B 0
PSP Pl e S
LA, e R aEFORE

4. B@mBdi

dRED A REHT O HWA T FRPHK RS
WO AT g F ko £ Rk
TEHERTE debhid > e T EHEY 5

GAEs | Gow B B2 Ao

’

A TRA R EEE L e e 2 p Rk AT
?IE“ FHREFIARS KL EFEFL TV £
AP EL g T PR 284 R LERE LD
V1R agpFp AR AREANKTEY R
FRup2 2 i 5 FE LI AEME > BRAY
%%ﬁ—r FEFe 1 fREE Laenp i 2L A AfF
B e W HE R E e L L

,&Ptaw—;g_l B s £ E G M i R e Y
Fo M REFEEAL

PRER RIS TAENRFEEE LR, L4 PCK
\E’J‘-,*;I?Igﬂlﬁ-ﬁ,\\ii,f“rkiﬁﬁ’F%#Bré
PAEEAFLFPARTAFEEI T HFLR

EE SRR T RE RS B O S A R
B R GRE TR K 0 PCK 2R 0 et 4457
e 4 B ;;%gmjr;t ,r_i% Y s gﬁ-g;{s;,fi%% Ee
5. %4
IRE Bk ERE (1998) - MY FAHPE
KEFEPFRF2L w0 - P EETE > 6(4) > 363-381 -
PR (2015) o #FHLt - ERAAAKRT TFfH
BAT B AL T $s FLEFT 0 7] 5 250 5 48- 64 o
HME M feir 24 (1997) A EEFTFRY » P H
KR PG o v o B KT F] 5(4) 0 419-
459 -
v &fcfre (2016) - ¥FE A
A o ¥ %E > (6) 5-20 -
B 1£(2014) - B | & FF#cE K8 w3 (MPCK) &% &
BB 24Fy o BI%RE] > 61(1) 0 51-78 -
KT (2016) ¢ FARFFTR TR EE o L
] ?,(—;_ 2R o
7% (2016) -
2 o AR o
?é‘ (2016) o+ = & PR A A 507 JAe £ B2
N EFELEA R B ié‘ffxwﬂ? (4 %) o
2017 & 2% 1P > Bp FIREY
http://www.naer.edu.tw/ezfiIes/O/lOOO/attach/92/pta_10229
_131308_94274.pdf

Berges, M. et al. (2013). Developing a competency model
for teaching computer science in schools. In Proceedings
of the 18th ACM conference on Innovation and
technology in computer science education (pp. 327-327).
ACM.

Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993).
Pedagogical content knowing: An integrative model for
teacher preparation. Journal of teacher education, 44(4),
263-272.

Grossman, P. L. (1988). A study in contrast: Sources of
pedagogical content knowledge for secondary
English. Unpublished doctoral dissertation, Stanford
University, Stanford, CA.

Lederman, N. G., Gess-Newsome, J., & Latz, M. S. (1994).
The nature and development of preservice science
teachers' conceptions of subject matter and

o

wHe) T

o FLALATE R A AT h S R AR

167

http://www.naer.edu.tw/ezfiles/0/1000/attach/92/pta_10229_131308_94274.pdf
http://www.naer.edu.tw/ezfiles/0/1000/attach/92/pta_10229_131308_94274.pdf

pedagogy. Journal of Research in Science
Teaching, 31(2), 129-146.

Margaritis, M., & Magenheim, J. (2015, March).
Pedagogical content knowledge a comparative study
between CS pre-service teachers and experienced
teachers. In Global Engineering Education Conference
(EDUCON), 2015 IEEE (pp. 102-111). IEEE.

Shulman, L. S. (1986). Those who understand: Knowledge
growth in teaching. Educational researcher, 15(2), 4-14.

Shulman, L. (1987). Knowledge and teaching: Foundations
of the new reform. Harvard educational review, 57(1), 1-
23.

Tamir, P. (1988). Subject matter and related pedagogical
knowledge in teacher education. Teaching and teacher
education, 4(2), 99-110.

168

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

S el

AR AR

I8 F 0 HEPT

B ikARIk ot RS

HAR T

MRFEAE KT HEAFIR
201622010028@mail.bnu.edu.cn, teastick@gmail.com, 18110027072@163.com, zhanganqi19950601@163.com

#e
BAT= fp T B GG L R AR
W N /',Q#izflmﬁw,‘%,, JQ;%W/_*_'
ZREB LK o BEFEAF L BT FE G G KA
FIT XL REF o A JW<FZW%NW#4W
B R F IR AR e BT o FRRE S T
7 4 pf 4 % FrWorkshop JE # kAR P HFE T K
AL R Gt E L B A T o SR
P T,?JILL ,»j, Sl ;XZ‘/T’f 4_5 /g,/gmj_g_z/f# N ﬁ FL
BL 5y /E." TEFEST G Iifé?%_/(r#"ée’g';ﬁﬁ
%ﬁﬁé‘ﬁliﬂ FHirp o
X gty

HE LR TR R AT

El
I j“*:;
K

AN
Ny

it AR P 4 X - [E R
gmﬁq@$€§F”*§$%ﬁ’
X X A3 wi;#mﬁim ﬁ Ao A
PR P - 1006 % - VIR F e (MIT)
GRS RN - A > 2 A 2006 &# 37
El+p AR Fh% 2E 3 h ACM £ 1)
<<Commun|cat|ons of the ACM) % - :’r;lﬁi*;%‘-i.‘i ain
R R P R s LAk 4 ElgT
g & °£rF”T$ <$K9ﬁ“ (,af 3R)
PR AP ¢ 3 (Angel -
2016) - Bﬁ’viﬁ rjiiijrﬁ
ThA Ly XA “ﬂ*l‘
:1#**%%6’ ?&#*%
i E AN i S 0 g
BB A0 T 0 hiER

—%;K ’)"fi"l fL’J'—Er

R AT B RE
4 o

F_L
11_\

Jm o 6

(»6' L \\ﬁ:)= 1m
f.’m
=y

¢ dm
&=
3
=
(\
< g ko

=
s \i
|

e
W

v
ST S =
fm

o ‘,:‘ia:!wrwj

[.
'y ¢
AL

TR R =

.
=

¥Ry ok
{]- B E
Fo i+ AR fE 2w

Al

gl ;\:1:) x\»\« f‘} F-" ()
5
<
=

b

P

=
=
\/
c“-’-‘*{

2017 & 7% > @4 b s (31— R A L9 £ B H)
Pretdn i A AP A L Bl AT E b iR B
BXAFRKTID o ad P EMERE XA AP
RAR BHHT RAERT CER A IR ER B
FELAAA A EAIFR A FE T L
b A E Rerc i kG & AT £ B L A ehp ait B
BARFASIELAWMEG AV E A pg o LA
AFpAFIEAPFRAFL PR AP LTS
E APy YAl 2 Bxy it SHEREF (7
KHERF)EFTF X ER RS (B EE Ly
DR R BB 9B%hRIFIAA (LF w B A E
o E L AR X iAo (e 8 89.5% 03T R
iy ’mi?,Ilil»rrgamp,]ﬁ_}if{gmgpm

o

Wa I M T R

b~

o

AR o AT A e BB R L R

FONRARZ (T IFE MY o
2.% #REFit
21~k %

R ﬁ{f*ﬁﬁmfﬂ#iﬁﬁﬁﬂﬁ'u v B2l ¥ 2 HF
feh- WA KE F 22006 & - %FH AR ER

g (Jeannette Wing) ##$t# & » -5 L a4 g% 5t
ﬁﬂ%i%&i%ﬁ%ﬁﬁﬁﬂ%x}%&”%‘i
74 gt 4z - 2010 # > B E A L F VAT LA
- PRRAp L Ad e PG B R S

Arfidl= &% 5 LRI Rgm (BN L) A F ok
7 en 3 & i 0k (Wing, 2006) - 8 L ad s -
FRGSEEY T A0 F e EY ahrn g At
i ALERATALE 0 BT T i BACRLE L H W F
fifr;r'An B R WAviR s b LA T R
RE FEFHARY FIgH b I BT oW
FAGE R IR E AR R o AR R T
AT

2011 & » ¥ E)EI~% 7 # KX 4 (International Society
for Technology in Education, ISTE) 8% & ++ & jfil % 4007
(Computer Science Teachers Association, CSTA)
gz HELRPARMEERE A2 - [ERITEIN
i ‘a BE - F ARt AL 0 R AR S P AR
ST i F - U S [R ST

PE SN
P BTN I i A

BARIXIAEL ATV PRTAG EAA
{“”ﬁﬁ**”ﬁ&ﬁ%égAS*Q%wﬂﬂﬂi
TRAAT R % %jﬁtﬁiﬁﬁﬁﬁﬂﬁééi*
w?:w%’mﬁaﬁ~}m%é ﬁw&miﬂ’

7}

PR .
xNEGE s (e

i‘;ﬂﬁgf«’ 400 e BRI o A B R
2 Tﬁ'*jmﬁﬂln\";mlé-’?/%xﬁ?fﬁ-‘ﬁi;ln\ﬁiv“.a

{M«mwﬁg¢g¢me (AL

Ra o iZa

:é,g.JAﬁ;%;g;;,i@{ﬁﬁ;;#_ % 7 ‘,1;},)3,
e R R AR R iﬁ—i%ﬁai- AR S
%‘7%5’?’&{‘1 ° 3;’: 13 ’”er+ ’ ﬂ\ﬁﬂ”‘ TA 4 1—1 & \3 /Q_{ ﬁd’

é%#@‘ﬁ%‘ﬁﬁ‘%ﬁ#4?5*£%mﬁﬁﬁ
23T AR o

22+ B R BHE T MK ——K-12H

B R A oA e B IR 0 Lye(2014) 4 4 Az E_
- WFERBPAZ G e fos fRaEs > REFE L2
R E F QR R L a4 h s B o Werner,
Denner, Campe, & Chizuru Kawamoto(2012)%ﬁ dorEA
i * fﬁnﬁ_if/\ i Alice 23z iz 4 TR FE2 L ERL
R B B A = + (eg. Wilson, Hainey, &
Connolly(2013); Pardamean & Suparyamto(2015))M g+

169

—ALE 0 PR e B2 BRI E AKTAIBGOLE o
g L,ﬁa,m 7 eng_%)A5 1 #4237 B > 4o Scratch, Alice,
Game Maker % » 3y &1 Zxf= 4= % F kL & 2 ¥
RO AR R rmhs-ii—i‘ IR - # #5g (Grover & Pea,
2003) Lot RE (2] E S LA L) 4
M Bk s+ 0 s+ B Au,a.mff(?,-;k%’ﬁ %5 N K6ER
| I fedf L 1LFE = §or FIAL 4
PEET A ix?fmfi” AR S 79 E2oER
FUREFRILR 2 art B uikge > s FUELE
PN TR S L 10-12 By 13 %;rﬁ% ik
EAENN I

LERRENKE TR EEN KBRS
po1988 &£k > 2 LB RKikfERk- B TS BEY) F
iﬁ%@%ﬁo*ﬁ&mwiﬁ’@%ﬁiﬁﬁﬁ*
12 8 H K (Information Technology, IT) 3] & 4 i 5 3 K
(Information and Communication Technology, ICT) » £ 3|
»+ 5 (Computing)enT & o B E ¥ v "7 2014 & 9 * 3l

Ryt o

N EFTeE B AL E L R 0 IS kAR R KM AL e M E

K-2 &% 0 SR8 ek » i b el ot f & chie B
336 &% HoArfR AL E AL 0 0 R B Aok %o
ﬁ%tf%’:ﬁ?‘ﬁ*i 7-9 BB EfRLEPRE L
BenX BEEE > EIE 12 P A2 H K E D R E R AR
RAESEjimL g m41ﬁﬁ’¢a»;%ﬁ$ 4
FH-FAE LRI A feild 4 o S E AL
AT S R R e E A %

2348 R fa_m?i'"“i'r-""'"'
HT L L LA SR RB Y 42

et B oa a f 2t F & ¢o (Prieto, 2014) - Eﬂ?g?‘{*
R IR HOF ’fr' BBRHCFIE T «&rBIum (2007):z

AP B (EPET S BRI R E R R
b EAE B H W g k0 Y0 L (TP SR
LF Hrp 0T B el F iR % L I 00T
J-Zf;*m,};l.i'rﬁikir"‘ 47 R ER T, B PR RS
ﬂu“amW%P FEEIp ChRFLBY R Y
¥i34 mpWﬁWtiiﬁmkbfmmﬁauﬁi
¥ ¥ «ﬁ\/);, B K1 Qg,gn;f?;rg;\/; li_yr;?{lﬁm—l, -
B oo e %0 B ILERITE kAo g s R Tk
w Angehiﬁ(ZOlﬁ)#& 1 k BM Fririt B R A
122 > H ATPCKed B 1% 2 3547 %7 &
LAKEMEE S AT R ﬁfm‘"‘?f
Fidaw s RRfeE fLaor (LEL) o

AN

W

b2 g

771 TPCK #:3]

3L B ih
ﬂ\iﬂ 7= {)7; S ?IJ?F iv‘- ol %ﬁiﬁﬁ B4 A
igafi%ﬁ’”“l—%ﬁkybtﬁiﬂ 7%

AIRHITE T dofp D)é%

B deg ke Gt E L AAOIET VR p R oeh
T fZ o
ARy idAe
4.1. é-&rﬁ
AFEFEFE T AR AR D EEY CHEROAEINK

ooy 1%%&1@ BEY f};(ﬁi—'f-fﬂm]’m}ﬁ—\m’
ERSRUE S TE S N I IE S i sl ey g A

ﬁg«;gﬁmi@o%%&&%27&’4%%ﬁ3
WRIE S GRS FT o AL 16 1 95%
bR FRKIRE LE RN PR kdr 0 H

Y
¢ g

4 6« CEBBY% ;A4 T A s b 44%

427 % inde
MY AR ARACF] 247 o | A 0 A ;‘g J‘%ﬂ:}f»%ﬂw e

Sl I R AU T (FERTE ¥ JEFC
B BRARL L W o R E R 0 R
e AU R R A Ak AR A
LATRARF LR E S BT ko LER IR
B4 s kAR s phe % 0 12 workshop (07558 2 B 5 7
P A AEE D L Gl Eap RS R R
7 %;‘M; i¥if o
| FREIRE
,//ﬁtf.\x,
URFE St
S
~ \@ ~ x\‘ 'Iéﬁ /
B2 783 AR E)
4.3 3%427% ++

AokARik T ¥ P 1 £ 9% Swift Playgrounds ¢ iy
- At ipad } @ % chapp o R AR B { Audeds T e
FUATMU-2T 8 - 2P AAgRDS %
Hr gz IR Y
L AR FIT > EBH L
TaArAeiR AR o e 0 AR IR P Pt iE 0 RART
A Fand P 30s o L R DE L P
A At L ERE I A PO S L6 A T PIL SR
ot 4 B s EY L&

AR AT E SRR
Frid - 2 -4 X4 ARR

3 e TPCKEA ek rh b > & B L aagds
T E L REIFE e AR LE 3

170

SEPUETEL: 2 TTRGHI AR
ECETE: RRWATRESRSE TR
St R R AT i
ETETEL HIMHESE TR, EREEAN

BB TR IEB AN

&73 ?I)?F f‘ g H‘ _E/\a];“‘-ﬂv

‘af— FMX—E»L”?'I"W"J PR AL EL ¢
LASPEE SRR AT E AN wﬂ?ﬁlﬁ%
M E kIR E 4 @ % Swift Playgrounds »
ARk AR e 2 o B E S):‘; ;11 .
N fo B E S B2 o PRI EIER Y
LKA RE DR @R 2R S MR
""i%*"':iﬁ“ FREI AR P %f’ PRI E LA
v*ﬂa,\,ﬁ%ﬁ(éj E- %71 1%) v 4 M Eh
~ B pREnEOT o

FTEREILP hE > s AR AR E 0 hitAgd
FFFE T aoiR Rk He - ,J,;*rg/,,\ v % hE 2%
AR Aem gy E R AT LA R E

24 R st kAR Bl R :;indg*w o Fow X kAR
DZEMEB O KFFREBLA LK kk o F T

e;m;%ji P, oW ;L,;;m;%ﬁiﬁ iﬂy]ﬁq#p_‘(ﬁ'piﬁ'j{:%ﬁfj z
b %mﬁcﬁi > i d/»\ ’ff'im LI o

VN A 4

Ay T gt B g) e 4osc % p o (Yadav, Zhou,
Mayfield, Hambrusch, & Korb, 2011)4=(Shim, Kwon, &
Lee, 2017)ch® & - iZ € £ 1 RP[E ¥ 1 F -1 L
m;_ﬁg_ﬂ; N E' N3 R~ A _53-,6;“';;1}1 ,___-g»b;}rm} % = i+ E
LA Ehg e S AR 0 % 16 AL
LESEEL PR 2ARRTVRIBLT R
le” TN irJ‘p;. 20N ez R 2 ”_;_f /I‘ #EI0 o A B+ 15 4
AEARF AP F) F A LA A P
EPE Rk ds 5% 0.838 4 0.876 R R LA

S S
AFTG R SPSS20.0 A i 7 I feit B 0 R e
SRR Foab b SLE RS SR LIS R A R R g R
FRF AT 0 ETERE kAR FO B L R e
ﬂ; N F] EAF NN P’. ’ﬁ_f’l‘#““ ;%ﬁ_ﬁi’b gﬁﬁqﬁ;p@ o 41 _g!_L
HELAR TR A [ART SRR % o fafit
¥R ehI® iz b sig=0.001(<0.05) ; fp Aok B i
- R} sig=0.006(<0.05) ; @ p é_%/: Frefeif Az A &
=6 osig @A 3% 0931 4r 0188« 7 1A A A A b
S i BRI e p Aok B Y4
EFHT o EFRB A AP ABAE S E L

AERE S 5k L F R

K* %

3

AL E L AR o SRt b teRE S

A £y A EE A t Sig.(

3 e £ * i)

CT =-% 16 -334 322 -4.142 .001

=x]

I8

f#

2 w2 16 -562 704 -3.195 .006

EN

Ed

it

P w-% 16 -.019 856 -.088 931

[

A

A

BS w-% 16 -.188 544 -1.379 .188

A2

a

&
6.7¢+4
A2 I E T AoRL 1*7% X b B R R AW B kAR
EEEKRIFP E L AhE F U E BEEFRE R ko
L fFi X ‘!»arﬁ:aiﬂ - e LG BRSO A
HEM T EESRILE RS B B IF it gon 3’3&7-\: v b oen
b4

fc'a’?fm"fi-:zuﬁ-m?i et FE 4 hE R RV G
OO AeiER IR L dE e R FRIFARG B

SRR G oeha fF s R B ARG T

iy B3 0 eopd ‘\ifi"f_‘fp X koHx kit E MY
WikAzEE A T o d TP W E P A /,,Ljsm#‘g
Bl o 3 R mE AR BT A At e 4y S
T SLIESILIES RYh S b 3 i p i L E N A
AER U SR T S R R i S 4R

Wiy v i & ?i;:?,’(‘)ﬁgix’zfigﬁ_\ g wh L
FUib g kAR 0 Aok BE 0 chidfgd o B L LA
VR RN TSR S SN U cE IR ¥ ST
b AT o ok o T s ¥ 1 2 — Swift
Playgrounds » +4 % H 1t Rig ¢ [#4571 hig o is
AT R WTAL ~FERBNL L7 o 4 FA 2 S
;&ﬁ L REP DA mmzw
BA LA B LT ¥4 4
ﬁ’*;lu,&mf‘%m’; s B E % 5 d ¥R ehaeiE
mafm«m's LR SR SR I
g-ﬁa.flfg_;l, ;5;4 o & UL K _JLL?IJ;FI\T s AR 7
AL~ ;%p.-j«); [NRVEE SEC el i miﬁfg et 3F —J‘;K{
i W’? i*”" %ﬁ TR BET AL L PN
BEL S a5 fedp X mﬁi’ﬁ‘,}ﬁ{?xﬁﬁ“
%ﬁim” W 2— o ’r’L}‘Iip’:H E 3 ﬁ'—l‘i%i'rﬁifi’ * %
zwa BAF &4 b emp] Fa: R L “SUAR
EoplT hA B d R L ARER S
g/x’v‘;{;ng—fr% ERSTIE] S A S R ﬁcﬁ_mﬁ*ﬁ
KEF L —fr GHEEL T LAH B RT L IR AR E
DS B2 o s EAFT AR 2w oo

R e &R

£

——3\

171

7.%% < gk

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-
Smith, J., & Zagami, J. (2016). A K-6 Computational
Thinking Curriculum Framework: Implications for
Teacher Knowledge. Journal of Educational Technology
& Society, 19(3), 47-57.

Blum, L. (2007). CS4HS: An Outreach Program for High

School CS Teachers. Y& Teachers”, Proceedings 38th

ACM Technical Symposium on Computer Science
Education.

Lye, K. (2014). Review on teaching and learning of
computational thinking through programming: What is
next for K-12? Computers in Human Behavior, 41, 51-61.

Prietorodriguez, E., & Berretta, R. (2014). Digital
technology teachers' perceptions of computer science: It is
not all about programming. Frontiers in Education
Conference (pp.1-5). IEEE.

Werner, Denner, Campe, & Chizuru Kawamoto. (2012). The
fairy performance assessment: Measuring computational
thinking in middle school. SIGCSE’12 - Proceedings of
the 43rd ACM Technical Symposium on Computer
Science Education.

Wilson, A., Hainey, T., & Connolly, T. (2013). Using
Scratch with Primary School Children: An Evaluation of
Games Constructed to Gauge Understanding of
Programming Concepts. International Journal of Games-
based Learning, 3, 93-109.

Wing, J. (2006). Computational thinking. Communications
of the ACM.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb,
J. T. (2011). Introducing computational thinking in

education courses. I8 A ACM Technical Symposium on
Computer Science Education (1 465-470).

172

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

R T4 Code.org ¥ 8 X aised (%

LR 30

£ 5 Ay E3)

B s > §8iay
T F ML Pk

%J—Eﬂ ?{ B

R EEE Y

chenghsuanli@gmail.com > yangcw@mail.ntcu.edu.tw » kbc@mail.ntcu.edu.tw

B2
AETLETST AR R AL L AR
)fﬁﬂ’_"‘ 4 m?} P BL o —n :u ‘/H—T\?’\ 21 g ?IEFF'“

&Eﬁ“#%sﬂimﬁﬁﬁﬁi—ogiﬁA;g
Rkd >4 apd £ 2 Er T ik &
4’32%@7 ﬁ%%gﬁ;%?”’frgﬁ;%%i o R o EFE AP K
ﬁ RN L I TR) N ﬁﬁ Sefz g b

S APy ’f'Jq' Code. Org;ﬂ B I B IAR iv\»,xlﬁﬂ;?\
12] p& > iﬁlﬁkﬂwagﬁ’vﬁﬁ AL K
E%‘ft'g]"l MhAr R EF Y a}“l% 15 'ZFWT‘i T p) g
Bl FRBEMESTHFLE 7SR

| gt(@é

Code.org i& & R A 3kAzit 1 v:’* BRBEERLADEY L
¥ o

M4tz

L Cordorg s R A S B H o

1. w3

i# 3 X & (Computational Thinking) £ - #& R %zﬁ’mi—m“

Y ipAe - % R 454 f2(Problem Decomposition) | *
BAg pefo B T R R A RS BB) R b AT
AR RRH R FEE TR ERFRER
(Algorithm Design and Procedure) | nf % > fF iz /]
Wﬂﬂﬁmfw~*ﬁ*~vuaﬂmﬁa’%ﬁa
Podrm 4 B F B R FH L AN T T S
LRl R S SR
BRAET Y EE L AT AT BRI E LT
R B fuqede et 4 E 2 B oanBf % (Wing, 2006; Wing,
2011; ISTE & CSTA, 2011; Barr & Stephenson, 2011; Lee,
Martin, Denner, Coulter, Allan, Erickson, Malyn-Smith, &
Werner, 2011; Aho, 2012; Grover & Pea, 2013; Google,
2016) -

B "% % 5 # #F % 5 1% (The International Society for
Technology in Education, ISTE) » 3 & # 4 & #fF 1 ¢
(Computer Science Teachers Association, CSTA) =& &+
& ¥ $2(The UK Computing at School, CAS) 1 i je 22 %7
frl $ R AL ARTLCEBFEE L A d
7 R (ISTE & CSTA, 2011; CAS, 2014; ISTE, 2016; Google,
2016) - 2 MR AT B4 2 2014 ERp&EUB Y @
M Hour of Code ; » # e AR RFH B EE LA
HRLACEFIETERFE L BN A (BhVE -2
2016) o d ¥ AT S RMRSIL LR EEL L 0 B
FIEE L E £ o

EE AR R TFATR TP e WA ART A
ERAY P FTHLAR Y FERPEHLST F

o

éiﬁ"“%%ﬁ%ﬁ§ AMBRHREEPE &
B kg~ FPTER T A s SRR R TEE
L Radh SETGEHAEAMM L OEY > A

@IS F ALY E TEELE, L4 PEBEER

%i#i ":"‘J‘VL’F\:{EQIF’K—Jﬁ-‘ M3 _”M‘g_J g

LIRS L ¢ RIS) S R DN)

4 (R 7&K+ F 5 I, 2016a) °

ra:i\xzﬂ,t L_i,f;*ﬁ‘;ﬁ? BT +AH7 > 4% Codeorgi& & X
LA SR EHEE 2aﬁ,ﬁw%a%ﬂp%

m%‘?*)*EﬁGE*
K fREFF A AE Y
@ JraEe
21 #FFLE
EF R el R P g-}g Pt Bk
Ao o AP Driforer o LITE S
?(g‘m—— lﬁﬁ‘_ﬁp\”“oi{ Eﬁifjﬁ:’m@%%?f
3ﬁ3\&1%gf'§‘m;}i,{lm— ik :xg_gﬂc?.gm#ﬁgg&y?
v E UG AL 0 4 1 AlhpaGo 2 411 cha R A 8
AL T L R 2
%;F,mm..pga ’ t‘!i@/ﬁ]ﬁ?ﬁﬂ :}i,ﬁh" l___" ﬁ(:}j‘;—\m,\
%T’?”%*iﬂﬁ%ﬁﬁmﬂ%,ﬁag_h,
AP AT R F R o AR L Rk oAy
fﬁ;}ig ;‘;‘ikti\‘f’;\j\mﬁi;\v}:”'gﬂ?;rﬁ ﬁjiﬁ%
ZIFEE LA Bir{ ﬁ‘% 8 Y 53)%JE.

AR 0 B ﬁa"i‘_‘ BB 1SR

2(57
12 /] pr e
RIS o s g% R A

W

Ry

I S T bmifﬁ L e R A
B9 EE a0 4 ’«E"'l' ‘ﬁ:ﬂb ;3,4-4)’z _gs "’”Fi’\z?ﬁh # _’%ﬁ,’ ’
{5450 27 A4k 4 <>(? #7,2013; i 4 37, 2016;

gﬁ¢2maééw2m&

Zhong, Wang, Chen, & Li (2016)4 47 7 i 5 & a2 & %
Nz R AW Y LR PR s A
Foendoid ¢ = o (Brennan & Resnick, 2012) ¢ Mz
4 (Concepts) ; ~ T 4 @ (Practices) ;, ¢ T 4L ¥¥
(Perspectives) | (B 1) -

A PrE T B2 ARFFFRZEF DS ME > ¢ 3

M 4 ¢ (Objects) J T (Instructlons) 3~ TRA

(Sequences) 4~ T E(Loops) 4 i (Events) ; -~
I % 2 (Conditionals) | & & § (Operatlons)J o

CEA B AR ERRF R € T
&7 F#dz %L i (Abstraction) ; # 3 ic j£ 5 %8 A° 38
#F f')’"J R fEfrf - A fp B A A
%+ 2 #‘%J{Iéfrﬂ T % f§ i i* 42 - (Wing, 2006; ISTE
& CSTA, 2011, Barr & Stephenson, 2011 Lee et al, 2011,
Grover & Pea, 2013; Google 2016) ~ P frie B

1
FEREI

173

(Algorithm Design and Procedure) | # i > - 473 B
chip £ & 2 RS Z RPFEHE L300 p
1% (ISTE & CSTA, 2011; Grover & Pea, 2013; Google,
2016) ~ " F 4 4 77 (Data Representation) | 45 it 7 f# 7
FRAER T E@ﬁ*" 9’%‘«#4«*‘?; o TR R
DR~ Bl ¥ F AR ok i e e SR (ISTE &
CSTA, 2011; Barr & Stephenson, 2011; Google, 2016) ~

" R 42~ f2(Problem Decomposition) | it #-F L ~ A®
AN A RS BR T PR F S I A
(Wing, 2006; Barr & Stephenson, 2011; Google, 2016) ~
T % 3% 8 o - 4 v (Pattern Recognition and

Generalization) | 5 B2 FAH - B 0 FREAES
B kI EA SRR BRRAEG > FRRF K

/EL*V*S‘ﬁP_}P’ T‘]é?”]lf.[, \—d]ﬂ]g]\l}-u—(\]ﬂg\;iéfx'%

\‘Xfﬁ”“%ﬁ - At eIE R R R 2 A R (STE &
CSTA, 2011; Google, 2016) -

C.y 1 B4 54+ E - BBEAR S HWRF
Lo imﬁ% A rﬁp % fr 4 & (Creative and
Expressing) ; -~ i = & ¥ (Communicating and
Collaborating) ; -~ IE"_ iz 1 ?'ft (Understanding and

Questioning) | -

[

Lol
EES
B

4
R
=
g

g]

FLlAHr 28 Laz RR %Y

2.2 Code org FRAE

% W2y fle sk Code.org # A= i B 25 T Hour
of Code | (@ 2) REFTHEFHG AES N At
PR FRE S FREAIR o RAEFE LA B
ZfRARA SN 4 0 T ARERNR DA AER
PRSI RS IR e HEARERL SRS o AT
MHARERNET BEHE BB EE S k2
R L E R s A gf“wi;;ﬁ]v}mv% kL AR
%' 3% (Code.org Teacher Community, 2016; Google, 2016) -

(b) 3a 4y {5 eA2 ;5 75

(a) Atk iTH o
/] 2 Hour of Code # =3 Write your first computer program
AL

Code.org 447 e £ &bk cnH 4 R B @ 5§ L Bk
Az B¢ Tage 1) §44ad 46 heng 4 > o i
AR FRA A FEEYTARCDBEA A G 0 FHE S
SR PR 2 L EM ORI gL g
TEAFEFAMEF A 2 RO RHASR
R 0 BldoRf Ao d e A o AR 3 B EAR 2 fhut i
;ﬁtﬁi ’ —t'- -&MK .‘iﬁr 8~ 18%« § 4 e F%Tﬁi‘l FJ'J 7*\\!%7%—2
PR 3AEIA AR 0 G & F [AFReeiR N WA
FedEd G FEnS o

FHR(TABTEE - BTG

#73 Code.org #A% 1 e384 AT/

2 ¢t > Code.org » #-4t¥cfF & ¢ &7 4 m &t
j(’zﬁp*ﬁilk‘ﬁ ’ E *&b%jﬁﬂ;#}fl Kp%ﬁi@ % °
‘_’ﬂﬂ-“'\:”!l‘ é‘fimﬁﬂxé)’i’lt‘gﬁ»{—,ﬁﬁﬁi-
54 ?J%;E‘g; AR o

poane g5 Ay Ao & K125 2 5% Code.org > 12
FRE 4 AR * Code.orgzafz ' JiEE L ‘a4 P> ¥
MRENFTELFVRIGNER P T A2 FD
it 4 48§ (Kalelioglu, 2015) = § #*+ Code.org simikAz © 45
ik 4-18 R F 2 AphE kA 0 F2t 5 - ﬁﬂﬁviém‘v" i
fF 5 A1 Ap M eAe k3 KL~ K12 g1y
Flpt > A TRGEDPRNEFTA TR LZEL LR
BAHFE L a4 s R Code.orgf}zt-:s,,, naql

'“_l V‘«—

-5
X
3 %

43,‘|4-._~%

3,

i

L Esb °

TPHEFRT AEEE PR - -
3. Ff ik

AT R R R AR ME - S ERT A
GHTEEAE S K HMEE T | B 602
2 PEAEEE L auAr 0 £ 15 = F 3 2 A% e

174

BRIk o FE LRI Code org Az 3 4% &
FEAp e s TEELEAL) ~ Tay)
T RN ST &PﬁgJﬁr%
T

ERAE N A 4c1a5*‘?’* WL AP
J%—Qﬁi‘kéﬁﬁﬁ‘!éffﬁ _"M“: Fﬁtfimnb” orﬂLL
X B 1*‘;*:’%93‘ 7% 2w Codeorg 3z 3 e

o T R RES A 4o] * Code.org B 3K #
BoARFELEV R BBV RAE P

YRR

£ LA D SPRFEEEHRDIEL L AL &

AR R A
HEA Eg
i v
3 iy ;N
5@ /; ? FB 3‘?”%’:
AR R A A A L R 3k
o I B IR N I O R Bl B S P I o
’ff' /‘ ?F -
pia A5
B it
1 V|V
2 \Y,
4 Vv
5 V
8 \V} \Y
9 Y Y
10 Vv V|V
11 \Y; V|V
13 Vv
14 \V
15 \Y/
16 V|V
22 V|V
23 \Y/
24 \Vj
25 \V
4. R%R
AR 2w P2 (SRR S i & Cronbach a®

4w 5 0800 08350 #5308 &w SRR ER
BR o FS > AL HY 156 B4 h 254
~\—§\mw «?J“’t’ fs ip) B’V\' 1Ef":\'ﬁ'ty5§é’\’ffr ’ %;ﬁ—lvu‘
#FHEFF 258 Codeorg Az 38 Y 16> HFH L
aPLE Et?*"? S ETFE R

%'\-——‘;7

BRLATEY s

BRALF o 7
FERM D 22T RFEELAPRE K14 F
I3 AAF AR o B i v R 6k

&

LA "“/?']/?J
£ 2R ']%i’ﬁ 2533;\—3\\’ i3
,;’1 sﬁ%* FE R A

@px‘g\ 1-&'?3’25 ,§3§°2‘\ :;
?é :‘E’Iéi‘ﬁi—%ﬁ.’ BHEHIEL LY
F

z\ p 15 l“ﬁ“ﬂ‘«'awfs?/ﬂg\'%‘f'tj%/’a*%z ’—,—:“
15 rzﬁi e L 3=l 57.6 4 fb/EI‘li—jr-r 63.2 & >

AL R eE R R eL 5 564 0 HtiEs 1.86
piEs 004+ 8¥ -k# 005-
A2 iRl ¥t %A AT £
,) R -
% i) g | P2 BE
, , -] t
I35 B . (E /i»)
f=

57.6 63.2 5.6 1.86* 0.04
5. B
AT 3 4 Code.org iF § L izl » (7 F 8 T HAT

%iuﬁ&ﬁ4ﬁf4ﬁﬁwﬁﬁi’i§ﬁ?i
1 f#4cie 538 Code.org kAT k & 4 FE LA
i BB 6FR 120) FahRE AT SRR
R T AEE LR 4 4 M % (t=1.86%)
FEREF TR T A 87 14 g ¥ Codeorg ¥ Az
’ﬂ’%luﬁﬁ%ﬁA4ﬁwwﬂwﬁﬁﬁJH
7 o X T UBEFETAEE
4

o

P = @w "~ .‘H‘Hb 4
Code.org #Az % #5238 8 L a4 o

EBAL AABTT 0 PR EEMRY o - F"’s‘(p
F“‘”‘ AT AR RS o Bl) S AR O AR {7

MgARRF > L LG R ARBAED BEF LA TN
J SRARDIR 0 FF R A AR Y g brbrit etk gk
24 2 EAB . B4R L o A RERT M AR
E’iﬁé“t—l}iﬂﬁaaﬂm/rf’“ i&ﬁiﬁﬂ'—ﬁﬁﬂ"d\‘;’f%
SR L .f’:ia‘.%?rﬁﬁ”?_n‘_ B Y B K o

6. R
A D R AR R MOST 106-2511-S-
142- 003 MY3 4# B4 & #3 Hrpl ik

RS AT

W ER(2016 & 12 7 6 p) - B (SN K) 3 (F
FERD) BB EHEE AR B
http://it.sohu.com/20161206/n475107684.shtml

v & X b(2016) s\ﬂ.“...ﬁ?c’,]éffjgui
AR @]Ms PR T%E T I8 60 B
p http.//puIse.naer.edu.tw/Home/Content/6fe1eedf-

10al-4ele-890e-dbbec8ce0647?paged=1&ins
1d=40977899-d342-4f01-94a7-66d446c9d3bb

‘7‘?10

175

HLRE(2016 £ 4 0 24 p) pIEPER R L Ay
FHEET L HE P HTH PP
https://rocket.cafe/talks/75328

BRI T A7 5 12(20160) - + - & R % & & KT A
HEFA?) EFELEAR 5 TR (T
F) e g

Ep (2016 # 6 ") ¥+ FaESF o KA
BE2_ A PRI AT o

FIE(R2013 & 2 7 14 p) - 4 A PEFRSRY
TEDxXTaipei -

Aho, A. V. (2012). Computation and computational
thinking. Computer Journal, 55, 832-835.

Barr, V. & Stephenson, C. (2011). Bringing
Computational Thinking to K-12: What is Involved and
What is the Role of the Computer Science Education
Community? ACM Inroads archive, 2(1), 48-54.

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of
computational thinking. Proceedings of the 2012
annual meeting of the American Educational Research
Association, Vancouver, Canada.

CAS (2014). Computational Thinking. Retrieved from
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/computational -
thinking/

Code.org Teacher Community (2016, July 13). Try Pair
Programming—track the progress of multiple students
using one computer! Retrieved from
http://teacherblog.code.org/post/147349807334/try-
pair-programmingtrack-the-progress-of

Google (2016). Games for tomorrow’s programmers.
Retrieved from

Grover, S., & Pea, R. (2013). Computational thinking in
K-12: Review of the state of the field. Educational
Researcher, 42(1), 38-43.

https://blockly-games.appspot.com/?lang=en

ISTE & CSTA (2011), Computational thinking: Teacher
resources (2nd ed.).Retrieved from
http://csta.acm.org/Curriculum/sub/CurrFiles/472.11C
TTeacherResources_2ed-SP-vF.pdf

ISTE (2016). COMPUTATIONAL THINKING FOR
ALL. Retrieved from
https://www.iste.org/explore/articledetail?articleid=15
2

Kalelioglu, F. (2015). A new way of teaching programming
skills to K-12 students: Code. org. Computers in Human
Behavior, 52, 200-210.

Lee, L., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., Malyn-Smith, J., and Werner, L. (2011).
Computational thinking for youth in practice. ACM
Inroads, 2(1), 32-37.

Wing, J (2011). Research notebook: Computational
thinking-What and why? The Link Magazine,Spring.
Carnegie Mellon University, Pittsburgh.

Wing, J. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

Zhong, B.C., Wang, Q.Y., Chen, J., & Li, Y. (2016). An
Exploration of Three-Dimensional Integrated
Assessment for Computational Thinking. Journal of
Educational Computing Research, 53(4), 562-590.

176

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J.,
Shih, J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational
Thinking Education 2018. Hong Kong: The Education University of Hong Kong.

Designing Computational Thinking Assessment:

A Case Study of a Pre-Service Teacher Course in Korea

Mi Song KIM?*, Hyungshin CHOI?
L University of Western Ontario
2 Chuncheon National University of Education
mkim574@uwo.ca, hschoi@cnue.ac.kr

ABSTRACT

This case study reports a pilot study of designing
computational thinking (CT) assessment instruments in a
per-service teacher course in Korea. We describe the
implementation of a CT course for pre-service teachers who
did not major computer science. We report two instruments:
a survey and a team project guideline. The results suggest
that two assessment instruments have the potential to help
pre-service teachers gain self-confidence and become
motivated to incorporate CT concepts across all disciplines.

KEYWORDS
computational thinking, assessment, pre-service teachers,
multimodal representation

1. INTRODUCTION

With the ever increasing need for teaching computational
thinking (CT) to learners of the digital age, teacher educators
need to develop a curriculum to enable teachers and teacher
candidates “to better conceptualize, analyze, and solve
complex problems by selecting and applying appropriate
strategies and tools” (Computer Science Teachers
Association, 2011, p. 9). In this light, much attention has
been paid to the design of K-12 CT curricula in many
countries including South Korea (Heintz, Mannila, &
Farngvist, 2016) as we are discovering the positive effects
of computer programming in K-12 education. However, it
has been a challenge to better prepare pre-service teachers to
embed CT activities across subjects and contexts (Kazakoff
& Bers, 2012). To address this challenge, this case study
aims to design and implement CT assessments for Korean
pre-service teachers who did not major computer science.

2. LITERATURE REVIEW

Computational thinking (CT) was first used by Papert (1996)
in an article about mathematics education. However, a
definition for this term was not provided until years later
when Wing (2006) mentioned it to entail “solving problems,
designing systems, and understanding human behavior, by
drawing on the concepts fundamental to computer science”
(p. 33). With the clear rise in the importance of CT, many
countries are introducing computing as a core curriculum
subject (Heintz, Mannila, & Farngvist, 2016).

However, bringing CT into teacher education is at its early
stages of development and lacks curriculum studies to
design teacher education (Yadav et al., 2011) and assess the
development of CT (Brennan & Resnick, 2012). Although
CT is considered to be critical 21% competencies, little is
known about how to assess CT expertise development (Lye
& Koh, 2014).

3. THESTUDY & METHOD

This case study was part of a series of design-based research,
and in this paper, we report only designing CT assessment
instruments for pre-service teachers at a national university
of education in Korea. In order to design a survey
instrument, we have incorporated the five sub-components
of CT derived from a meta-analysis conducted by Selby and
Woollard (2010). We have also added categories to make it
applicable for pre-service teachers” CT courses (i.c.,
programming course, problem solving via CT, etc.).

Further, we have developed ‘a team project guideline’ for
pre-service teachers when they present their team projects
(i.e., animations, games, quizzes, etc.) based on their
understanding of core CT concepts. This team project
guideline aimed to help pre-service teachers to reveal their
comprehension of CT explicitly and to collaboratively
reflect on their CT team projects.

4, RESULTS

The survey instrument with 15 items on a 4-point Likert
scale (1 = strongly disagree, 2 = disagree, 3 = agree, 4 =
strongly agree) was developed to assess CT skills. There are
three categories in the survey: the degree of experiencing CT
during the course, self-efficacy of teaching CT, and CT
transfer. Each category has five items pertaining to five sub-
components of CT: algorithmic thinking, evaluation,
problem decomposition, abstraction, generalization. For
example, self-efficacy includes “if I teach elementary
students Scratch programming in the future, I would be able
to help them to solve problems with algorithmic thinking”.

Overall, pre-service teachers reported positive experiences
in terms of high level of CT concepts, self-efficacy and
prospective use of CT. More detailed results will be reported
somewhere else. A team project guideline was developed for
pre-service teachers to reveal their ability to think
computationally while preparing for a presentation of their
programming projects.

The guideline included the five sub-components of CT
(algorithmic thinking, evaluation, problem decomposition,
abstraction, generalization) as well as a description of the
problem, sprites (or images), background, variables, roles of
team members and reflection. Figure 1 shows an example
created by a team from a preliminary study using Scratch
programming: breaking the problems into smaller problems
and defining each smaller problem.

177

Details of Problem Decompositions

define Ask a quesiton and Evaluate

Ask a
question

Evaluate &
Broadbast

Figure 1. Scratch team projects.

5. CONCLUSION & DISCUSSION

The results suggest that two assessment instruments have the
potential to help pre-service teachers gain self-confidence
and become motivated to incorporate CT concepts across all
disciplines. The instruments were designed to assess the
impact of the CT instruction using Scratch programming for
pre-service teachers who did not major computer science. In
particular, collaboratively incorporating the team project
guideline in a team allowed pre-service teachers to critically
reflect on their learning progress and intensify collaborative
efforts. Further, in addition to written language, they
effectively incorporated multimodal representation (e.g.,
visual images) to communicate their CT concepts. Drawing
upon this finding, we will continuously design another cycle
of design-based research to initiate a student-generated
rubric for CT assessment to promote student agency,
collaboration, and multimodal representation.

6. REFERENCES

Brennan, K., & Resnick, M. (2012). New frameworks for
studying and assessing the development of
computational thinking. Paper presented at the American
Educational Research Association. Canada: British
Columbia

Computer Science Teachers Association. (2011). CSTA K-
12 computer science standards. Retrieved from
https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA K
-12_CSS.pdf

Heintz, F., Mannila, L., & Farngvist, T. (2016). A review of
models for introducing computational thinking,
computer science and computing in K-12 education.
Paper presented at 2016 IEEE Frontiers in Education
Conference.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics
context in the Kindergarten Classroom. Journal of
Educational Multimedia and Hypermedia, 21(4), 371-
391.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 21, 51-61.

Papert, S. (1996). An exploration in the space of
mathematics educations. International Journal of
Computers for Mathematical Learning, 1(1). doi:
10.1007/bf00191473

Selby, C. C., & Woollard, J. (2010). Computational
thinking: The developing definition. SIGCSE 2014.

Wing, J. M. (2006). Computational
Communications of the ACM, 49(3), 33-35.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb,
J. T. (2011). Introducing computational thinking in
education courses. Paper presented at the Proceedings of
the 42nd ACM technical symposium on Computer
science education.

thnking.

178

https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf
https://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Which Parts of Computer Science Concepts Do Future Teachers Identify? First

Results of a Part-Whole-Thinking Analysis in Computer Science Education

Nils PANCRATZ", Ira DIETHELM

Department of Computing Science

University of Oldenburg, Germany
nils.pancratz@uni-oldenburg.de, ira.diethelm@uni-oldenburg.de

ABSTRACT

The ability to detect Part-Whole-Relationships and to
interconnect these to an organized structure is one of the core
cognitive processes through which knowledge is acquired.
However, the sharing of this capability, which belongs and
relates to Computational Thinking skills and is called Part-
Whole-Thinking, is lining up behind the conveyance of
content in Computer Science classes and courses still. In
order to support a more vigorous inclusion of Part-Whole-
Thinking into Computer Science Education, various aspects
need to be considered and investigated in the first place. The
Model of Educational Reconstruction for Computer Science
Education illustrates the elements to be taken into account
when designing and arranging Computer Science lessons
and courses. One of the elements under consideration is the
investigation of the teachers’ perspectives. The contribution
at hand presents first results of an analysis of future teachers’
Part-Whole-Thinking of Computer Science Concepts.

KEYWORDS

Part-Whole-Thinking, Computational Thinking, Computer
Science Education, Teachers’ Perspectives, Model of
Educational Reconstruction

1. INTRODUCTION

Part-Whole-Relations play a decisive role in cognitive
processes that are inevitably involved in understanding
various objects, systems, processes, definitions, and
concepts (Gerstl and Pribbenow, 1995). The essential ability
of Part-Whole-Thinking (PWT) belongs to core concepts of
Computational Thinking (CT) as originally defined by Wing
(2006). Since many Information Technology devices make
use of Part-Whole-Relationships, these need to be
adequately included in explanations in Computer Science
(CS) classes. Rao and Shafique (Rao, 2005; Shafique and
Rao, 2006) could already successfully improve their
students cognitive learning processes by including PWT in
their CS courses. The benefits they noticed mainly included
improved thinking skills in the students and an improvement
in teaching skills (Rao, 2005). But as the lack of publications
on this subject since 2006 shows, their attempt “to bring
these issues to the notice of the computer science
community” (Rao, 2005, p. 173) has been in vain. Many
different aspects have to be considered when supporting a
more vigorous inclusion of PWT or “the transfer of
knowledge from research to the classroom” (Diethelm,
Hubwieser, and Klaus, 2012, p. 164) in general. To illustrate
these facets for Computer Science Education (CSE),
Diethelm, Hubwieser, and Klaus (2012) extended the Model
of Educational Reconstruction. One of the aspects they

included concerns the investigation of teachers’
perspectives. This issue is especially important for the
design and arrangement of CS lessons and courses, since CS
teachers generally have very different educational
backgrounds and qualifications (ibid., p. 167). They “regard
the teachers’ perspective as a key factor for the design of
lessons as well as for educational research” (ibid., p. 167).
One question they ask for is, which conceptions “the
teachers actually apply to explain the chosen phenomena
themselves” (ibid., p. 167).

The contribution at hand and the belonging poster present
first results of an analysis of PWT in CSE. Questionnaires
were filled out by 21 students of a CSE lecture at the
University of Oldenburg, Germany. The students were asked
which parts they identify of eight typical CS concepts. The
following research questions were pursued during this
specific research approach:

1. Which parts do future teachers identify of common
CS concepts? To which extend are the parts
identified correctly?

2. To which extend is the used method of asking for
parts of concepts through questionnaires suitable
for the purpose of investigating PWT?

2. METHODOLOGY

In this pilot study, questionnaires were designed to
investigate the future teachers’ perceptions. After three
closed questions on the biographical background of the
participants, an everyday example (parts of cars: tires,
wheel, engine, bonnet, doors, ...) on the following task (“In
the following you have to identify Part-Whole-Relationships
of Computer Science concepts”) was presented in the
questionnaire. The CS concepts under consideration (cf.
Tab. 1) were chosen through an analysis of the core concepts
that are included in the CS curriculum of Lower Saxony,
Germany (Niederséchsisches Kultusministerium, 2014).
The participants had 25 minutes to answer the questions. In
order to analyze the questionnaires, the answers were
digitalized, translated from German to English, and
normalized in the first place. The normalization included a
combination of all abbreviations (e.g. combining the
answers “PSU” and “power supply unit” to “power supply
unit (PSU)”) and synonymous listings (e.g. combining
“provider” and “Internet provider” to “(Internet) provider”)
and a re-movement of plurals. Afterwards, the occurrences
of identical listings of parts for each investigated concept
were counted. In addition to that it was counted, how many
parts each participant identified of each concept and an
average for each concept was calculated (cf. Sec. 3). After
this descriptive statistic analysis, the answers were checked

179

for content-related correctness on the meta-level by the
authors (cf. Sec. 4).

3. RESULTS

An overview on the CS concepts under investigation, the
amount of parts that each participant identified in average
(Dpansiperson), the number of various identified parts in total
(#various Parts), and the number of parts that were identified by
at least two respondents (#ig. sev. times) IS given in the following
Tab. 1.

Table 1. Overview on the results

CS COﬂCept @parls/person #various parts #id. sev. times
Computer 4.3 29 20
Internet 4.0 40 16
Email 3.7 41 13
Automaton 3.4 40 13
Website 3.0 43 14
Algorithm 2.8 44 11
Database 25 29 10
Data 1.8 28 5

A detailed overview on the answers is presented in the
poster, which interested readers of this contribution gladly
will be provided with by request via email.

4. CONCLUSION AND DISCUSSION

In Tab. 1, the concepts are sorted in descending order
according to the amount of parts that each participant
identified in average. It can easily be seen that the less parts
are identified by the students the more abstract, complex,
and theoretical the concepts are: While “computer” — a
physical device and concrete product — is the concept that
the students identified the most parts of in average, they had
issues with finding parts of “data” — which is a very
theoretical and abstract concept in contrast. While this fact
alone might not be that surprising, there is another
interesting aspect that needs to be mentioned at this point:
While all of the repeatedly identified parts of “computers”
are completely reasonable, comprehensible, and correct,
there are huge mistakes in the main parts that the students
identified of the more theoretical and abstract concepts. For
example, it is an obvious error that “information” is a part of
“data”. Instead, data requires some sort of interpretation to
get information. Similar obvious mistakes can be found for
“algorithms” and “websites”: While “algorithms” are parts
of “applications” and “methods” instead of the other way
around — as identified by many students —, it is also wrong
to say that “the Internet”, “servers”, and “browsers” are parts
of “websites”. Another interesting aspect is the fact that the
more complex the concepts are — excepting “database” and
“data”* — the more various parts are identified. By analogy,
the amount of several times identified parts decreases with
increasing complexity and abstractness of the concepts. To
describe it differently, these two facts mean that the students
are more disagreeing on what parts the more complex and
theoretical concepts consist of.

! This mainly results from the fact that every fourth student did not
find any parts of these two concepts at all, though they both were
positioned in the middle of the questionnaire.

Generally speaking it seems as if the students of the
investigated introductory CSE lecture had huge problems
with the task of finding parts of complex CS concepts. Many
students listed elements as parts that simply do not fit.
Without a doubt, it is way more difficult to identify parts of
“data” than “computers”. So, it is not at all remarkable, that
the students listed less parts of the more abstract concepts
than the concreter ones. However, it is quite worrying that
they tended to give wrong answers when they were asked to
identify parts of more complex CS concepts to a not
negligible extent. At this point it is mentionable, that this
lecture is intended to be attended by students in their fourth
bachelor semester. So, a lack of knowledge on CS concepts
is probably not the reason for the deficits that were found out
in this study.

As already mentioned, Part-Whole-Relationships play a
huge role in CS. PWT (mostly subconsciously) helps to
understand objects, systems, processes, definitions and
concepts. But surprisingly there is almost no literature
available on infusing it into CSE (Rao, 2005). The only way
to achieve this infusion is through the CS teachers. So, this
study aimed at an investigation of future teachers’ PWT to
make a start. Future work will lie on a deeper investigation
of PWT in CSE alongside the Model of Educational
Reconstruction. Therefore, a suitable research method will
be designed in the first place, since deficits were seen with
naively asking for an identification of parts of wholes
through questionnaires.

5. REFERENCES

Diethelm, 1., Hubwieser, P., and Klaus, R. (2012). Students,
Teachers and Phenomena: Educational Reconstruction
for Computer Science Education. In Proceedings of the
12th Koli Calling International Conference on
Computing Education Research. ACM, 164-173.

Gerstl, P. and Pribbenow, S. (1995). Midwinters, end
games, and body parts: a classification of part-whole-
relations. In International Journal of Human-Computer-
Studies, 43(5), 865-889

Niedersachsisches Kultusministerium (2014).
Kerncurriculum fiir die Schulformen des
Sekundarbereichs | Schuljahrgange 5 — 10. Hannover,
Germany: Niedersachsisches Kultusministerium

Rao, K. (2005). Infusing Critical Thinking Skills into
Content of Al Course. SIGCSE Bull. 37, 3. 173-177

Shafique, M. and Rao, K. (2006). Infusing Parts-whole
Relationship Critical Thinking Skill into Basic Computer
Science Education. In Proceedings of the FECS 2006,
Las Vegas, Nevada, USA, June 26-29, 2006. 287-292

Wing, J. M. (2006). Computational Thinking. In
Communications of the ACM, March 2006, 49 (3), 33-35

180

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking
Education 2018. Hong Kong: The Education University of Hong Kong.

General Submission to
Computational Thinking
Education

181

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Developing a Framework for Computational Thinking

from a Disciplinary Perspective

Joyce MALYN-SMITH?, Irene A. LEE?, Fred MARTINZ, Shuchi GROVER, Michael A. EVANS?, Sarita PILLAI*
'Education Development Center
2 Massachusetts Institute of Technology
3 University of Massachusetts Lowell
4North Carolina State University
jmsmith@edc.org, ialee@mit.edu, fred_martin@uml.edu,
shuchig@cs.stanford.edu, michael.a.evans@ncsu.edu, spillai@edc.org

ABSTRACT

This paper describes progress towards the development of a
Framework for Computational Thinking (CT) from a
Disciplinary Perspective. The work aimed at discovering
how CT can be encouraged, taught and practiced within
disciplines throughout primary and secondary education. It
identifies an initial set of “elements” describing CT practices
that bridge learning and working in highly sophisticated
STEM environments and shares examples of these practices
used by STEM professionals at work and developed by
students in schools. It is hoped that this paper will provoke
dialogue among educators advocating for CT as a core skill
for all and will contribute to breakthroughs in thinking about
how CT should be learned and assessed in and out of school.

KEYWORDS
Computational thinking, K-12 education,
development, human-technology frontier.

1. INTRODUCTION

The proliferation of new technologies has changed the way
we live, learn, and work. Although the future of work is
unclear, experts envision a new machine age, where
technologies (sensors, communication, computation, and
intelligence) are embedded around, on, and in us; where
humans will shape technology and technology will shape
human interaction; and where technologies and humans will
collaborate to discover and innovate. In short—the Human-
Technology Frontier.

workforce

Without question, the global workforce will need a new set
of skills and competencies to succeed in the future work
environments on this frontier—that feels closer with each
new technological advance. A recent report by EDC’s
STELAR Center (Malyn-Smith et al., 2017) identified
computational thinking as one of the essential skills needed
by future workers for success in work at the Human-
Technology Frontier. As our society works to understand
and identify strategies to overcome these complex and
interrelated challenges, important questions include: What
can we do to prepare today’s students to succeed in work at
the Human-Technology Frontier? and What steps can we
take to make this happen? If we are to believe that the
Human-Technology Frontier is upon us, we need to
reconsider how computational thinking is taught in order to
advantage our students, not only in developing CT skills, but
also in developing the CT practices used in STEM
workplaces (EDC, 2011).

2. BACKGROUND

Since noted computer scientist Jeannette Wing (2006)
proposed CT as a new “core skill” various groups have tried
to define CT for education and training purposes (e.g.
Grover & Pea, 2013, 2018). CT (focusing on problem-
solving, algorithms, data representation, modeling and
simulation and connections to other fields) is a prominent
strand of the K-12 Standards for Computer Science
developed by the Computer Science Teachers Association
(CSTA, 2011). Individual states (including Massachusetts
and New Jersey, USA) have instituted computer science
(CS) and digital literacy standards that use the term CT. Next
Generation Science Standards (NGSS Lead States, 2013)
include computational thinking in one of their eight
scientific practice standards. National Science Foundation
(NSF) funded projects are conducting research on several
different approaches to CT. Data practices, modeling and
simulation practices, computational problem solving
practices and systems thinking practices are proposed by
Weintrop et al. (2016). Lee et al. (2011) propose that youth
develop CT skills as they use, modify and create with digital
tools and technologies. While these initiatives signal a broad
based, grassroots interest in computational thinking, their
simultaneous development and independent implementation
leaves us without consensus on a precise definition of CT.
(Barr & Stephenson, 2011; Voogt, Fisser, Good, Mishra, &
Yadav, 2015; Weintrop et al., 2016). Most agree, however,
that Computational Thinking is formulating problems and
their solutions in a way that a machine (computer) can be
used to represent the problem and carry out its solution.

What has emerged from these varied research and practice
efforts aimed at CT is a debate over how CT is best taught
and learned. Many computer science educators believe that
CT is best taught through programming where students’
development of CT can be ensured and uniquely
observed. Others believe that to best prepare today’s youth
for tomorrow’s world, CT should be taught/learned in the
service of disciplines. While many of the efforts described
above define CT by dissecting it into its component parts,
little has focused on what results from integrating CT and
disciplinary learning. To guide teaching and learning of CT
within the disciplines, a new kind of computational thinking
framework was needed — one which captured and clarified
what students were able to do using CT — and unable to do
without CT.

182

3. DEVELOPING A FRAMEWORK

A group consisting of principal investigators, researchers,
and educators from National Science Foundation funded
ITEST (Innovative Technology Experiences for Students
and Teachers) and STEM+C (STEM+Computing) projects
convened in August and November 2017 to explore the
development of an Interdisciplinary Framework for
Integrating CT in K-12 Education. Their goal was to draft a
framework defining computational thinking from a
disciplinary perspective. The 54 workshop participants
provided a good balance of researchers and practitioners,
who represented grade spans Kindergarten-2" grade, 3¢-5%"
grade, 61-8" grade, and 9™"-12™ grade, as well as disciplines
including science, mathematics, engineering, social science,
computer science and the humanities. In total there were 31
researchers, 18 teachers / practitioners, 3 participant
observers, and 2 staff members. (13 of the participants were
from colleges/universities, 15 from schools, 15 from non-
profits, 1 from business, 3 from foundations including the
NSF). The primary goals were to develop a framework for
computational thinking from a disciplinary perspective that
built on the work of the foremost researchers and
practitioners focused on helping youth develop CT skills.
Progress towards the goals was guided by some of the
foremost CT thought leaders in the U.S. including Irene Lee
of Massachusetts Institute of Technology, Shuchi Grover,
Fred Martin of University of Massachusetts Lowell and
CSTA, and Michael Evans of North Carolina State
University.

As a first step, participants were asked to submit examples
of their work to share with other participants prior to the
workshops. Educators/practitioners shared curriculum and
activities that illustrated CT in action in their
classrooms. Researchers shared their lessons learned
through research on various aspects of CT skill development
and integration. Together the group explored these examples
and found that a number of common “elements” emerged.
During the workshops, participants were asked to provide
additional examples of CT integration by grade level and
discipline. These examples were subsequently reviewed and
discussed within the emerging framework of common
elements.

Thought about the goal of developing a framework for CT
in the service of disciplines crystallized around the larger
goal of education — that of preparing youth for success for
living, learning and working after compulsory
education. Thus, focusing on building a bridge between the
CT skills developed in school and the professional practices
involving CT, particularly those in scientific workplaces
became paramount.

A traditional way CT is integrated is shown at the bottom of
Figure 1 illustrated with the Massachusetts digital learning
and computer science (DLCS) standards component areas of
abstraction, algorithms, programming and software
development, data collection and analysis, and modeling and
simulation. Typically, individual CT components are taught
then linked in pairs and clusters leading up to potentially
more powerful CT activities at with older age groups.

CTintegratedfieds ~~ _—— —— > -
- Computaticnal ~ Computational .
Neuroscience Social Science

P
_

Bioinformatics R=lmElys cs ™y

A
Computafional™
—_ History %

Computational Computational
Biology Archeology

(Computational
— Physics

¢~ Cheminformatics

Computational
Computational Economics —
Chemistry Ja -

1

CT Integration Elements (Powerful practices in CT integrated fields)

CT skills (DLCS}—_ i —
i ~ Y ,/ 7 S

g - ~ N
Data collection Modeling &
& analysis 1 Simulation

e N
Abstraction ‘ Algorithms Lpfogfamm\ng ! J
A J

Development

Figure 1. Bridging between traditional teaching of CT and
CT as used in CT integrated fields.

Stronger connections between these CT components and the
powerful practices used by professionals in CT-integrated
scientific fields (e.g. computational biology, bioinformatics,
cheminformatics, computational economics and others)
were sought. The aim in making these connections was to
ensure that the CT integrated in K-12 concept areas provided
a strong foundation for the computational thinking used by
practicing scientists and would bridge the skills transition
from school to work.

4. CT from a Disciplinary Perspective —

examples from STEM workplaces

To further explore the elements that might form a framework
for CT from a disciplinary perspective, examples of CT
commonly used by practicing scientists specifically,
examples of what can be accomplished using CT that would
be difficult, if not impossible, without CT were gathered.
From these examples of CT used by practicing scientists in
CT integrated fields, the elements emerged and were tested
as organizers for other examples of CT. The initial
examples considered follow.

4.1. Ensemble modeling

Scientist use multiple models are used to predict the
behavior of complex systems. For example, weather
forecasting now uses ensembles of models to understand
weather patterns (Gneiting & Raftery, 2005; Krishnamurthy
et al., 2000). Each model in an ensemble simulates the
global weather system taking different sets of parameters or
initial conditions into account. Instead of making a single
forecast of the most likely weather, a set (or ensemble) of
forecasts is produced. This set of forecasts aims to give an
indication of the range of possible future states of the
atmosphere.

4.2. Computational chemistry

Scientists innovate with computational representations - For
example, the SMILES (simplified molecular-input line-
entry system) notation is a representation for describing the
structure of chemical compounds using short ASCII strings
(O’Boyle, 2012). This revolutionized computational
chemistry and drug design by enabling computers to read
and operate on chemical sequences (including searching and
database indexing).

4.3. Bioinformatics

CT is used in bio-informatics workplaces. In Next
Generation Sequencing Data Analysis, dozens of whole
genomes can be sequenced in rather short time, producing
huge amounts of data (McKenna et al., 2010; DePristo, et

183

al., 2011). Complex bioinformatics analyses are required to
turn these data into scientific findings. To run these analyses
quickly, automated workflows on high performance
computers are state of the art. Scientists design processes to
achieve high throughput processing of genomic data.

4.4. Environmental science

Environmental scientists use crowd-sourced data in water
management (Fienen & Lowry, 2012; Stepenuck & Green,
2015; McKinley et al., 2015). When considering water
management strategies for a region, data for various
communities with different water usage and needs (for
example, for growing different crops or industrial uses) is
necessary to understand the larger picture of water usage and
needs, as well as the local variations.

4.5. Machine learning

To a larger and larger extent, scientists are using machine
learning to make predictions. In supervised machine
learning, scientists build models by running algorithms on
“training sets” of inputs matched with correct responses
(Srivastava et al., 2014; Lecun, Bengio, & Hinton, 2015).
These models can then be used to offer predictions (or
responses) when given new inputs. Changes in the training
set data can have implications on the machine learning
model built and can introduce biases if the training data is
not representative of the target.

5. The Elements of CT integration from a
Disciplinary Perspective

The examples from advisors and researchers along with
lessons and activities provided by educators were examined.
Evidence was found that K-12 subject area teachers were
integrating CT in ways that were consistent with its use in
CT-integrated fields. The following five Elements of CT
Integration from a Disciplinary Perspective that emerged
from the reviews and discussions were:

1. Understand (complex) systems.
2. Innovate with computational representations.

3. Design solutions that leverage computational
power/resources.

4. Engage in collective sense making around data.
5. Understand potential consequences of actions.

5.1. Understand complex systems

Modeling how interactions of many individuals or
components in a system lead to aggregate level emergent
patterns is difficult to do without CT. Complex systems in
particular are not amenable to traditional mathematical
analysis. Simulating a system’s change over time and real-
time feedback in the form of simulations help scientists
visualize complex systems dynamics. These systems are
often hard to predict due to having a multitude of interrelated
factors and levels. In K-12 education, computer modeling
and simulation of these systems offers a way to see how the
systems behave under different circumstances, with
different inputs.

5.2. Innovating with computational representations
The design and development of innovations is made possible
through CT. New ideas, conceptualizations, representations,

and processes can be thought of and developed as
computations. For example, thinking of the brain as a
network and creating neural networks as artificial brains has
led to advances in artificial intelligence and cognitive
science. In K-12, students can be introduced to
computational representations by learning about how colors
are represented on computers as RGB values.

5.3. Design solutions that leverage computational power
and resources

Scientists working with large data sets or on computationally
intensive calculations design solutions that leverage the
efficient use of resources and computational power to
optimize their time. In some cases, distal collaborators can
pool and share computational resources and in other cases
co-located collaborators can access distributed resources to
achieve their goal. Some speedups are achieved by
decomposing datasets and/or processes to run in parallel. In
K-12 settings, educators can challenge students to think
about how they would solve a problem differently if the
input set was of large scale. For example, rather than
developing processes to assemble 10 finished copies of an
item, how would students go about assembling 10,000
copies?

5.4. Engage in collective sense making around data

Data sets can be amassed through crowd-sourcing or
collection by multiple individuals or sensors. These data can
be analyzed to wuncover patterns. Visualization of
multidimensional data enables students to see patterns that
might not otherwise be apparent. When possible in the K-12
education setting, teachers can ask small groups of students
to run simulations on a subset of the inputs, then share their
output data and analyses. Gathering and analyzing the
combined data illustrates how each part of the data
contributes to the understanding of the whole.

5.5. Understand potential consequences of actions
Scientists envision the future through simulation and use
machine learning to make predictions. Using parameter
sweeping, the space of all possible combinations of inputs
can be tested to see the variety and probability of outcomes.
In K-12, students can learn how cause and effect
relationships can be used to predict outcome. Students can
also begin to understand the space of inputs created by
parameterizing models.

Notably, these elements of CT integration go beyond the
mechanics of learning to program a computer. They form a
bridge between CT as it has traditionally integrated in K-12
classrooms (through the introduction of computer
programming activities) and professional practices.

184

—

CTintegrateafields —

Compulational ~ Computational .
Neuroscience Social Science)

e
N

: " Cheminformatios Computatigrial \ Computational
—~ | Biology \ Archeology
¢ Computational | \
. \ i " Computational | ™\
— F"hyslcs \ | ™

| Chemistry N A N
A

Bioinformatics Astrophysics

<
;o\ s
\ Computafional ™
tory

Gomputational/
Egonomics

s] N N

—\ | S

= = /
\ \ oS
ments tPoqu'yT practices in CT imegraled fieldsp., || /

CT Integration N
/i / | A/ \/

a ¥ ~ ! ~ \ N N e .
Computational Leverage Collective Understanding ‘ Consequences
Representations Comp. power Sense making Systems / Prediction

L L . J L S

When the CT skills below are understood/mastered, one has (some of)

the necessary computational basis to formulate problems and their
solutions so their solutions can be carried out by a computational agent.
T skills (DLCS}“—__ ™ -~ J
= = =~ i ~ —
- ! - . N ~ - N

Abstraction | Algorithms ‘ Programming / Data collection Modeling &
|) Development & analysis Al Simulation

Figure 2. CT integration elements as a bridge between
traditional CT integration in K-12 education and CT as
powerful practices used in CT integrated fields.

Figure 2 illustrates how the thinking progressed from the
idea of direct teaching of CT skills through programming -
to a realization that to help students develop CT skills
through STEM disciplinary learning, their education needs
to include a stronger focus on computational tools,
techniques, and processes used in the CT integrated fields.

6. CT from a Disciplinary Perspective —

examples from K-12 classroom teachers
Through the examination of lessons provided by K-12
educators, it was determined that a subset of the disciplinary
teachers were already integrating CT within K-12 that
aligned with the elements presented above. Several lessons
and activities teachers provided from their curricula
illustrate how these elements can be introduced in K-12 to
help students develop CT skills aligned with professional
practices.

6.1. Middle school science

In middle school ecosystems lessons (Lee, 2011; Project
GUTS, 2014) using the StarLogo Nova modeling and
simulation environment, middle school students in science
classrooms used, modified and created computer models and
ran simulation to understand complex systems; multiple
models were produced and compared; students engaged in
collective sense making around data (by crowdsourcing data
generated from multiple runs of each of the models); and
students learned about potential consequences of actions
(such as the impact of removing a top predator).

6.2. Elementary school mathematics

In a 5" grade mathematics classroom, students were asked
to generate a language to describe a minimal set of actions
to be performed by robots tasked to build a tower. Within
this activity students were innovating with computational
representations, and designing solutions that leverage how
computers process data (in this case, instructions).

6.3. High school engineering

In a high school engineering classroom, a teacher used a
multi-step physical construction task to illustrate domain vs.
task decomposition as method of parallel processing in high
performance computing. Students designed processes to
make many copies of a Lego figure that leveraged

“processing” resources (other students) then optimized the
design based on collective sense making from data on time
to complete the task.

6.4. Middle school mathematics

In a middle school mathematics classroom, students using
the iISENSE data-sharing platform were able to collect and
add locally generated data to a large student-generated data
set. They could then analyze their data and compare it to data
provided from other classrooms (Willis et al., 2015).

6.5. Across subject areas

There is a large window of opportunity for K-12 students to
learn about consequences of actions, in areas ranging from
cause and effect in programming to decision-making and
prediction in machine learning.

7. CHALLENGES

While the path towards CT integration from a disciplinary
perspective is growing clearer, many challenges remain.
First, we acknowledge that the majority of K-12 teachers are
still struggling with the integration of CT in terms of
teaching the basics of computer programming. Introducing
the elements of CT integration can be viewed as a conflicting
definition instead of a further elaboration on a trajectory of
CT from K-12 to professional practice.

Another challenge is the rate at which fields are innovating
with CT. The examples of CT integrated fields presented in
this paper are only a few of the many fields that have been
greatly impacted by CT. Many additional fields are
incorporating computational tools, techniques, and
practices. Across fields, innovations and discoveries made
possible by the integration of computational tools,
techniques, and practices are increasing.

The rapid rise of machine learning raises yet another
challenge. Across disciplines, the need for analysis of
computational systems, especially those used to make
predictions that greatly impact human life, is paramount.
The inclusion of the CT integration element “Understanding
potential consequences of actions” addresses this important
need.

8. CONCLUSION

The authors believe that learning CT needs to extend beyond
learning to program. It must include engagement in
computational practices used in the sciences that harness the
power of computers to enhance scientific discovery. The CT
Integration Elements presented here provide a framework
for foundational learning of CT within disciplines beginning
in elementary school and extending through high school and
beyond. Examples provided by K-12 teachers shed light on
ways K-12 educators have integrated powerful practices
from professional CT integrated fields. It is hoped that the
framework can aid teachers in the development of CT
lessons, and ensure that the CT that teachers promote has
links to the CT used in scientific workplaces. Still, this
Framework is a work-in-progress. It is hoped that it will
evolve as researchers continue to examine—and K-12
educators increasingly engage in—CT integration in the
classroom.

185

9. ACKNOWLEDGMENTS

We gratefully acknowledge the support of the “Workshop to
Develop an Interdisciplinary Framework for Integrating
Computational Thinking in K-12 Science, Mathematics,
Technology, and Engineering Education” project from the
National Science Foundation (DRL award# 1647018). We’d
also like to thank the many participants in the workshop
series who generously shared their curricula, research, and
insights.

10. REFERENCES

Barr, V., & Stephenson, C. (2011). Bringing
computational thinking to K-12: What is involved and
what is the role of the computer science education
community? ACM Inroads, 2(1), 48-54.

Computer Science Teachers Association (2011). K-12
computer science standards.
http://csta.acm.org/Curriculum/sub/k12standards.html

DePristo, M. A., Banks, E., Poplin, R. E., Garimella, K. V.,
Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel,
G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T.J.,
Kernytsky, A.M., Sivachenko, A.Y., Cibulskis, K.,
Gabriel, S.B., Altshuler, D., & Daly, M. J. (2011). A
framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nature Genetics,
43(5), 491-498.

EDC (2011). A Profile of a Computational Thinking
Enabled STEM Professional in America’s Workplaces —
Research Scientists / Engineers. (revised 2013).
Waltham, MA: EDC.

Fienen, M.N., & Lowry, C.S. (2012) Social Water—A
crowdsourcing tool for environmental data acquisition,
Computers & Geosciences, 49(1), 164-169.

Gneiting, T., & Raftery, A. E. (2005, October). Weather
Forecasting with Ensemble Methods. Science,
310(5746), 248-249.

Grover, S. & Pea, R. (2013). Computational Thinking in
K-12: A Review of the State of the Field. Educational
Researcher. 42(1), 38-43.

Grover, S. & Pea, R. (2018). Computational Thinking: A
competency whose time has come. In Computer Science
Education: Perspectives on teaching and learning,
Sentance, S., Carsten, S., & Barendsen, E. (Eds).
Bloomsbury.

Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., Larow,
T., Bachiochi, D., Williford, E., Gadgil, S., & Surendran,
S. (2000). Multimodel Ensemble Forecasts for Weather
and Seasonal Climate. Journal Of Climate, (13). 2000
American Meteorological Society.

Lecun, Y., Bengio, Y., & Hinton, G. (2015, May). Deep
learning. Nature, 521, 436-444.

Lee, 1., Martin, F. Apone, K. (2014). Integrating
Computational Thinking Across the K-8 Curriculum.
ACM Inroads, 5(4): 64-71.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., MaylIn-Smith, J., and Werner, L. (2011).
Computational thinking for youth in practice, ACM
Inroads, Vol. 2 No.1.

Malyn-Smith, J., Blustein, D., Pillai, S., Parker, C. E.,
Gutowski, E., & Diamonti, A. J. (2017). Building the
foundational skills needed for success in work at the
human-technology frontier. Waltham, MA: EDC.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A.,
Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler,
D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The
Genome Analysis Toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data.
Genome Research, 20(9), 1297-1303.

McKinley, D. C., A. J. Miller-Rushing, H. L. Ballard, R.
Bonney, H. Brown, D. M. Evans, R. A. French, J. K.
Parrish, T. B. Phillips, S. F. Ryan, L. A. Shanley, J. L.
Shirk, K. F. Stepenuck, J. F. Weltzin, A. Wiggins, O. D.
Boyle, R. D. Briggs, S. F. Chapin I1I, D. A. Hewitt, P. W.
Preuss, and M. A. Soukup. (2015). Investing in citizen
science can improve natural resource management and
environmental protection. USGS Publications
Warehouse. http://pubs.er.usgs.gov/publication/70159470

NGSS Lead States. (2013). Next Generation Science
Standards: For States, By States. Washington, DC: The
National Academies Press.

O’Boyle, N. M. (2012). Towards a Universal SMILES
representation - A standard method to generate canonical
SMILES based on the InChl. Journal of
Cheminformatics, 4(22).

Project GUTS CS in Science curriculum (2014).
Ecosystems as Complex Systems. Downloaded at
http://www.teacherswithguts.org .

Stepenuck, K.F., and Green. L. (2015). Individual and
community level impacts of volunteer environmental
monitoring: a synthesis of peer-reviewed
literature. Ecology and Society, 20(3):19.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
& Salakhutdinov, R. (2014, June). Dropout: A simple
way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15:1929-1958.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A.
(2015). Computational thinking in compulsory
education: Towards an agenda for research and practice.
Education and Information Technologies, 20(4), 715—
728. Retrieved from
http://link.springer.com/article/10.1007/s10639-015-
9412-6

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K.,
Trouille, L., & Wilensky, U. (2016). Defining
Computational Thinking for Mathematics and Science
Classrooms. Journal of Science Education and
Technology, 25(1), 127-147.

Willis, M. B., Hay, S., Martin, F. G., Scribner-MacLean,
M., & Rudnicki, I. (2015). Probability with Collaborative
Data Visualization Software. Mathematics Teacher,
109(3), 194-199.

Wing, J. (2006, March). Computational thinking.
Communications of the ACM, 49(3), 33-35.

186

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe, H.U., Hsu, T.C., Huang, R.H., Li, K.Y, Looi, C.K., Milrad, M., Sheldon, J., Shih,
J.L., Sin, K.F., Tissenbaum, M., & Vahrenhold, J. (Eds.). (2018). Proceedings of the International Conference on Computational Thinking

Education 2018. Hong Kong: The Education University of Hong Kong.

Virtuality Literacy: On the Representation of Perception

Andreas DENGEL
University of Passau, Germany
Andreas.Dengel@uni-passau.de

ABSTRACT

Immersive media such as virtual reality (VR) and augmented
reality systems provide new ways of experiencing digital
environments. Connecting the sense of presence to ones and
zeros leads to questions on how we perceive digitally created
content for it to become our subjective reality.
Computational Thinking (CT) merges human abilities with
computer affordances, already covering aspects ranging
from data representation to the critical handling of and
reflective attitude towards different forms of information
and media. Combining the existing CT skills with the
information and media literacy approach in terms of VR
leads to the requirement of Virtuality Literacy as the critical
reflection and production of the representation of human
perception through immersive digital media. Virtuality
Literacy as a new CT skill covers the thematic fields of the
representation of sensory stimuli, immersion and presence
as well as virtual information and media literacy. Enhancing
Virtuality Literacy at an early age may lead to a better
understanding of why and how immersive media can
influence peoples’ perceptions of various aspects of reality.
Future studies will have to investigate the implementation of
Virtuality Literacy in different learning environments.

KEYWORDS
Virtual Reality, Computational Thinking, Representation of
Information, Information and Media Literacy

1. INTRODUCTION

Virtual Realities (VRs) as completely synthetic and
immersive digital environments (Milgram, Takemura,
Utsumi, & Kishino, 1994) are currently in the public eye
following the latest technological developments. In
contemporary Computer Science Education (CSE), the
process of virtualizing information from the real world is
characterized by the concept of data representation
(Atchison et al., 1968; Brinda, Puhlmann, & Schulte, 2009)
but efforts to combine these aspects with concepts of
perceptual psychology are still lacking. As life becomes
more digitized, it has become particularly important to
acquire a better understanding of how different stimuli,
transmitted by human sensors (visual, auditory, tactile, etc.)
affect out perception of reality. This article focuses on the
concept of Virtuality Literacy as the ability to critically
reflect and produce human perception through immersive
digital media.

2. CONNECTED CONCEPTS OF
COMPUTATIONAL THINKING

2.1. Representation of Information

The process of encoding information into data structures has
been recognized as an important part of CSE. Hubwieser and
Broy (1999, p. 166) describe the process of representation of
information: “In order to make information accessible to any
kind of processing it has to be transformed into a physical

representation according to the rules of a more or less formal
language”. Relating this to CT, understanding the concept of
computational abstraction using various forms of data
representations has been identified as a fundamental CT skill
(Barr, Harrison, & Conery, 2011; Wing, 2006). Together
with abstraction, efficiency and heuristics, information
representation has emerged as a perspective in ordinary
human activities on a daily basis (Lu & Fletcher, 2009). As
the concept of the representation of information underlies
every form of digital data processing, it incorporates all
kinds of immersive electronical media, including Virtual and
Mixed Realities.

2.2. Information and Media Literacy

The requirement of knowing how to ‘read’ media in terms
of a critical understanding as well as knowing how to ‘write’
in order to be able to produce them leads to a form of media
literacy. Combining the different concepts of (digital) media
literacy with the requirement of ‘reading’ and ‘writing’
information in a critical way the concept of information and
media literacy becomes a fundamental 21% century skill for
everyday and working life (Hobbs, 2010). As an unthinking
use of immersive media would be critical due to the many
possibilities of influencing users through simulating virtual
and mixed realities (Fox, Bailenson, & Binney, 2009),
information and media literacy must be the basic framework
of every work with immersive virtual environments (VES).
Hence a Virtuality Literacy results when combining CT
skills with information and media literacy in terms of virtual
and mixed realities.

3. VIRTUALITY LITERACY

The term literacy includes reading and writing skills,
whereas Virtuality Literacy (as a CT skill) addresses the
abilities and competencies of analyzing, reflecting and
producing information in immersive VES. Wing describes
CT as a thought process that formulates problems and their
solutions by means of abstraction and decomposition in such
a manner that a computer can effectively process the given
problem (Wing, 2006). Virtuality Literacy focuses on the
transfer process of information from the real or fictional
world into a virtuality and vice versa. To split Virtuality
Literacy into teachable segments, we distinguish the
Representation of Sensory Stimuli, Immersion and Presence
as well as Virtual Information and Media Literacy as partial
competences of the transdisciplinary CT concept of
Virtuality Literacy.

3.1. Representation of Sensory Stimuli

Representation of Information as a part of CSE maps the
transformation of information to ones and zeroes. This
classical element of the CSE curriculum is an important part
of the creation of VEs as some are meant to represent a
credible version of the real world. What this CT skill does
not cover is the perception behind an abstraction of real
world concepts. The model neglects completing the process

187

of the transmission of information to the recipient’s brain
through perception. This is essential to understanding
immersive media since our perception of reality is the
product of our brain’s preselection and rearrangement of
sensory stimuli. Figure 1 shows the Representation of
Perception model as an extension of the Information-
Oriented Concept from Breier and Hubwieser (2002).

"The apple tastes good" stimulus in taste buds

Information [«— express — Perception
encode =T T
¢ sense sense
1

Representation Reality/Fiction

.. 1001 1101 1111... 272

Figure 1. The Process of the Representation of Perception

The representation does not become information before
being perceived by the user. Instead, it is transmitted directly
to the human senses. In this model, real and fictional world
are seen as a black box, as we only perceive reality through
our senses. Only if the first representation (the encoded
expressed perception of the experienced real or fictional
world issue) equals the second representation (the encoded
expressed perception of the experienced representation), this
form of representation is valid. The ability to understand and
apply this kind of abstraction is the main CT skill in
Virtuality Literacy.

3.2. Immersion and Presence

Presence “refers not to one’s surroundings as they exist in
the physical world, but to the perception of those
surroundings as mediated by both automatic and controlled
mental processes” (Steuer, 1992, p. 76). The different types
of presence are physical, social and self-presence (Biocca,
1997). With an understanding of the Representation of
Perception, it is possible to examine how these types of
presence as the feeling of being there arise. While
representations of physical objects have a long history in CS,
representing social feelings and self-identification in a VE
through ones and zeros are a CT skill of abstraction that has
not yet been explored. Immersion as “a quantifiable
description of a technology” (Slater, Linakis, Usoh, &
Kooper, 1999, p. 3) is what turns the ones and zeros into
perceived reality. The linking of the subjective feeling of
presence and the technological immersion of human sensors
(addressing the visual and auditory senses) and actuators
(collecting data from gyro sensors for head tracking or
different types of positional tracking) comprises the process
of retrieving and sending data and human-computer-
interaction as central CT skills.

3.3. Virtual Information and Media Literacy

As the representation of social feelings and self-
identification in terms of social and self-presence is possible
in immersive media, a critical reflection on these perceptions
is needed. Even though Virtual Information and Media
Literacy would be a media educational or media semiotic
skill rather than a CT skill, it requires a CSE foundation.
Virtual Information and Media Literacy covers aspects of

‘reading’ virtual information critically with the background
knowledge of its possible influence on social feeling and
self-identification. Thus, in order to obtain an overall
understanding of information and media in immersive VEs
using the Representation of Perception approach, one has to
combine technological insights from a CSE perspective,
apply a media educational and media semiotic angle and also
view the subject through the lens of cultural and historical
views and pictorial science research. The same goes for the
‘writing’ skills that allow the production of one’s own
immersive information and media content.

4. REFERENCES

Atchison, W. F., Schweppe, E. J., Viavant, W., Young, D.
M., Conte, S. D., Hamblen, J. W.,. . . Rheinboldt, W. C.
(1968). Curriculum 68: Recommendations for academic
programs in computer science: a report of the ACM
curriculum committee on computer science.
Communications of the ACM, 11(3), 151-197.

Barr, D., Harrison, J., & Conery, L. (2011). Computational
Thinking: A Digital Age Skill for Everyone. Learning &
Leading with Technology. (38), 20-23.

Biocca, F. (1997). The Cyborg's Dilemma: Progressive
Embodiment in Virtual Environments [1]. Journal of
Computer-Mediated Communication, 3(2), 0.

Breier, N., & Hubwieser, P. (2002). An information-
oriented approach to informatical education, 1, 31-42.

Brinda, T., Puhlmann, H., & Schulte, C. (2009). Bridging
ICT and CS. In P. Brézillon (Ed.), Proceedings of the
14th annual ACM SIGCSE conference on Innovation and
technology in computer science education (p. 288). New
York, NY: ACM.

Fox, J., Bailenson, J., & Binney, J. (2009). Virtual
Experiences, Physical Behaviors: The Effect of Presence
on Imitation of an Eating Avatar. Presence:
Teleoperators and Virtual Environments, 18(4), 294-303.

Hobbs, R. (2010). Digital and Media Literacy: A Plan of
Action. A White Paper on the Digital and Media Literacy
Recommendations of the Knight Commission on the
Information Needs of Communities in a Democracy:
ERIC.

Hubwieser, P., & Broy, M. (1999). Educating Surfers or
Craftsmen: Introducing an ICT Curriculum for the 21st
century. In IFIP WG 3.1 and 3.5 Open Conference
“Communications and Networking in Education:
Learning in a Networked Society (pp. 163-177).

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F.
(1994). Augmented Reality: A class of displays on the
reality-virtuality continuum. SPIE Vol. 2351,
Telemanipulator and Telepresence Technologies, 282—
292. Retrieved from

Steuer, J. (1992). Defining Virtual Reality: Dimensions
Determining Telepresence. Journal of Communication,
42(4), 73-93.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

188

foo/Think =«

G& '%@ﬂﬁﬁ‘!ﬁ"i

ANEEnN

Coo/Thinkex>

% ﬁLEIUInE%& }g

URL
www.eduhk hk/cte2018

Email
cte2018@eduhk.hk

Created and Funded by Co-created by

Tratk 96 0 W BN 1Y RE M 4 .- 8 FH AT S S
The Hong Kong Jockey Club Charities Trust -- . - I I I

Institute of
Technology

The Education University

T ITE ANNG HIGH TOGETHER M of Hong Kong

