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Recent Developments in  
Rasch Measurement 
 
WANG Wen Chung 
      
 

Abstract 
 

Rasch measurement has been widely applied in the human 
sciences, including education, psychology, health sciences, sports, 
management, sociology and political sciences. The major beauty 
of Rasch measurement is that it diagnoses noise in test or survey 
data and converts ordinal item response or test raw score into a 
linear measure such that subsequent parametric statistical 
analysis (e.g., t-test, ANOVA, correlation and regression) 
becomes feasible, and intra-person growth and inter-person 
difference can be quantified. Recent decades have witnessed the 
blooming of Rasch measurement. In this paper, I highlight 
several important developments where Rasch models have been 
extended to deal with complicated testing situations:  
(a) polytomous items (e.g., constructed-response items)  
(b) multiple facets (e.g., rater effect)  
(c) multilevels (e.g., gender difference in math, school effect)  
(d) mixture models (i.e., latent class plus latent trait)  
(e) testlet items (i.e., a set of items are connected by a common 

stimulus of passage or figure)  
(f) multiple dimensions (e.g., tests with subtests)  
(g) hierarchical latent traits (e.g., Quality of life includes 

physical, psychological, social and environmental domains, 
and each domain may include subdomains.)  

(h) structural equation modeling with categorical data  
(i) differential item functioning (i.e., items function differently 

for different groups of test-takers, an issue of test fairness)  
(j) computerized adaptive testing / computerized classification 

testing  
(k) person-item interaction in rating scale items or Likert items 

(e.g., my strongly agree is equal to your agree, which is 
equal to his neutral)  
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1. INTRODUCTION 
 
 

Tests (including inventories, questionnaires, systematic observations and 
interviews) have been widely used in the human sciences to measure 
hypothetical constructs or attributes, like ability, personality, attitude or interest. 
For example, achievement tests are used to measure subject proficiency, 
self-reports inventories are used to measure anxiety or quality of life. These 
attributes are not directly observable; rather, they have to be inferred from 
observable events. Hence, they are referred to as latent traits. Actually, many 
attributes in the natural sciences are latent traits. Gravity is a good example.  

 
There are two major purposes in measurement. One is to quantify 
inter-individual difference, for example, who is more proficient, more outgoing, 
or happier. The other is to quantify intra-individual difference (i.e., growth), for 
example, whether a test-taker is more capable in mathematics than last semester, 
or more satisfied than last month. If a test consists of only a single item, then its 
reliability and validity will be too low to be useful. A test often contains 
multiple items in order to increase reliability and validity. Although items in a 
test were designed to measure the same construct, empirical evidence is needed 
to assess whether this purpose is fulfilled, which is the major task of item 
analysis. 

 
If through item analysis, items in a test are found to measure the same construct, 
that is, the assumption of unidimensionality is met, then the next step is often to 
sum up item scores to form a test raw score (or its linear transformation) and 
use it to describe a test-taker’s level. For example, in an ability test with 
dichotomous items (scored as 0 or 1 in an item), test raw score is the sum of 
individual item scores. The higher the raw score is, the more proficient the 
test-taker. Likewise, in an inventory with rating scale or Likert items (strongly 
disagree = 1, disagree = 2, agree = 3, strongly agree = 4), test raw score is used 
to depict a test-taker’s level on a construct (e.g., anxiety, happiness). The higher 
the raw score, the higher level the construct is. If items in a test do not measure 
the same construct (i.e., the assumption of unidimensionality is not met), then 
item scores should not be summed because the resulting raw score is 
meaningless.  

 
For the sake of communication, in this paper “ability” test is used to represent 
any kind of tests, the word “ability” is used to represent any latent trait, item 
“difficulty” is used to replace item “threshold.” The reader can easily generalize 
the concepts and methods that are introduced in this paper to non-ability test 
contexts.   
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Every measure consists of some measurement error. In classical test theory 
(CTT; Lord & Novick, 1968), it is assumed that an observed score is the sum of 
a true score and an error score. In addition, assumptions about the error score 
are made. In CCT, scores are assumed to be interval (Stevens, 1946). This 
assumption may hold in physical measures (e.g., height and body temperature). 
However, it may not hold for test scores in the social sciences. In practice, raw 
scores (or their linear transformations) are often used to describe inter- and 
intra-individual difference or correlation between latent traits. If the assumption 
of interval data does not hold, then raw scores cannot be operated arithmetically 
(e.g., to compute mean and variance) such that the aforementioned analysis is 
misleading.  

 
Some may view testing hypothesis or estimating confidence interval with 
standard computer programs like SPSS or SAS (e.g., correlation, regression or 
ANOVA) as an application of CTT. Actually, it is not. The major idea of CTT is 
measurement error. However, measurement error is not considered in ordinary 
data analysis. If measures contain a very small amount of measurement error 
(e.g., height and weight), then ignoring measurement error by using ordinary 
data analysis does little harm. Unfortunately, measures in the social sciences 
often (if not always) consist of a great amount of measurement error. Ignoring 
measurement error can cause serious mistakes in hypothesis testing and 
confidence interval estimation (Lord & Novick, 1968). An even more serious 
problem is that raw scores are not interval and should not be treated as such.   
 
 
1. 1   Properties of Raw Scores 
 
Assume a mathematic test has 50 dichotomous items. A test-taker receives a 
score of 20. We may consider this person as not proficient in mathematics. If an 
easier test is administered and the same person receives a score of near 50, then 
we may consider the same person as highly proficient. In other words, whether 
this person is proficient or not depends on which test is administered. That is, 
the judgment of person ability level with raw score is test dependent.  

 
In addition to person ability level, we are also interested in item difficulty. If a 
test is administered to 100 persons and 90 of them answer item 1 correctly, we 
may consider item 1 very easy. If the same test is administered to another group 
of 100 persons who are less proficient and only 20 of them answer item 1 
correctly, then we may consider item 1 as very difficult. Therefore, the 
judgment of item difficulty with passing rate is sample dependent.  
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If the judgment of person ability depends on test difficulty, and the judgment of 
item (test) difficulty depends on person ability, then the goal of measuring 
person ability and calibrating item difficulty is not achieved. Simply put, it is 
not appropriate to use raw score and passing rate to describe person ability and 
item difficulty, respectively.  

 
It is not appropriate to use raw score to describe ability distance between 
persons, either. In the previous example of mathematics test, suppose person A 
scores 10 points higher than person B, in a test with a maximum score of 50 
points, such a difference is moderate and we may consider the ability distance 
between them moderate. If test developers can create many items that person A 
can answer correctly but person B cannot, then the difference in their raw 
scores can be as high as nearly 50 points. Under such a case, we may consider 
the ability distance between them very large. On the other hand, if test 
developers create items that are so easy (or difficult) such that both persons 
answer them correctly (or incorrectly), then the difference in their raw scores 
will be close to zero, indicating little ability distance between them. Therefore, 
the judgment of ability distance between persons with raw scores is test 
dependent, too.  

 
The example of ability distance between persons applies to group difference 
(e.g., gender difference in mathematics) or treatment effect (e.g., the 
experimental group has a mean 10 points higher than the control group). The 
implication is that the distance between persons or groups or treatment effects 
can be controlled by test developers, if raw scores are used. 

 
Growth measurement with raw scores has the same problem of test dependent. 
For example, person A receives a score of 30 in a pretest before an instructional 
treatment and a score of 31 in a posttest after the treatment. An increment of 1 
single point in a test with a maximum point of 50 suggests a very small 
treatment effect. If a clever test developer is recruited and he/she creates items 
that are so difficult that almost none of the persons can answer them correctly 
before the treatment but in the same time so easy that almost everyone will 
answer them correctly after the treatment, then the score difference before and 
after the treatment will be nearly the perfect score of 50. This suggests that 
difference in raw scores between treatments or time points cannot describe 
person’s growth appropriately.  

 
Another interesting question is: Suppose person A receives a score 10 points 
higher than person B, who receives a score 10 points higher than person C, 
would this suggest that the ability distance between persons A and B is equal to 
that between persons B and C? That is, whether raw scores are interval? The 
answer is obviously no, because as mentioned previously, the judgment in 
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ability distance between persons with raw scores is test dependent. Using a 
different test will in general produce different distances in raw scores between 
persons, for example, person A receives a score 5 point higher than person B, 
who receives a score 20 points higher than person C in this new test. This 
explains that test scores are not interval.  

 
Similar problems of interval data occur in response time. In a cognitive ability 
experiment where response time needed to accomplish a task is recorded, 
suppose person A takes 10 seconds longer than person B, who takes 10 second 
longer than person C, can we claim that the ability distance between persons A 
and B is equal to that between persons B and C? Obviously, we cannot, because 
if another cognitive task is used, the same distances will not generally found, 
for example, for a new task person A may take 5 seconds longer than person B, 
who may take 20 seconds longer than person C. In other words, although 
“seconds” are interval data in the natural sciences, they are not interval in the 
social sciences.   
 
 
1. 2   Data Analysis of Raw Scores 
 
Raw scores are often treated as interval and analyzed accordingly. There are 
two major reasons for doing so. One is that users do not realize raw scores are 
not interval. The other is that users, although realizing raw scores are not 
interval and should not be treated as such, do not have access to appropriate 
methods and thus have to follow conventional methods of data analysis. Since 
the 1960s, many researchers have realized that the unit of data analysis in the 
social sciences should be item response rather than test score. Original item 
responses are the first-hand data and should be analyzed from them. Item 
responses are categorical and ordinal, rather than continuous and interval. 
Adding up item scores to form test raw scores can at most create ordinal data, 
not to mention that item scores should not be summed if these items do not 
measure the same latent trait. With this consensus, researchers have developed 
a class of models for item responses, which is referred to as item response 
theory (IRT; Lord, 1980). This research trend declares clearly that the unit of 
analysis should be switched from CTT’s test score to IRT’s item response.  

 
The popularity of IRT and Rasch measurement can be demonstrated by the 
numbers of articles included in academic databases. Searching abstracts for 
“item response theory” or “Rasch” up to January 2010 yields the following 
numbers of articles: PsycINFO (3,188), ERIC (2,597), MEDLINE (1,709), 
SportDiscus with Full Text (503), ABI/INFORM (502), and Sociological 
Abstracts (100).   
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2. DICHTOMOUS ITEMS 
 
 
2.1   The Rasch Model 
 
As Sir Isaac Newton discovered gravity when his head was hit with a falling 
down apple, Georg Rasch (1901 - 1980) developed the famous Rasch 
measurement model (Rasch, 1960) when he questioned what caused an 
incorrect or a correct answer to an item. To introduce Rasch’s basic idea, let us 
treat item response as an effect or a dependent variable and consider what 
major causes or independent variables will be. Let Pni1 and Pni0 denote the 
probabilities of being scoring 1 and 0 on item i for person n, respectively. 
Define the odds as the ratio of these two probabilities. Rasch proposed that 
there are two major causes that affect the odds: one is person n’s ability *

nθ , 
and the other is item i’s difficulty *

iδ , and their relationship is: 
* *

1 0/ /ni ni ni n iodds P P≡ = θ δ .                     (1) 
Equation 1 is the Rasch model for dichotomous items. As *

nθ  and *
iδ  are 

dividable, they are at a ratio scale. We shall come back to this issue later. 
 
The Rasch model has other expressions. Taking the natural logarithm of both 
sides of Equation 1 leads to: 

( ) ( ) ( )* *
1 0log log / log /ni ni ni n iodds P P= = θ δ .             (2) 

Because 
( ) ( ) ( )* * * *log / log logn i n iθ δ = θ − δ ,                 (3) 

and define ( )*log n nθ ≡ θ , ( )*log i iδ ≡ δ , and ( )log logitni niodds ≡ , one has: 

log itni n i= θ − δ .                         (4) 
Equation 4 is the common expression of the Rasch model. In the equation, 
ability θ and difficulty δ are additive, meaning that they are at the same logit 
unit and are interval. Their values are between negative infinity and positive 
infinity. In practice, most of them are within ±3.  
 
Because of Pni1 + Pni0 = 1, one has: 

)exp(1
)exp(

1
in

in
niP

δ−θ+
δ−θ

= ,                   (5) 

0
1

1 exp( )ni
n i

P =
+ θ − δ

,                   (6) 

where exp(x) is the exponential function of x, and exp(1) is approximately 
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2.718. If a person has an ability level of -2 logits, and the item has a difficulty 
of 0 logit, then the probability of being correct for that person on that item is: 

exp[ 2 0)] 0.12
1 exp[ 2 0]

− −
=

+ − −
.  

 
According to Equation 5, once θ and δ are both known, then the probability of 
being correct can be computed directly. In other words, the response of a person 
to an item becomes predictable, which is not applicable in CTT.  

 
Figure 1 shows the relationship between the probability (of being correct) and 
the distance between θ and δ. When θ – δ = 0 (i.e., the person’s ability level is 
equal to the item’s difficulty), the probability is a half. When θ – δ > 0 (i.e., the 
person has an ability level higher than the item’s difficulty), the probability is 
greater than 0.5, and the greater the distance is the higher the probability. When 
θ – δ < 0 (i.e., the person has an ability level lower than the item’s difficulty), 
the probability is smaller than 0.5, and the greater is the distance (in absolute 
value) the lower the probability.   
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Figure 1. Probability and the difference between person ability  

and item difficulty 
 
  
2.2   Properties of the Rasch Model 
 
Although the Rasch model allows for prediction of item responses, are θ and δ 
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free from being test dependent and sample dependent? Below we use Newton's 
Second Law of Motion as an analogy to describe the property of θ and δ in the 
Rasch model. According to the Law, the net force F on an object with mass m is 
equal to the product of the object’s mass and its acceleration a: 

F = ma.                           (7) 
 
Suppose we want to compare the force of two persons, we may ask them to 
push the same object (e.g., ball) and measure their accelerations. According to 
the Law, we find:  

F1 = ma1,                           (8) 
F2 = ma2.                           (9) 

Taking a division leads to: 

2

1

2

1

2

1

a
a

ma
ma

F
F

== .                     (10) 

Mass has been cancelled out from the equation, indicating that the comparison 
of two forces is independent of mass. Therefore, the comparison is “objective.” 
In addition, no matter whether the two forces are very large (e.g., these two 
persons are adults) or very small (e.g., they are kids), the ratio of two forces are 
a constant of a1 / a2. That is, F is at a ratio scale.  
 
What will happen if the comparison of two forces is dependent of mass? For 
example, the ratio of the accelerations for two persons is 2 for a heavy ball, 3 
for a light ball, and 1 for a very light ball. If this is the case, then the 
comparison of two forces is not possible.  

 
Taking the natural logarithm of both sides of Equation 7 leads to:  

log( ) log( ) log( ) log( )F ma m a= = + .                (11) 
Define * log( )F F≡ , * log( )m m≡  and * log( )a a≡ . Then, 

* * * F m a= + .                        (12) 
Now, ask two persons to push the same ball and then measure their 
accelerations. According to Equation 12, one has: 

* * *
1 1F m a= + ,                        (13) 
* * *

2 2F m a= + .                        (14) 
Subtracting Equation 14 from Equation 13 leads to: 

* * * * * * * *
1 2 1 2 1 2( ) ( )F F m a m a a a− = + − + = − .              (15) 

Mass has been cancelled out from the equation, indicating that the comparison 
of two forces is independent of mass and is objective. In addition, no matter 
whether the two forces are very large or very small, the distance of the two 
forces is a constant of *

2
*
1 aa − . Hence, F* is at an interval scale.  
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Assume two persons’ ability levels *

1θ  and *
2θ  are to be compared. They are 

asked to respond to the same item. According to Equation 1, one has: 
* *

1 1 /odds = θ δ ,                         (16) 
* *

2 2 /odds = θ δ .                         (17) 
The ratio of the two equations is: 

* * *
1 1 1

* * *
2 2 2

/
/

odds
odds

θ δ θ
= =

θ δ θ
.                    (18) 

Item difficulty δ* has been cancelled from Equation 18, suggesting the 
comparison of two persons’ ability levels is test-free and objective. In addition, 
no matter whether these two persons have very high ability level or not, their 
ratio is a constant of 1 2/odds odds . That is, *θ is at a ratio scale.  
 
Next consider the comparison of two item difficulties. Let the same person 
respond to two items. According to Equation 1, one finds:  

* *
1 1/odds = θ δ ,                        (19) 

* *
2 2/odds = θ δ .                        (20) 

The ratio of the two equations is: 
* * *

1 1 2
* * *

2 2 1

/
/

odds
odds

θ δ δ
= =

θ δ δ
.                   (21) 

Person ability has been cancelled out from the ratio, meaning that the 
comparison of two item difficulties is sample-free and objective. No matter 
whether these two items are very difficult or easy, their ratio is a constant of 

1 2/odds odds . Hence, *δ is at a ratio scale.  
 
The use of Equation 4 leads to the same conclusion. Let two persons with 
ability level of 1θ  and 2θ  respond to the same item. According to Equation 4, 
one finds: 

1 1logit = θ − δ ,                       (22) 

2 2logit = θ − δ .                       (23) 
Taking a subtraction for them leads to: 

1 2 1 2 1 2logit logit ( ) ( )− = θ − δ − θ − δ = θ − θ .           (24) 
Item difficulty has been cancelled out from the equation, suggesting that the 
comparison of ability levels is test-independent and objective. Besides, no 
matter whether the two persons have high or low ability levels, their distance is 
a constant of 1 2logit logit− , indicating θ is at an interval scale. Likewise, for 
the comparison of two item difficulties, let the same person respond to two 
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items. According to Equation 4, one finds:   
1 1logit = θ − δ ,                        (25) 

2 2logit = θ − δ .                        (26) 
Taking a subtraction leads to: 

1 2 1 2 2 1logit logit ( ) ( )− = θ − δ − θ − δ = δ − δ .             (27) 
Person ability is cancelled out, suggesting that the comparison of two item 
difficulties is sample independent and objective. No matter these two items are 
very difficult or easy, their distance is a constant of 1 2logit logit− , suggesting 
an interval scale.  
 
In the Rasch model, θ and δ can be separated from each other and are thus 
test-independent and sample-independent. Rasch called this property of 
parameter separation as “specific objectivity.”  
 
 
2. 3   The Two- and Three-Parameter Models 
 
In the Rasch model, each item has only a single parameter called difficulty. 
Hence, the model is also called the one-parameter model. About the same time 
when Rasch developed his measurement model, American researchers Allan 
Birnbaum, Frederic M. Lord and others proposed similar models. For example, 
Birnbaum (1968) proposed the two-parameter model as:  

)](exp[1
)](exp[

1
ini

ini
ni a

a
P

δ−θ+
δ−θ

= ,                   (28) 

and the three-parameter model as: 

)](exp[1
)](exp[)1(1
ini

ini
iini a

accP
δ−θ+

δ−θ
×−+= ,             (29) 

where ai is the slope parameter, ci is the asymptotic parameter, and δi is the 
location parameter, of item i. If ci = 0 for every item, then Equation 29 becomes 
Equation 28. If ai = 1 for every item, then Equation 28 becomes Equation 5, the 
Rasch model. In this regard, the one-parameter model is a special case of the 
two-parameter model, which is a special case of the three-parameter model.  
 
Do the parameters in the two- or three-parameter model share the same 
property of specific objectivity as the Rasch model? Take the two-parameter 
model as an example. Equation 28 can be written as:  

( ) ( ) ( )1 0log log /ni ni ni i n iodds P P a≡ = θ − δ .              (30) 
In order to compare two persons’ ability levels, let them respond to the same 
item. According to Equation 30, one finds:  
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)(logit 11 iii a δ−θ≡ ,                     (31) 
)(logit 22 iii a δ−θ≡ ,                     (32) 

Taking a subtraction leads to: 

iii

iiiiiii

a
aaa

/)logit(logit
)()()(loglog

2121

212121

−=θ−θ⇒
θ−θ=δ−θ−δ−θ≡−

          (33) 

Obviously, the distance between the two persons, 1 2θ − θ , changes across items. 
As a result, the comparison of ability is no longer objective. Only when ai is a 
constant (e.g., 1), will the item parameter ai be cancelled out from Equation 33 
and the comparison of ability be objective. Under such a case, the model is 
actually the Rasch model. Similar conclusions can be drawn for the 
three-parameter model.  
 
The parameters in the Rasch model, θ and δ, have the same logit unit. We may 
say a person has an ability of 2 logits or an item has a difficulty of 3 logits. 
However, in the two- or three-parameter models, the person and the item 
parameters do not have the same unit. It is thus not applicable to say a person 
has an ability of 2 logits or an item has a difficulty of 3 logits.  

 
Some introductory textbooks of item response theory claim that the parameters 
in the two- or three-parameter models are test-independent and 
sample-independent. In fact, this independence in the two- or three-parameter 
models applies to only parameter estimation, rather than parameter separation. 
Independence in parameter estimation is not a unique property of IRT models. 
Ordinary linear models have this property. For example, in a simple regression 
Ŷ a bX= + , the estimation of parameters a and b does not depend on the range 
of X. That is, given the model is true, the estimation of a and b when X is low 
will be equivalent to that when X is high. However, CTT does not have 
independence even in parameter estimation, because CTT does not formulate 
any functional relationship between persons and items.  
  
 
2.4   Item Characteristic Curve 
 
Figure 2 shows probabilities in three items with difficulties -2, 0, and 1 logit 
across ability levels under the Rasch model. The curve is called item 
characteristic curve or item response function. Two fundamental properties can 
be found: 
 
1. For any item, the higher is the ability the higher the probability. When the 

ability approaches positive infinity, the probability approaches 1; when the 



12 

ability approaches negative infinity, the probability approaches 0. That is, 
the probability is monotonically increasing across person ability levels.  

 
2. For any ability level, the higher is the item difficulty, the lower the 

probability. For example, the probability of being correct in item 1 is 
always higher than that in item 2, which is always higher than that in item 
3. That is, the probability is monotonically increasing across item 
“easiness” levels. 

 
Note that these item response functions are nonlinear, because a linear function 
will eventually lead to a probability greater than 1 as the ability increases, or 
smaller than 0 as the ability decreases, which is theoretically impossible.  
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Figure 2.  Item characteristic curves for three items  

under the Rasch model  
 
 
Figure 3 shows item characteristic curves of three items under the 
two-parameter model. The three items have a location parameter of 0, and a 
slope parameter of 2, 1, and 0.5, respectively. At the point of 0, item 1 has the 
largest slope, followed by item 2, and item 3 has the smallest slope. For ability 
levels near the location parameter (here, 0), the increment in probability via a 
unit of increment in ability is the largest for item 1, followed by the item 2, and 
is the smallest for item 3. This is why the slope parameter is also called the 
discrimination parameter. An item that has the highest discrimination power at 
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the ability levels near the location parameter, can have the lowest 
discrimination power at other ability levels. For example, among the three 
items, item 1 has the highest discrimination power for those persons with an 
ability level around 0, and the lowest discrimination power for those persons 
with an ability level far away from 0 (e.g., -2 or 2).  
 
For the Rasch model, the following two fundamental conditions hold: (1) for 
any item, the higher the ability is, the higher the probability; and (2) for any 
person, the easier the item is, the higher the probability. For the two- or 
three-parameter models, only condition 1 holds, but condition 2 does not. As 
shown in Figure 3, for those persons with ability levels below 0, the rankings of 
the probabilities for the three items are 3 > 2 > 1; for those persons with ability 
levels above 0, the rankings are 1 > 2 > 3; for those persons with ability of 0, 
the probabilities are the same across items. It is not possible to tell which item 
is more difficult. Thus, the location parameter cannot be interpreted as difficulty, 
or the slope parameter as discrimination.  
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Figure 3. Item characteristic curves for three items with 

an identical location parameter but different slope 
parameters under the two-parameter model  

 
 
Figure 4 shows item characteristic curves of three items under the 
three-parameter model. The δ, a, c parameters are 0, 2, and 0.2 for item 1; 0, 1, 
and 0 for item 2; and 0, 0.5, and 0.3 for item 3. The c-parameter denotes the 
probability for a person with an ability of negative infinity. Such a probability 
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is 0.2 for item 1, 0 for item 2, and 0.3 for item 3. The three-parameter model 
has been widely applied to multiple-choice items, because many practitioners 
intuitively assume people with very low ability will randomly select an option 
from all options in a multiple-choice item. Therefore, the c parameter is also 
called the pseudo-guessing parameter.   

  
The three-parameter model inherits the properties of the two-parameter model: 
Condition 1 holds but condition 2 does not. In the three items in Figure 4, all 
the δ parameters are 0. However, the rankings of the probabilities for the three 
items vary across ability levels. Hence, the location parameter cannot be 
interpreted as difficulty, the slope parameter cannot be interpreted as 
discrimination, and the asymptotic parameter cannot be interpreted as 
pseudo-guessing.  
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Figure 4. Item characteristic curves for three items  

with an identical location parameter  
under the three-parameter model 

 
 
2.5   Statistics Perspective vs. Measurement Perspective 
 
In the 1960s, Rasch, Birnbaum, and Lord proposed their models for test data. 
However, their models are different, which was because they adopted different 
perspectives. Rasch, adopting the measurement approach, attempted to 
establish a measurement model that yields objective measurement. Birnbaum 
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and Lord, adopting the statistics prospective, wished to describe the 
relationship between person and item. In the statistics prospective, data are 
perfect and should not be edited. The major task for a data analyst is to develop 
a statistical model that fits the data. If the model-data fit is not good enough, 
another more complicated model should be pursued. This step repeats until the 
model has a good fit. In this perspective, the one-parameter model is only a 
special case of the two- or three-parameter model, and there is little academic 
merit in Rasch measurement. If the one-parameter model does not have a good 
fit, then one should try the two-parameter model, if it still does not have a good 
fit, then try the three-parameter model. In fact, when one adopts the statistics 
approach seriously, then one will realize that no model can have a perfect fit to 
the data, and that the best model is the data set itself.  

 
The value of a model is not on its truth or fault, because any model is a 
simplified theory and cannot have a perfect fit to data. The value of a model is 
on its usefulness. The Rasch model is not developed only to fit data, rather it is 
developed to diagnose data and to clean data in order to yield objective scales 
for persons and items. Anyone who has developed tests will be concerned 
whether every item is appropriately written. Anyone who has administered tests 
will recognize that there may be a large amount of noise in raw data to be 
cleaned. Test-takers may misunderstand items, and they may be careless or 
even cheating. Data recoding is another source of noise. We need an efficient 
measurement model to diagnose noise so as to yield meaningful and objective 
measurement. The Rasch model as well as its associated technique is such a 
tool. Although the two- and three-parameter models can detect noise in data to 
some extent, they fail to yield objective measurement due to their model 
limitations.   

 
Many Rasch scholars do not agree to put the Rasch model under the IRT 
category, because the Rasch and the two- or three-parameter models were 
developed from different perspectives and different goals. However, more and 
more researchers agree to do so, because after all these models are developed to 
fit item responses.  

 
Many testing companies or users prefer the two- or three-parameter model, 
mainly because the Rasch model is too simple to fit their data. Given that the 
data cannot be revised (e.g., high-stakes examinations), a poor fit between the 
Rasch model and the data would cause an instant crisis, because objective 
measurement is not possible. Even when the data can be revised to some extent, 
the revision is often very costly and time-consuming. Under such a case, 
adopting a more complicated model like the two- or three-parameter model to 
improve model-data fit will be much easier and more feasible.  
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After tests are developed and administered to test-takers, many test analysts 
may incline to adopt the two- or three-parameter model because of a better fit. 
If, on the other hand, a new test is to be developed or an old test is to be revised, 
then the use of Rasch technique to monitor test development, improve test 
quality, and yield objective measurement should be encouraged (Wilson, 2005). 
 
2.6   Parameter Estimation 
 
When item responses are collected, the next step is to estimate person ability 
and item difficulty. Many computer programs can be used. Here, one of the 
common estimation methods, the maximum likelihood estimation (MLE), is 
introduced briefly. Assume there are five items with difficulty of -2, -1, 0, 1 and 
2, respectively, and a person has a response pattern of (1,1,1,0,0) on the five 
items. What is the ability of that person? His/her ability may be high, median, 
or low. The MLE principle is to select an ability level that is the most likely to 
generate such a response pattern. The Rasch model is taken as an example to 
explain the MLE method.  
 
For a person with θ = −3, the probability on item 1 (δ = −2) is  

exp( ) exp[ 3 ( 2)] 0.2689
1 exp( ) 1 exp[ 3 ( 2)]

n i

n i

θ − δ − − −
= =

+ θ − δ + − − −
. 

Likewise, the probability on item 2 (δ = −1) is 0.1192 and that on item 3 (δ = 0) 
is 0.0474. The probability (of being incorrect) on item 4 (δ = 1) is  

1 1 0.9820
1 exp( ) 1 exp( 3 1)n i

= =
+ θ − δ + − −

 

and that on item 5 (δ = 2) is 0.9933. Thus, the likelihood of generating a 
response pattern of (1,1,1,0,0) is the product of the five probabilities: 0.2689 × 
0.1192 × 0.0474 × 0.9820 × 0.9933 = 0.0015.  
 
Similar computations can be conducted for other ability levels, and they are 
summarized in Table 1 and Figure 5. The largest (maximum) likelihood is 
0.2402 and it is located at the ability level around 0.6 (or 0.591 more precisely). 
We thus claim that the MLE estimate for that person’s ability level is 0.6.  
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Table 1.   Probabilities of the five items and their likelihood  
under the Rasch model  

 
Item  1 2 3 4 5  
δ -2 -1 0 1 2  
Score 1 1 1 0 0  
Ability Prob. Prob. Prob. Prob. Prob. Likelihood 
-3.0  0.2689 0.1192 0.0474 0.9820 0.9933 0.0015  
-2.8  0.3100 0.1419 0.0573 0.9781 0.9918 0.0024  
-2.6  0.3543 0.1680 0.0691 0.9734 0.9900 0.0040  
-2.4  0.4013 0.1978 0.0832 0.9677 0.9879 0.0063  
-2.2  0.4502 0.2315 0.0998 0.9608 0.9852 0.0098  
-2.0  0.5000 0.2689 0.1192 0.9526 0.9820 0.0150  
-1.8  0.5498 0.3100 0.1419 0.9427 0.9781 0.0223  
-1.6  0.5987 0.3543 0.1680 0.9309 0.9734 0.0323  
-1.4  0.6457 0.4013 0.1978 0.9168 0.9677 0.0455  
-1.2  0.6900 0.4502 0.2315 0.9002 0.9608 0.0622  
-1.0  0.7311 0.5000 0.2689 0.8808 0.9526 0.0825  
-0.8  0.7685 0.5498 0.3100 0.8581 0.9427 0.1060  
-0.6  0.8022 0.5987 0.3543 0.8320 0.9309 0.1318  
-0.4  0.8320 0.6457 0.4013 0.8022 0.9168 0.1586  
-0.2  0.8581 0.6900 0.4502 0.7685 0.9002 0.1844  
0.0  0.8808 0.7311 0.5000 0.7311 0.8808 0.2073  
0.2  0.9002 0.7685 0.5498 0.6900 0.8581 0.2252  
0.4  0.9168 0.8022 0.5987 0.6457 0.8320 0.2365  
0.6  0.9309 0.8320 0.6457 0.5987 0.8022 0.2402  
0.8  0.9427 0.8581 0.6900 0.5498 0.7685 0.2359  
1.0  0.9526 0.8808 0.7311 0.5000 0.7311 0.2242  
1.2  0.9608 0.9002 0.7685 0.4502 0.6900 0.2065  
1.4  0.9677 0.9168 0.8022 0.4013 0.6457 0.1844  
1.6  0.9734 0.9309 0.8320 0.3543 0.5987 0.1599  
1.8  0.9781 0.9427 0.8581 0.3100 0.5498 0.1349  
2.0  0.9820 0.9526 0.8808 0.2689 0.5000 0.1108  
2.2  0.9852 0.9608 0.9002 0.2315 0.4502 0.0888  
2.4  0.9879 0.9677 0.9168 0.1978 0.4013 0.0696  
2.6  0.9900 0.9734 0.9309 0.1680 0.3543 0.0534  
2.8  0.9918 0.9781 0.9427 0.1419 0.3100 0.0402  
3.0  0.9933 0.9820 0.9526 0.1192 0.2689 0.0298  
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Figure 5. Likelihood of being a response pattern of (1,1,1,0,0)  

on five items under the Rasch model 
 
 
In the above calculation, item difficulties are assumed to be known in advance. 
In reality, both person ability and item difficulty are often unknown and should 
be estimated jointly from data. Under such a case, one may give an initial guess 
to the item difficulty such as log (P0 / P1), and then based on these initial guess, 
yield an MLE for every person. Then, based on the initial MLEs for persons, 
yield an MLE for every item, then update an MLE for every person again. This 
step repeats until the change in estimates between two consecutive iterations is 
very small. Most computer programs adopt more efficient ways of parameter 
estimation, but the general principle remains unchanged.  
 
 
2.7  Raw Score and Person Measure  
 
Under the Rasch model, raw score is a sufficient statistic for person ability. In 
other word, raw score and the Rasch person measure has a one-to-one 
correspondence. Two persons with the same raw scores receive the same Rasch 
person measures. A higher raw score corresponds to a higher Rasch person 
measure, and a low raw score to a lower Rasch person measure. As shown in 
Table 2, where the five items have difficulties of -2, -1, 0, 1, 2 logits, the Rasch 
person measures are all -1.93 for those response patterns that have a raw score 
of 1; -0.59 for a raw score of 2, 0.59 for a raw score of 3; and 1.93 for a raw 
score of 4.  
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A close visit to the likelihoods in Table 2 reveals that some response patterns 
are aberrant. For example, among those response patterns with a raw score of 1, 
the likelihood is 0.3017 when the easiest item is answered correctly; but is only 
0.0055 when the most difficult item is answered correctly. In general, the 
smaller the likelihood is, the more aberrant the response pattern. Table 2 does 
not show the person measures for a zero score or a perfect score, which is 
because the MLE is located at negative infinity and positive infinity, 
respectively. This means that we are not able to yield a finite estimate for these 
response patterns with the current test. Under such a case, easier (or more 
difficult) items should be administered until the score is neither zero nor 
perfect.  

 
In the two- or three-parameter model, raw score and the ability estimate do not 
have a one-to-one correspondence, meaning that a lower raw score may receive 
a higher ability measure. As shown in Table 2, under the two-parameter model, 
a raw score of 1 can receive an ability measure of -2.29 or 0.51, whereas a raw 
score of 2 can receive an ability measure of -0.71. This will cause practical 
problems. Imagine how serious it will be when in high-stakes tests (e.g., 
college entrance examinations) one of the two test-takers with the same raw 
score is accepted but the other is rejected; or a test-taker with a lower raw score 
is accepted but another test-taker with a higher raw score is rejected. Those 
who advocate the two- or three-parameter model might argue that two 
test-takers with the same raw score can receive different measures because the 
one who answered a more difficult item correctly should receive a higher credit 
than the one who answered an easier item correctly. This sounds reasonable. 
Actually, it is not. When two test-takers have the same raw score, one 
answering a more difficult item correctly must at the same time have answered 
easier items incorrectly. If a correct answer to a more difficult item should 
receive a higher credit, then an incorrect answer to an easier item should 
receive a higher debt, too. Actually, when a person answers more difficult items 
correctly but easier items incorrectly, then the response pattern is aberrant and 
further investigation is needed.  
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Table 2.   Response patterns, likelihoods, and ability estimates  
under the Rasch and two-parameter models 

 
 Rasch Model Two-Parameter Model 

Response Pattern Likelihood Measure Likelihood Measure 
1 0 0 0 0 0.3017 -1.93 0.2758 -2.29 
0 1 0 0 0 0.1110 -1.93 0.1673 -2.29 
0 0 1 0 0 0.0408 -1.93 0.0507 -0.71 
0 0 0 1 0 0.0150 -1.93 0.0069 0.51 
0 0 0 0 1 0.0055 -1.93 0.0009 0.51 
1 1 0 0 0 0.2402 -0.59 0.2273 -0.71 
1 0 1 0 0 0.0884 -0.59 0.1195 0.06 
1 0 0 1 0 0.0325 -0.59 0.0265 0.85 
1 0 0 0 1 0.0120 -0.59 0.0036 0.85 
0 1 1 0 0 0.0325 -0.59 0.0725 0.06 
0 1 0 1 0 0.0120 -0.59 0.0161 0.85 
0 1 0 0 1 0.0044 -0.59 0.0022 0.85 
0 0 1 1 0 0.0044 -0.59 0.0161 1.15 
0 0 1 0 1 0.0016 -0.59 0.0022 1.15 
0 0 0 1 1 0.0006 -0.59 0.0012 1.71 
1 1 1 0 0 0.2402 0.59 0.2289 0.51 
1 1 0 1 0 0.0884 0.59 0.0722 1.15 
1 1 0 0 1 0.0325 0.59 0.0098 1.15 
1 0 1 1 0 0.0325 0.59 0.0833 1.43 
1 0 1 0 1 0.0120 0.59 0.0113 1.43 
1 0 0 1 1 0.0044 0.59 0.0084 2.01 
0 1 1 1 0 0.0120 0.59 0.0505 1.43 
0 1 1 0 1 0.0044 0.59 0.0068 1.43 
0 1 0 1 1 0.0016 0.59 0.0051 2.01 
0 0 1 1 1 0.0006 0.59 0.0092 2.36 
1 1 1 1 0 0.3017 1.93 0.3005 1.71 
1 1 1 0 1 0.1110 1.93 0.0407 1.71 
1 1 0 1 1 0.0408 1.93 0.0412 2.36 
1 0 1 1 1 0.0150 1.93 0.0912 2.87 
0 1 1 1 1 0.0055 1.93 0.0553 2.87 
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2.8  Model-Data Fit  
 
Only when there is a good fit between the data and the Rasch model, will the 
resulting person and item measures be objective and interval. Hence, 
model-data fit is a critical issue in Rasch analysis. After parameter estimation, 
that is, measures for every person and every item become known, we can 
compute the probability of a person on an item, which is the expected item 
score. Subtracting the expected item score from the observed item response 
(either 0 or 1) forms the residual score. If the residual score is large (meaning 
that the observed score is very different from the expected score), then the 
model-data fit is poor.  

 
The major task of residual analysis are twofold: (a) person fit, whether a 
person’s response pattern has a good fit; and (b) item fit, whether an item’s 
response pattern has a good fit. For example, person A responds to a test with 
20 items. After person A’s measure and the difficulties for the 20 items are 
calibrated, we can compute the person’s expected scores on all items and thus 
their residual scores. The next step is to examine whether the null hypothesis of 
a good model-data fit can be statistically rejected. If so (e.g., the person 
answered easy items incorrectly but difficult items correctly), then person A’s 
response pattern does not match the model’s expectation, indicating a poor fit. 
Likewise, we can examine whether an item has a good fit. For example, assume 
100 persons respond to item 1. After these persons’ measures and the item 
difficulty are calibrated, the expected scores and the residual scores for the 100 
persons on that item can be obtained. If the null hypothesis of a good fit is 
rejected, then the item does not have a good fit.  

 
In practice, it is common that some persons or items do not have a good fit. 
There are many causes. For instance, test-takers may cheat, be careless, too 
nervous or tired. They may use unexpected skills to solve the problems, or 
some of the items were just taught in cram schools. Whatever the reason may 
be, we have to admit that our measurements for these persons are not successful 
and we are not able to quantify their ability levels. From clinical points of view, 
these aberrant response patterns deserve follow-up investigation. A new 
explanation or theory may thus be created. There are many reasons for a poor 
item fit. Items may not be clearly written. They may measure dimensions that 
are different from that measured by other items in the same test. For example, 
in a mathematics test with word problems, the wording in some items may be 
too difficult for some test-takers to understand. 

 
A poor-fit item is often simply removed from the test. However, it should be 
noted that the item is removed not because it is unimportant, but because it 
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does not work harmoniously with the other items. If the construct measured by 
a poor-fit item is very important, then a stand-alone test should be developed 
such that the construct can be measured more precisely.  
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3. MODEL EXTENSIONS 
 
 

After 40 years of development, Rasch measurement is very mature and is 
widely used in practice. Below, several extensions of the Rasch model are 
introduced.   
 
 
3.1   Polytomous Items  
 
Tests may contain polytomous items (e.g., essays, rating scale items, Likert 
items). Item scores are ordinal, not interval. The Rasch model for dichotomous 
items can be extended to fit polytomous items. Let Pnij and Pni(j-1) denote the 
probabilities of scoring j and j – 1 on item i for person n, respectively, θn denote 
person n’s ability, and δij denote the j-th step difficulty of item i. Under the 
partial credit model (Masters, 1982), it is assumed:  

)τδ(θδθloglogit
)1(

ijinijn
jni

nij
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⎞
⎜
⎜
⎝

⎛
≡

−
,          (34) 

where after reparameterization, δi is the mean of the step difficulties in item i 
and is called the overall difficulty, and τij is the j-th deviation from the mean 
and is called the j-th threshold for item i. Suppose item i has M + 1 categories 
and they are scored as 0, 1, …, M, then there will be M step difficulties of δij for 
that item. The first step difficulty describes how difficult it is by moving from 
category 1 (scoring 0) to category 2 (scoring 1), the second step difficulty 
describes how difficult it is by moving from category 2 (scoring 1) to category 
3 (scoring 2), and so on, the M-th step difficulty describes how difficult it is by 
moving from category M to category M + 1. The step difficulties correspond to 
the points on the ability scale where two successive item response category 
characteristic curves intersect. These step difficulties can be reparameterized as 
a mean difficulty of δi and M thresholds of τij, given that the M thresholds sum 
to zero.  
 
If items in a test are scored according to the same rubric, for example, rating 
scale items or Likert items, it is justifiable that all the items share the same set 
of thresholds. This is the rating scale model (Andrich, 1978):   

)τδ(θlogit jinnij +−= ,                    (35) 

where τj does not have the subscript of i, suggesting all the items share the 
same set of thresholds. The partial credit model has been widely applied to 
constructed-response items, whereas the rating scale model to rating scale 
items. 
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Figure 6 shows the item characteristic curves for a 4-point item. The three step 
difficulties are -3, -2, and 2, respectively. Note that the first and the second 
category characteristic curves interest at -3, the first step difficulty; the second 
and the third category characteristic curves interest at -2, the second step 
difficulty; and the third and the fourth category characteristic curves interest at 
2. The mean of the three step parameters is -1, which is the overall difficulty. 
The three thresholds are thus -2, -1 and 3, respectively. If items in a test follow 
the rating scale model, only the overall difficulty will vary but the thresholds 
will be identical, across items. In other words, the patterns of item characteristic 
curves remain unchanged across items, but the locations may shift horizontally.  
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Figure 6.  Item characteristic curves for a 4-point item  

with steps difficulties -3, -2 and 2 
 
 
3.2   Many Facets and Linear Decomposition  
 
In the aforementioned models, it is assumed that only two major factors (also 
called facets) govern item responses: person and item. The other facets are 
treated as random errors. Hence, they are referred to as two-facet models. In 
some testing situations, additional facets may be involved. For example, item 
responses to open-ended items are often scored by raters. In addition to the 
usual facets of person and item, a third facet of “rater” can be involved. The 
same item response will receive a lower score when it is judged by a severe 
rater than by a lenient rater. If so, rater effect should be consider as the third 
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facet. The facets model (Linacre, 1989) was developed for such data:  
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where Pnijk and Pni(j-1)k are the probabilities of scoring j and j – 1 on item i for 
person n when judged by rater k; ηk is the severity of rater k; and the others are 
defined as those in the rating scale model. The larger is ηk, the more difficult to 
receive a high score from rater k. There are three facets in Equation 36: person 
ability, item difficulty and rater severity. Thus, it is a three-facet model. The 
model can be easily generalized to involve more facets. 
 
If raters do exhibit different degrees of severity, then they should be directly 
considered in the model. Ignoring rater effects by fitting standard two-facet 
models will produce biased person measures and thus ruin test fairness. 
Nowadays, the facets model has been widely used to examine rater effects, 
especially in language testing where raters are involved.  
 
One may adopt the concept of analysis of variance and treat item response as a 
dependent variable, and person ability, item difficulty and rater severity as three 
independent variables. In such a three-way factorial design, it is assumed only 
the three main effects exist and the two-way or three-way interaction effects do 
not. The assumption of no interaction effects is to ensure objective 
measurement. If interaction effects do exist in the data (e.g., item difficulty 
depends on persons), then the meaning of difficulty is vague, so too the 
meaning of ability.    
 
The basic principle in the facets model is to linearly decompose item 
parameters. Consider that items are generated from a combination of multiple 
features, for example, items of figure rotation are constructed by (a) number of 
lines, (b) complexity of shapes, (c) rotation angles, and (c) number of 
dimensions. It is thus justifiable that item difficulty is a linear composition of 
these features (Embretson, 1998). That is, the difficulty for a dichotomous item 
can be formulated as:  

1 1 1δi i i ipX Xβ β= = + +'β X L ,                  (37) 
where δi is the difficulty of item i; β is the regression vector of β1, …, βp; and 
Xi is the design vector of the p features, Xi1, …, Xip. Hence, the item response 
model becomes:  

1 1 1logit θ ( )ni n i ipX Xβ β= − + +L ,                 (38) 
which is the linear logistic test model (Fischer, 1973). This model has been 
generalized to polytomous items (Fischer & Parzer, 1991; Fischer & Pononcy, 
1994) 
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The facets model intends to add more facets into standard two-facet models. 
The linear logistic test model intends to linearly decompose the item facet into 
several sub-facets (features). The basic logics of these two approaches are 
actually identical.   
 
The major advantage of linear decomposition of item difficulty is to reveal the 
contribution of each feature to the difficulty. For example, if the Rasch model is 
fit to items of figure rotation, an item receives a difficulty estimate. What 
contributes to the difficulty remains unknown. In contrast, if the linear logistic 
test model is fit, then not only each item receives a difficulty estimate, but also 
each feature receives a regression weight to depict its contribution to the item 
difficulty. Suppose the regression weight for the feature “number of 
dimensions” is much larger than that for “number of lines”, meaning that 
“number of dimensions” contributes more to the difficulty than “number of 
lines”, then more resource should go into teaching the former feature than the 
latter feature. Moreover, the difficulties of new items that are generated from 
these features can be directly computed from Equation 37, no need of empirical 
administration. This is ideal in test development: Difficulty can be theoretically 
derived without empirical administration. One of the exciting examples is the 
lexile framework for English reading comprehension (visit 
http://www.lexile.com). The difficulty of reading a text can be directly 
computed from two components: length of each sentence and frequency of each 
word.  
 
 
3.3   Multilevel Models  
 
Most standard IRT or Rasch models do not have a multilevel structure. Assume 
we are interested in estimating gender difference in some latent trait measured 
by some test (e.g., mathematics). Following standard procedures, we would 
first fit an IRT model to the test data to obtain person ability estimates, and then 
apply an ordinary regression or an independent sample t-test to the person 
ability estimates. In doing so, the person ability estimates are treated as true 
values and their measurement errors are ignored. As measurement errors in the 
social sciences are often too large to ignore, a multilevel modeling that takes 
into account measurement error is needed. At the first level, an IRT model is fit 
to describe the relationship between items and persons. The model can be the 
Rasch model for dichotomous items, or the partial credit model or the rating 
scale model for polytomous items, or the facets model for rater data. At the 
second level, the person measures are treated as a criterion variable which is 
then regressed on a set of predictors (e.g., gender and age):  
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nnn ε+=θ Wλ ' ,                          (39) 

) ,0(~ 2
εσε Nn ,                           (40) 

where Wn is a vector of observed predictors for person n, and λ is the vector of 
regression parameters. The parameters in first level model and the second level 
model can be estimated simultaneously, such that measurement errors are taken 
into account (Adams, Wilson, & Wu, 1997).  
 
The regression coefficients λ can be further regressed on another set of 
predictors to form a three-level model, such as when persons (students) are 
nested within organizations (schools), and so on for more levels, as shown in 
Figure 7. Curves in Figure 7 are purposely used to depict nonlinear IRT 
functions between items and persons. Multilevel modeling can be applied to the 
facets models and others (Wang & Jin, 2010; Wang & Liu, 2007).  

 
 

 
 

Figure 7.  Graphical representation of a three-level item response model 
 
 
3.4   Mixture Models 
 
When the Rasch model is found to have a poor fit to a data set, it does not 
necessarily mean that the test involves more than one dimension. It may be 
because there are sub-populations in the test-takers and different 
sub-populations of test-takers treat the test differently. Cognitive psychology 
has shown that individuals at the same proficiency level may differ 
qualitatively in the mechanisms underlying their performance. The patterns of 
item difficulty for different groups of test-takers can reveal their qualitative 
differences. For example, items can be hard if one strategy is adopted to solve 
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the item, but much easier when another strategy is adopted. Within this context, 
one may argue that the Rasch model holds only within sub-populations but not 
across sub-populations. The membership of sub-populations for each test-taker 
is unknown (latent) and should be estimated from data.  

 
Rost (1990) proposed the mixed Rasch model to jointly estimate the item and 
person parameters as well as the group membership. The model is mixed, 
because it integrates both latent trait models (i.e., IRT) and latent class models. 
The mixed Rasch model is given as follows: 

∑
= β−θ+

β−θ
π=

G

g ign

ign
gniP

1
1 )exp(1

)exp(
,                   (41) 

where Pni1 is the probability of scoring 1 in item i for person n, βig is the 
difficulty of item i for group g (g = 1, …, G), and πg is the class size parameter 
or mixing proportion. The primary parameters in the model are the class 
proportions and the item difficulties within each class of g. Class membership 
for individual test-takers are estimated post hoc from their relative likelihood in 
the different classes. Equation 41 has been extended to fit polytomous items 
(Rost, 1991). The mixed Rasch model has been applied to both ability tests and 
non-ability tests (Maij-de Meij , Kelderman, & van der Flier, 2008; Rost, 
Carstensen, & Von Davier, 1997).  
 
 
3.5   Testlet Response Models  
 
Testlet-based items (Wainer, 1995), where a set of items share a common 
stimulus, e.g., a reading comprehension passage or a figure, have been widely 
used in educational and psychological tests. As different persons may have 
differential perspective or background knowledge on the common stimulus, the 
assumption of local item independence between items within a testlet may be 
violated. Testlet response models have been proposed to take into account local 
dependence within items in a testlet by adding a random-effect variable into 
IRT models, one for each testlet (Bradlow, Wainer, & Wang, 1999; Wang & 
Wilson, 2005b): 

)(logit indinni γ−δ−θ= ,                  (42) 

) ,0(~ 2
)( d

Nind γσγ ,                      (43) 

where γnd(i) is the interaction between person n and item i within testlet d, and it 
is assumed to be normally distributed; and the others are defined as those in the 
Rasch model. For testlet polytomous items, Equation 42 can be extended as: 
 

)()(logit indijinnij γ−τ+δ−θ= .                (44) 
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The magnitude of 2
dγσ describes the testlet effect: the larger is 2

dγσ , the 

stronger the testlet effect. If 2
dγσ  is zero for every testlet, then Equations 42 

and 44 become the Rasch model and the partial credit model, respectively. 
Testlet response models can be represented as Figure 8 where items 1 and 2 are 
independent items, items 3 and 4 belong to the first testlet, and items 5 and 6 
belong to the second testlet.   

θ 

1 

γ2 γ1 

2 3 4 5 6 

 
 

Figure 8. Graphical representation of a testlet response model 
 
 
3.6   Multidimensional Models 
 
In developing educational and psychological tests, there is an inevitable tension 
between the desire for precise measurement and the desire for a wide range of 
measures. In any given test, a choice must be made between measuring a very 
specific attribute with a high degree of accuracy, and sampling a vaster range of 
attributes with much less accuracy. Since actual testing time is typically limited, 
test developers often have to sacrifice accuracy and develop several short tests 
in order to cover as many important attributes as testing time allows. Given that 
scores of short tests can be terribly unreliable (low measurement precision), it 
would be very desirable if the reliability of scores for a short test could be 
increased to a more satisfactory level by the adoption of a more efficient 
statistical method. 

 
Standard IRT models are unidimensional. If a test consists of several subtests 
and each subtest measures a distinct latent trait, it may be analyzed with 
unidimensional IRT models in two ways. First, the whole test is assumed to 
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measure a single latent trait and analyzed accordingly, or, second, each subtest 
is assumed to measure a distinct latent trait and analyzed separately, one subtest 
at a time. The first “composite” unidimensional approach violates the test’s 
claim of subtest structure, and thus is difficult to validate. The second 
“consecutive” unidimensional approach, although incorporating the subtest 
structure, ignores the potential inter-correlations between related but not 
identical latent traits, and is likely to yield highly imprecise measures and thus 
cannot be considered reliable. In reality, there are always non-zero correlations 
between latent traits, meaning that, at least in theory, the multidimensional 
approach (Figure 9) is more accurate than the unidimensional one. Moreover, 
the greater the correlations, the greater the number of subtests, then the greater 
the measurement precision in employing the multidimensional approach (Wang, 
Chen, & Cheng, 2004).  

 
There are two kinds of multidimensionality: between-item and within item. In 
between-item multidimensionality each item measures a single dimension and a 
set of items measure multiple dimensions. For example, a test with several 
subtests and each subtest measures a distinct dimension. In within item 
multidimensionality, an item may measure more than one dimension 
simultaneously. For example, an essay can be used to measure both “content 
knowledge” and “language skill”. An item like “loss of interests” reflects a 
person’s degree of depression; an item like “anxious foreboding” reflects a 
person’s degree of anxiety; and an item like “worrying” can reflect a person’s 
degrees of both depression and anxiety. In such a case, the item “worrying” is 
multidimensional. When a test contains multidimensional items, the 
dimensionality of that test is called “within-item” multidimensionality, which is 
depicted on the right-hand side of Figure 9.  

 
Multidimensional Rasch models (Adams, Wilson, & Wang, 1997; Kelderman, 
1996; Rost & Carstensen, 2002) can help minimize the validity and reliability 
problems encountered when unidimensional Rasch models are applied to a test 
containing multiple subtests. Multidimensional models preserve the subtest 
structure, and simultaneously calibrate all subtests and thus utilize the 
correlations between subtests to increase precise measurement of each subtest. 
In many cases, the correlations between latent traits are also of great interest, 
for instance, they are often used to evaluate internal validity, concurrent validity, 
or predictive validity. In the multidimensional approach, measurement error is 
taken into account, and the correlation is estimated directly and thus is free 
from attenuation. 

 
The multidimensional random coefficients multinomial logit model (Adams, 
Wilson, & Wang, 1997) deserves attention because it contains many 
multidimensional or unidimensional Rasch models as special cases and can be 
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applied to both between-item and within item multidimensionality. Let person 
n’s levels on the L latent traits be denoted as ( )nLnn θ,...,θ 1

T =θ , which is 
considered to be randomly sampled from a population with a multivariate 
normal density function ( )Σμθ , ;ng , where μ  is the mean vector and Σ  is 
the variance-covariance matrix of the multivariate normal distribution. Under 
the MRCMLM, the probability of a response in category j of item i for person n 
is defined as 

 

( )
( )∑

=

+

+
=

iK

u
iuniu

ijnij
nijP

1

TT

TT

exp

exp
)(

ξaθb

ξaθb
θ ,                 (45) 

where Ki is the number of categories in item i; ξ is a vector of location 
parameters that describe the items; bij is a score vector (known a priori) given 
to category j of item i across the L latent traits; and aij is a design vector given 
to category j of item i that describes the linear relationship among the elements 
of ξ. 
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Figure 9.  Between-item (left) and within-item (right) multidimensionality 
 
 

3.7   Hierarchical Latent Traits 
 
Many survey questionnaires and educational and psychological tests measure 
multiple latent traits that have a hierarchical structure. For example, the Basic 
Competency Assessment in Hong Kong covers three subjects: Chinese, English, 
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and Mathematics, each of which includes several domains. A three-order 
hierarchical structure can be formulated, with the domain abilities in the first 
level, the three subjects in the second one, and basic competency in the third. 
Two examples of hierarchical structures are the Revised NEO Personality 
Inventory, which contains five broad factors, Openness, Conscientiousness, 
Extraversion, Agreeableness, and Neuroticism, each comprising six domains, 
and the WHOQOL-100, which measures health-related quality of life and 
consists of six domains, Physical, Psychological, Level of Independence, Social 
Relationships, Environment, and Spirituality. 
 
Unfortunately, this theory of hierarchical structures cannot be empirically tested 
with the existing non-hierarchical models. If data with hierarchical latent traits 
are analyzed using traditional non-hierarchical approaches, then the person 
measures and their rankings or classifications are incorrect, and subsequent 
decisions or policies (e.g., college admissions, diagnosis of diseases) based on 
those findings will be flawed. Recently, researchers have developed item 
response models that account for hierarchical multidimensionality (de la Torre 
& Song, in press; Sheng & Wikle, 2008). A major advantage of this hierarchical 
approach is that person measures of the latent traits in every level can be 
estimated simultaneously and accurately, which is not possible in 
non-hierarchical Rasch models.  
 
De la Torre and Douglas (2004) proposed hierarchical latent trait models in the 
context of cognitive diagnosis. Sheng and Wikle (2008) and De la Torre and 
Song (in press) developed second-order IRT models that simultaneously 
account for overall (second-order) and domain (first-order) latent traits. In these 
models, the first-order latent trait is assumed to be a weighted function of the 
second-order latent trait: 

)1()2()2()1(
lll ε+θβ=θ ,                    (46) 

where )1(
lθ  is the first-order l-th latent trait; )2(θ  is the second-order latent 

trait; )2(
lβ is a regression weight of the second-order latent trait on the 

first-order l-th latent traits, and )1(
lε  is assumed to be normally distributed. The 

relationship between the first-order latent trait and item response can follow 
any IRT function, such as the Rasch model for dichotomous items or the rating 
scale model or the partial credit model for polytomous items.  
In the second-order IRT model, shown as Figure 10, person measures of the 
first-order and the second-order latent traits are estimated simultaneously. 
However, the existing second-order IRT model is actually limited to 
dichotomous items and are not applicable for polytomous items. Such a model 
may be still too simple to fit the complexity of real testing situations. Further 
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work is needed to develop more complicated hierarchical models that go 
beyond second-order.  
 

 

 
 

Figure 10.   Graphical representation of a second-order model 
 
 
3.8   Nonlinear Structural Equation Models 
 
Structural equation modeling (SEM) comprises two components, a 
measurement model and a structural model. The measurement model relates 
observed responses (indicators) to latent variables or sometimes observed 
covariates. The structural model specifies relations among latent variables or 
regressions of latent variables on observed covariates. SEM can take into 
account the modeling of interactions, nonlinearities, correlated independents, 
measurement error, correlated error terms, multiple latent independents each 
measured by multiple indicators, and one or more latent dependents also each 
with multiple indicators. Standard SEM requires interval data. In practice, 
standard SEM has been widely applied to item responses, which are actually 
categorical and ordinal. To resolve this problem, several researchers have 
extended SEM to categorical data (Muthén, 1984, 2002; Skrondal & 
Rabe-Hesketh, 2004, 2005). When observed responses are categorical, the 
conventional measurement model for continuous responses should be modified. 
The main idea is that the relationship between categorical variables and latent 
traits should become nonlinear (Glöckner-Rist & Hoijtink, 2003), whereas the 
structural relationship among latent traits remains linear.  
 
When SEM is applied to item responses, the measurement model is better 
established within the IRT context than in the CTT context, because IRT 
describes the relationship between item responses and latent traits more 
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appropriately than CCT. Figure 11 presents a nonlinear SEM in which IRT 
function is imposed between items and latent traits. Computer programs such as 
Mplus (Muthén & Muthén, 2004) and GLLAMM (Rabe-Hesketh, Pickles, & 
Skrondal, 2001) make nonlinear SEM applicable. It is expected applications of 
nonlinear SEM will become popular in the near future (Su & Wang, 2007)  

 
 

 
 
Figure 11.  Graphical representation  

of a nonlinear structural equation model 
 
 
3.9   Differential Item Functioning 
 
Test fairness is a logical and moral imperative for the makers and users of tests. 
One potential threat to test fairness is differential item functioning (DIF), which 
occurs when test-takers with identical latent trait levels have different 
probabilities of endorsing (or answering correctly) an item, because of different 
group memberships. In DIF assessment, scores of all test-takers have to be 
placed on a common metric through the use of a matching variable, so that 
test-takers’ responses to a studied item can be compared for evidence of DIF. 
Only when a matching variable contains exclusively DIF-free items will 
subsequent DIF analyses be correct. In most or all practical cases of DIF 
studies, a matching variable must be established by using the studied test itself. 
If the studied test, serving as a matching variable contains DIF items, then DIF 
analysis is based on a biased matching variable and the subsequent DIF 
assessment is incorrect. On the other hand, if the matching variable is free of 
DIF (meaning that the studied test does not contain DIF items), then DIF 
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analysis is no longer necessary. This is a circular problem. Apparently, 
establishment of a clean matching variable is fundamental in DIF assessment. 
Unfortunately, existing DIF assessment methods fail to resolve this 
fundamental problem successfully; this leads to unfair tests and a waste of time 
and money in test development. 

 
There is a variety of methods for establishment of common metrics, which can 
be classified into three major categories (Wang, 2004): the 
equal-mean-difficulty (EMD) method, the all-other-item (AOI) method, and the 
constant-item (CI) method. In the EMD method, the mean item difficulties of 
the test for the two groups are constrained to be equal, so that the parameters 
for the two groups are placed on a common metric for subsequent DIF 
assessment. This method has been implemented in the IRT computer programs 
ConQuest. In the AOI method, all but the studied item serve as a matching 
variable so that the studied item can be assessed for DIF. The AOI method has 
been implemented in the IRT computer programs Winsteps. In the CI method, 
the user has to specify a set of items to serve as a matching variable, and the 
other items are tested for DIF.  

 
By definition, the assumption of EMD between groups holds only when either: 
(a) the test does not contain any DIF items, or (b) the test contains multiple DIF 
items, among which some favor the reference group and the others favor the 
focal group to exactly the same extent, so that the mean difficulties for the two 
groups are identical. Obviously, these two conditions hardly exist in practice. A 
direct consequence of employing the EMD method to assess DIF in any 
imperfect tests (real tests are always imperfect) is that approximately half of the 
items are classified as favoring the reference group and the others as favoring 
the focal group (when the estimation error is put aside). 

 
The AOI method assumes that all but the studied item are DIF-free. This 
assumption holds only when either (a) the test is perfect, or (b) the studied item 
is the only DIF item in the test. As the number of DIF items in the test increases, 
the degree of violation of assumption increases, and the AOI method performs 
worse. 

 
To implement the CI method, a set of items has to be chosen in advance to 
serve as a matching variable. It is essential to ensure the matching variable is as 
clean as possible (i.e., consisting exclusively of DIF-free items). Given that the 
matching variable is clean, (a) the CI method yields appropriate DIF 
assessment even when the test contains as many as 40% DIF items; (b) 
anchoring one single item can yield appropriate DIF assessment, but the longer 
the matching variable, the higher the power of DIF detection; and (c) a 
matching variable of 4 or more items in length (around 10% ~ 20% of the test) 
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is generally enough to yield a high power (Shih & Wang, in press; Wang, 2004, 
Wang & Yeh, 2003). In other words, a pure short matching variable is better 
than a long but contaminated (by the inclusion of DIF items) matching variable. 
 
Since a matching variable can be seriously contaminated by inclusion of DIF 
items, it is desirable to apply scale purification procedures to remove DIF items 
from a matching variable. It has been found that DIF assessment methods with 
scale purification often outperform those without scale purification in reducing 
inflated Type I error rates, and increasing deflated power when tests contain 
DIF items. Unfortunately, scale purification procedures cannot guarantee 
appropriate DIF assessment because they may not be able to remove all DIF 
items from a matching variable, especially when tests contain many DIF items. 

 
In short, despite the popularity of the EMD, AOI, and scale purification 
methods, it was observed that: (a) the EMD and AOI methods generally yield 
misleading DIF assessment, (b) methods with scale purification perform better 
than those without scale purification, although they may yield inappropriate 
DIF assessment when many items in the test have DIF, and (c) the CI method 
produces appropriate DIF assessment when a pre-specified set of DIF-free 
items serves as a matching variable. 

 
It becomes apparent that DIF assessment should involve two steps. In Step 1, 
select a small set of items (e.g., 10% ~ 20% of items) from a studied test that 
are least likely to have DIF. In Step 2, use these selected items to establish a 
matching variable to assess DIF in other items. This is called the 
DIF-free-then-DIF strategy (Wang, 2008), because a set of items are selected 
first and other items are then tested for DIF. There are two important 
contributions made by the new strategy: (a) It resolves the circular problem in 
DIF assessment by selecting a small set of DIF-free items to serve as a 
matching variable, and (b) it is more accurate in DIF assessment than 
traditional methods, especially when there are many DIF items in a studied test 
(Shih & Wang, 2009; Su & Wang, 2009). 
 
   
3.10   Computerized Adaptive Testing /  

Computerized Classification Testing 
 
Computerized adaptive testing (CAT) has been largely implemented. Major 
advantages of CAT are shorter, quicker tests, flexible testing schedules, 
increased test security, better control of item exposure, better balancing of test 
content areas for all ability levels, quicker test item updating, quicker reporting, 
and a better test-taking experience for the test-taker. However, CAT has some 
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disadvantages, including equipment and facility expenses, limitations of much 
current CAT administration software, unfamiliarity of some test-takers with 
computer equipment, apparent inequities of different test-takers taking different 
tests, and difficulties of administering certain types of test in CAT format 
(Linacre, 2000; Wainer, Dorans, Eignor, Flaugher, Green, Mislevy, Steinberg, 
& Thissen, 2000). 

 
In some cases, CAT users are not very interested in point estimates of 
examinees’ latent trait levels, rather they may be more interested in classifying 
examinees into a limited number of categories (e.g., fail and pass; liberal and 
conservative; normal, marginal, and abnormal; ). Standard CAT algorithms can 
be modified to attain this classification goal, which is called computerized 
classification testing (CCT). The sequential probability ratio test has been 
successful for CCT (Eggen & Straetmans, 2000; Spray & Reckase, 1996). 
Weissman (2007) further proposed a general approach for item selection in 
adaptive multiple-category classification tests. It uses mutual information, 
which is a special case of the Kullback-Leibler distance, or relative entropy. It 
was found that mutual information works efficiently with the sequential 
probability ratio test and alleviates the difficulties encountered with using other 
local and global information measures in the multiple-category classification 
setting.  

 
Traditional CAT or CCT is based on unidimensional IRT models. As 
multidimensional item response theory begins to receive recognition and 
computerized adaptive testing becomes popular in practice, the merger of these 
two, which is called multidimensional CAT or CCT is a direction to explore. 
Several researchers have pioneered this direction. Segall (1996) formulated a 
Bayesian procedure for latent trait estimation and adaptive item selection. van 
der Linden (1999) derived an algorithm that minimizes the asymptotic variance 
of the maximum likelihood estimator when a linear combination of multiple 
latent traits, rather than individual latent traits, is of interest. Wang and Chen 
(2004) conducted a series of simulations to compare the measurement 
efficiency of multidimensional CAT with that of unidimensional CAT. The 
results showed that the higher the correlation between latent traits, the more 
latent traits there are, and the more scoring levels there are in the items, the 
more efficient multidimensional CAT is than the unidimensional CAT. In 
addition to multidimensional models, CAT and CCT can be developed under 
other types of IRT models, for example, testlet response models, hieratical 
models, and unfolding models (Lee & Wang, 2009; Liu & Wang, 2009; Shih & 
Wang, 2008).  
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3.11   Person-Item Interaction in Rating Scale Items  
or Likert Items 

  
Standard IRT models assume that persons do not interact with items. In some 
cases, person may interact with items. For example, person-item interaction has 
been commonly found in testlet-based items and testlet response models are 
thus proposed to take into account person-item interaction within a testlet. 
Person-item interaction is also likely to exist in rating scale items (e.g., seldom, 
sometimes, often, always). A person might consider the gap between “seldom” 
and “sometimes” along the latent trait continuum large but the gap between 
“sometimes” and “often” small; whereas another person might have a quite 
different perspective on the two gaps. As in testlet response models, one may 
add a set of random-effect parameters into standard IRT models to account for 
such a person-item interaction. Wang, Wilson and Shih (2006) proposed the 
random-effect rating scale model to directly take into account person-item 
interaction in rating scale items: 

njjinnij γ)τδ(θlogit −+−= ,                 (47) 

)σ,0(~γ 2
jnj  N ,                       (48) 

where γnj denotes the interaction between person n and threshold j, which is 
assumed to be normally distributed with mean zero and variance 2σ j ; and the 

others are defined as those in the rating scale model. The larger is 2σ j , the 

larger the person-threshold interaction. If 2σ j = 0 for all j, then the model 
becomes the rating scale model.  
 
The random-effect approach to person-item interaction can be applied to 
describe rater effect. In the facets model, each rater is given a fixed-effect 
parameter to depict the severity. That is, each rater is assumed to hold a 
constant degree of severity across ratings. In reality, a rater’s severity may 
change over ratings. It is thus more flexible to treat rater severity as a 
random-effect (Wang & Wilson, 2005a): 
 

 )γη()τδ(θlogit nkkjinnijk +−+−= ,                 (49) 

)σ,0(~γ 2
knk  N ,                        (50) 

where γnk denotes the interaction between rater k when judging person n, which 
is assumed to be normally distributed with mean zero and variance 2σk ; and 

the others are defined as those in Equation 36. The magnitude of 2σ j  depicts the 
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intra-rater reliability for rater k: the larger is 2σ j , the lower the intra-rater 

reliability for rater k. If 2σk = 0 for all k, every rater holds a constant degree of 
severity across his/her ratings, then the random-effect facets model becomes the 
standard facets model.  
 
Person-item interaction is likely to exist in Likert items (e.g., strongly disagree, 
disagree, agree, and strongly agree) as well. Like the above models, one may 
apply the random-effect approach to modeling such a person-item interaction. 
In recent years, many IRT models have been applied to fit Likert items, which 
can be classified as two approaches: the dominance approach and the 
ideal-point approach. It has been argued that responses to Likert items are more 
consistent with the ideal-point approach than the dominance approach. This 
argument implies that attitude measures based on disagree-agree responses are 
more appropriately developed from unfolding models of the ideal-point 
approach than from cumulative models of the dominance approach. Several 
IRT-based unfolding models have been developed to fit responses of attitude 
items, including the (generalized) hyperbolic cosine model (Andrich, 1996), 
and the (generalized) graded unfolding model (Roberts, Donoghue, & Laughlin, 
2000).  

 
There are four basic premises about the response process in these unfolding 
IRT models. The first premise is that when persons are asked to express their 
agreement with an attitude statement, they tend to agree with the item to the 
extent that it is located close to their position on a unidimensional latent 
attitude continuum. The second premise is that persons select an observed 
response category for either of two reasons. For example, a person might 
disagree with an item in either a very negative or a very positive way. If the 
item is located far below the person’s position on the trait continuum (i.e., the 
item’s content is much more negative than the person’s attitude), then the 
person “disagrees from above” the item. In contrast, if the item is located far 
above the person’s position, then the person “disagrees from below” the item. 
Hence, there are two possible latent responses, “disagree from above” and 
“disagree from below,” associated with the single observed response of 
“disagree.”  

 
The third premise is that “latent responses” follow a cumulative item response 
model, for example, the rating scale model or the partial credit model. For a 
four-point Likert scale (e.g., strongly disagree, disagree, agree, strongly agree), 
there will be eight latent responses, one pair per point. Standard IRT models are 
applied to define latent responses. However, the model must ultimately be 
defined in terms of the observed response categories associated with the graded 
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agreement scale. The two latent responses corresponding to a given observed 
response category are mutually exclusive. Therefore, the probability for a 
person to select a particular category is the sum of the probabilities associated 
with the two corresponding latent responses.  

 
Figure 12 illustrates the probability functions for eight latent responses which 
come from a hypothetical item with four observed response categories of 
strongly disagree, disagree, agree, and strongly agree. Figure 13 displays the 
probability functions for the four observed responses of the same item in Figure 
12. When person-item interaction exists in Likert items, one can add a 
random-effect to standard unfolding models (Wu & Wang, 2009), as being done 
in the testlet response model and the random-effect rating scale and facets 
models.  
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Figure 12.  Latent response curves for a hypothetical 4-category item 

as a function of θ − δ 
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Figure 13.   Observed response curves for a hypothetical 4-category item  

as a function of θ − δ 
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4. CONCLUSION 
 
 

Since the 1960s, researchers have realized that the unit of data analysis should 
be item response rather than test score. A summation of item scores does not 
automatically produce an interval scale. Item responses are categorical and 
ordinal, not continuous or interval. Standard statistical methods, such as 
ANOVA, regression, factor analysis or SEM, require interval data and are not 
appropriate for item responses. CTT, although taking into account measurement 
error, is not appropriate for ordinal data like item responses. Besides, in CTT 
the judgments of person ability and item difficulty are mutually confounded. 
We need a theory to treat item responses appropriately and to produce objective 
measurement and interval data. Rasch measurement is such a theory that has 
the property of specific objectivity (i.e., parameter separation between person 
ability and item difficulty) and yields interval measures. Multi-parameter IRT 
models, although taking a further step beyond CTT, fail to produce objective 
measurement.  

 
Due to space constraints, this paper highlights only some of the recent 
developments in Rasch measurement, including polytomous items, multiple 
facets, multilevels, mixture models, testlet design, multiple dimensions, 
hierarchical latent traits, nonlinear SEM, DIF, CAT/CCT, and person-item 
interaction. Rasch measurement not only is theoretically sound but also 
practically important to test development and data analysis. We believe that 
Rasch measurement will continue to grow and its applications will continue to 
be widespread. 
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Item Dependency (I) 
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Violence Perpetrators and Evaluation 
Instrument for Treatment 
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Interactions (I) 
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43 PI Between-Item and Within-Item 
Multidimensional Computerized 
Adaptive Testing (II) 

NSC 2000.08 ~ 2001.07 

44 Co-I A Study of Creative Thinking and Its 
Correlates for Awarded Teachers in 
Scientific Competitions 

NSC 1999.08 ~ 2000.07 

45 PI Between-Item and Within-Item 
Multidimensional Computerized 
Adaptive Testing 
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Correlates for Awarded Teachers in 
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NSC 1998.08 ~ 1999.07 

47 PI Analysis of Differential Distractor 
Functioning Parameters in 
Multiple-Choice Items 
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Tests for Science Gifted Students 
Using Item Response Theory (II) 
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49 Co-I Cognitive-Psychometric Modeling in 
Computerized Adaptive Testing 

NSC 1997.08 ~ 1998.07 

50 PI Evaluate, Revise, and Develop Verbal 
Tests for Science Gifted Students 

NSC 1996.08 ~ 1997.07 

51 PI A Pilot Study of Developing an 
Evaluation System for College 
Students' Career Planning for 
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NSC 1996.08 ~ 1997.07 

52 PI Rater Severity in 
Non-Multiple-Choice Items 

NSC 1995.08 ~ 1996.07 

 
 

Note: 
NSC = National Science Council 

MoI = Ministry of Interior, 

DoH = Department of Health, Executive Yuan, Taiwan 
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