* The NET acceleration is no longer pointing towards the centre of the circle.

* The NET acceleration is no longer pointing towards the centre of the circle.

- * The NET acceleration is no longer pointing towards the centre of the circle.
- * There are TWO components of acceleration:

- * The NET acceleration is no longer pointing towards the centre of the circle.
- * There are TWO components of acceleration:

- * The NET acceleration is no longer pointing towards the centre of the circle.
- * There are TWO components of acceleration:

- * The NET acceleration is no longer pointing towards the centre of the circle.
- * There are TWO components of acceleration:

- * The NET acceleration is no longer pointing towards the centre of the circle.
- * There are TWO components of acceleration:

Examples of non-uniform circular motions

Examples of non-uniform circular motions

Examples of non-uniform circular motions

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

$$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mg(2l)$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

$$\frac{1}{2} mu^2 = \frac{1}{2} mv^2 + mg(2l)$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

$$\frac{1}{2}uu^{2} = \frac{1}{2}uv^{2} + ug(2l)$$

$$u^{2} = v^{2} + 2g(2l)$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

$$\frac{1}{2} u^{2} = \frac{1}{2} u^{2} + ug(2l)$$

$$u^{2} = v^{2} + 2g(2l)$$

$$u^{2} = v^{2} + 4gl$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

$$\frac{1}{2}uu^2 = \frac{1}{2}uv^2 + ug(2l)$$

$$u^2 = v^2 + 2g(2l)$$

$$u^2 = v^2 + 4gl$$

$$v^2 = u^2 - 4gl$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

$$\frac{1}{2} u^{2} = \frac{1}{2} u^{2} + ug(2l)$$

$$u^{2} = v^{2} + 2g(2l)$$

$$u^{2} = v^{2} + 4gl$$

$$v^{2} = u^{2} - 4gl \mu = 0$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

$$\frac{1}{2} u^2 = \frac{1}{2} uv^2 + ug(2l)$$

$$u^2 = v^2 + 2g(2l)$$

$$u^2 = v^2 + 4gl$$

$$v^2 = u^2 - 4gl \mu \quad \mathbf{0}$$

$$u^2 \ge 4gl$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- Have sufficient high centripetal force to maintain the circular motion at C.

$$\frac{1}{2} u^2 = \frac{1}{2} uv^2 + ug(2l)$$

$$u^2 = v^2 + 2g(2l)$$

$$u^2 = v^2 + 4gl$$

$$v^2 = u^2 - 4gl \mu \quad \mathbf{0}$$

$$u^2 > 4gl$$

$$u^2 \ge 4gl$$

$$u \ge \sqrt{4gl}$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

$$mg + T = \frac{mv^2}{l}$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Consider force at point C;

$$mg + T = \frac{mv^{2}}{l}$$

$$T = \frac{mv^{2}}{l} - mg$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Consider force at point C;

$$mg + T = \frac{mv^{2}}{l}$$

$$T = \frac{mv^{2}}{l} - mg \mu 0$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Consider force at point C;

$$mg + T = \frac{mv^{2}}{l}$$

$$T = \frac{mv^{2}}{l} - mg \mu 0$$

$$v^{2} \ge gl$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Consider force at point C;

$$mg + T = \frac{mv^{2}}{l}$$

$$T = \frac{mv^{2}}{l} - mg \mu 0$$

$$v^{2} \ge gl$$

By Conservation of energy, $v^2 = u^2 - 4gl$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Consider force at point C;

$$mg + T = \frac{mv^{2}}{l}$$

$$T = \frac{mv^{2}}{l} - mg \mu 0$$

$$v^{2} \ge gl$$

By Conservation of energy, $v^2 = u^2 - 4gl$

$$u^2 - 4gl \ge gl$$

Can go round the circle:

- (1) Have enough energy to reach point C.
- (2) Have sufficient high centripetal force to maintain the circular motion at C.

Consider force at point C;

$$mg + T = \frac{mv^{2}}{l}$$

$$T = \frac{mv^{2}}{l} - mg \mu \quad \mathbf{0}$$

$$v^{2} \ge gl$$

By Conservation of energy, $v^2 = u^2 - 4gl$

$$u^2 - 4gl \ge gl$$

$$u \ge \sqrt{5gl}$$

Can go round the circle:

(1) Have enough energy to reach point C.

(2) Have sufficient high centripetal force to maintain the circular motion at C.

Can go round the circle:

(1) Have enough energy to reach point C.

$$u \ge \sqrt{4gl}$$

(2) Have sufficient high centripetal force to maintain the circular motion at C.

Can go round the circle:

(1) Have enough energy to reach point C.

$$u \ge \sqrt{4gl}$$

(2) Have sufficient high centripetal force to maintain the circular motion at C.

$$u \ge \sqrt{5gl}$$

Can go round the circle:

(1) Have enough energy to reach point C.

$$u \ge \sqrt{4gl}$$

(2) Have sufficient high centripetal force to maintain the circular motion at C.

$$u \ge \sqrt{5gl}$$

The object can go round the circle if the initial speed is greater than $\sqrt{5gl}$

Can go round the circle:

(1) Have enough energy to reach point C.

$$u \ge \sqrt{4gl}$$

(2) Have sufficient high centripetal force to maintain the circular motion at C.

$$u \ge \sqrt{5gl}$$

The object can go round the circle if the initial speed is greater than

$$(1) \quad \sqrt{4gl} < u < \sqrt{5gl}$$

- \longrightarrow Can reach C (as u $> \sqrt{4gl}$)
- No more circular motion can be processed (as T = 0 but mg is greater than mv^2/l)

Projectile motion due to gravity

For reaching B,

$$1/2 \text{ mu}^2 = 1/2 \text{mv}_B^2 + \text{mg}l$$

 $u^2 \odot 2gl$
 $u \odot \sqrt{2gl}$

For reaching B,

$$1/2 \text{ mu}^2 = 1/2 \text{mv}_B^2 + \text{mg}l$$

 $u^2 \odot 2gl$
 $u \odot \sqrt{2gl}$

For reaching B,

$$1/2 \text{ mu}^2 = 1/2 \text{mv}_B^2 + \text{mg}l$$

 $u^2 \odot 2gl$
 $u \odot \sqrt{2gl}$

For reaching B,

$$1/2 \text{ mu}^2 = 1/2 \text{mv}_B^2 + \text{mg}l$$

 $u^2 \odot 2gl$
 $u \odot \sqrt{2gl}$

$$(2) \quad \sqrt{2gl} < u < \sqrt{4gl}$$

- \rightarrow Between B and C(as u $< \sqrt{4gl}$)
- Projectile motion due to gravity

$$(3) \quad u < \sqrt{2gl}$$

For reaching B,

$$1/2 \text{ mu}^2 = 1/2 \text{mv}_B^2 + \text{mg}l$$

$$u^2 \odot 2gl$$

$$u \odot \sqrt{2gl}$$

$$(2) \quad \sqrt{2gl} < u < \sqrt{4gl}$$

- \rightarrow Between B and C(as u $< \sqrt{4gl}$)
- Projectile motion due to gravity

$$(3) \quad u < \sqrt{2gl}$$

Cannot reach B

For reaching B, $1/2 \text{ mu}^2 = 1/2 \text{mv}_B^2 + \text{mg}l$ $u^2 \odot 2gl$ $u \odot \sqrt{2gl}$

$$(2) \quad \sqrt{2gl} < u < \sqrt{4gl}$$

- \rightarrow Between B and C(as u $< \sqrt{4gl}$)
- Projectile motion due to gravity

$$(3) \quad u < \sqrt{2gl}$$

Cannot reach B

For reaching B, $1/2 \text{ mu}^2 = 1/2 \text{mv}_B^2 + \text{mg}l$ $u^2 \odot 2gl$ $u \odot \sqrt{2gl}$

Swing about A between B and D

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

$$R = 0$$
 for weightless

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

$$R = 0$$
 for weightless

Consider the whole system (spaceship and man),

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

$$R = 0$$
 for weightless

Consider the whole system (spaceship and man),

$$Mg + mg = (M+m) v^2 / r$$

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

mg

r

Mg

$$R = 0$$
 for weightless

Consider the whole system (spaceship and man),

$$\mathbf{Mg} + \mathbf{mg} = (\mathbf{M} + \mathbf{m}) \mathbf{v}^2 / \mathbf{r}$$
$$\mathbf{v}^2 = \mathbf{g} \mathbf{r}$$

r

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

Mg

$$R = 0$$
 for weightless

Consider the whole system (spaceship and man),

$$Mg + mg = (M+m) v^2 / r$$
$$v^2 = g r$$

$$mg - R = mv^2 / r$$

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

$$R = 0$$
 for weightless

Consider the whole system (spaceship and man),

$$\mathbf{Mg} + \mathbf{mg} = (\mathbf{M} + \mathbf{m}) \mathbf{v}^2 / \mathbf{r}$$
$$\mathbf{v}^2 = \mathbf{g} \mathbf{r}$$

$$mg -R = mv^2 / r$$

$$mg - R = m(g r) / r$$

r

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

$$R = 0$$
 for weightless

Consider the whole system (spaceship and man),

$$\mathbf{Mg} + \mathbf{mg} = (\mathbf{M} + \mathbf{m}) \mathbf{v}^2 / \mathbf{r}$$
$$\mathbf{v}^2 = \mathbf{g} \mathbf{r}$$

$$mg - R = mv^2 / r$$

 $mg - R = m(g r) / r$
 $mg - R = mg$

* A astronaut feels weightless in a spaceship which is moving with uniform circular motion about the Planet, say the Earth.

$$R = 0$$
 for weightless

Consider the whole system (spaceship and man),

$$\mathbf{Mg} + \mathbf{mg} = (\mathbf{M} + \mathbf{m}) \mathbf{v}^2 / \mathbf{r}$$
$$\mathbf{v}^2 = \mathbf{g} \mathbf{r}$$

$$mg - R = mv^2 / r$$
 $mg - R = m(g r) / r$
 $mg - R = mg$
 $R = 0$

* Artificial gravity made for Space stations

 $\begin{array}{c|c}
R \\
\hline
 mg'
\end{array}$

 $\begin{array}{c|c}
R \\
\hline
 mg'
\end{array}$

 $\begin{array}{c|c}
R \\
\hline
 mg'
\end{array}$

 $\begin{array}{c|c}
R & \\
\hline
 mg'
\end{array}$

 ω

 $\begin{array}{c|c}
R \\
\hline
 R = mg'
\end{array}$

* Artificial gravity made for Space stations

No weight as it is far away from all planets

There is only normal contact reaction force due to contact N.

$$R = mr\omega^2 = mg'$$

$$r\omega^2 = g' = 9.8ms^{-2}$$

* Working principle of a centrifuge

- * Working principle of a centrifuge
- (1) Assume it is **horizontally** aligned with liquid of density Ω inside.

- * Working principle of a centrifuge
- (1) Assume it is **horizontally** aligned with liquid of density Ω inside.

- * Working principle of a centrifuge
- (1) Assume it is **horizontally** aligned with liquid of density Ω inside.

- * Working principle of a centrifuge
- (1) Assume it is **horizontally** aligned with liquid of density Ω inside.

- * Working principle of a centrifuge
- (2) Consider an element of the liquid of density ρ inside.

- * Working principle of a centrifuge
- (2) Consider an element of the liquid of density ρ inside.

Net force = $(P_2 - P_1)A$

- * Working principle of a centrifuge
- (2) Consider an element of the liquid of density ρ inside.

Net force =
$$(P_2 - P_1)A$$

= $[m] r \omega^2$

- * Working principle of a centrifuge
- (2) Consider an element of the liquid of density ρ inside.

Net force =
$$(P_2 - P_1)A$$

= $[m] r \omega^2$
= $[\rho \Delta V] r \omega^2$

- * Working principle of a centrifuge
- (2) Consider an element of the liquid of density ρ inside.

Net force =
$$(P_2 - P_1)A$$

= $[m] r \omega^2$
= $[\rho \Delta V] r \omega^2$
= $\rho(A \Delta r) r \omega^2$

- * Working principle of a centrifuge
- (2) Consider an element of the liquid of density Q inside.

Net force =
$$(P_2 - P_1)A$$

= $[m] r \omega^2$
= $[\rho \Delta V] r \omega^2$
= $\rho(A \Delta r) r \omega^2$

Net force due to pressure gradient $= \rho \ r \ A \ \omega^2 \ \Delta r$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p^{*} inside.

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density principle.

Net force $\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force $\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$

Required centripetal force $\mathbf{F_c} = [\mathrm{m'}] \mathrm{r} \omega^2$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density principle.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force $\mathbf{F_c} = [m'] \mathbf{r} \omega^2$ = $[\rho' \Delta V] \mathbf{r} \omega^2$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density principle.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force $\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$ = $[\rho' \Delta V] \mathbf{r} \omega^2$ = $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force
$$\mathbf{F_c} = [m'] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(A \Delta r) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \mathbf{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force
$$\mathbf{F_c} = [m'] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(A \Delta r) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Required centripetal force
$$\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

Net force $\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density principle.

Required centripetal force
$$\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Required centripetal force
$$\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force $\mathbf{F_c} = [m'] \mathbf{r} \omega^2$ = $[\rho' \Delta V] \mathbf{r} \omega^2$ = $\rho'(A \Delta r) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

Move towards the axis

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force
$$\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force
$$\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force
$$\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force
$$\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

- * Working principle of a centrifuge
- (2) Consider an element of other substance of density p inside.

Net force
$$\mathbf{F}_{net} = (\mathbf{P}_2 - \mathbf{P}_1) \mathbf{A} = \mathbf{\rho} \mathbf{r} \mathbf{A} \boldsymbol{\omega}^2 \Delta \mathbf{r}$$

Required centripetal force
$$\mathbf{F_c} = [\mathbf{m'}] \mathbf{r} \omega^2$$

= $[\rho' \Delta V] \mathbf{r} \omega^2$
= $\rho'(\mathbf{A} \Delta \mathbf{r}) \mathbf{r} \omega^2 = \rho' \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

Move away from the axis

* Why centrifuge?

* Why centrifuge?

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

Excess force for separation $\Delta \mathbf{F}_c$ = $(\rho' - \rho) \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

Excess force for separation $\Delta \mathbf{F}_{c}$ = $(\rho' - \rho) \mathbf{r} \mathbf{A} \omega^{2} \Delta \mathbf{r}$

Excess force for separation $\Delta \mathbf{F}_g$ = weight - upthrust

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

Excess force for separation $\Delta \mathbf{F}_c$ = $(\rho' - \rho) \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

Excess force for separation $\Delta \mathbf{F}_g$ = weight - upthrust

 $= (\rho' A \Delta r g) - (\rho A \Delta r g)$

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

Excess force for separation $\Delta \mathbf{F}_c$ = $(\rho' - \rho) \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

Excess force for separation $\Delta \mathbf{F}_g$ = weight - upthrust

$$= (\rho' A \Delta r g) - (\rho A \Delta r g)$$

= $(\rho' - \rho) A g \Delta r$

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

Excess force for separation $\Delta \mathbf{F}_{c}$ = $(\rho' - \rho) \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

Excess force for separation ΔF_g

= weight - upthrust

$$= (\rho' A \Delta r g) - (\rho A \Delta r g)$$

=
$$(\rho' - \rho) A g \Delta r$$

$$\frac{\Delta F_c}{\Delta F_g} = \frac{(\rho' - \rho)r\omega^2 A \Delta r}{(\rho' - \rho)Ag\Delta r}$$

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

Excess force for separation $\Delta \mathbf{F}_{c}$ = $(\rho' - \rho) \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

Excess force for separation ΔF_g

= weight - upthrust

$$= (\rho' A \Delta r g) - (\rho A \Delta r g)$$

=
$$(\rho' - \rho) A g \Delta r$$

$$\frac{\Delta F_c}{\Delta F_g} = \frac{(\rho' - \rho)r\omega^2 A \Delta r}{(\rho' - \rho)Ag\Delta r} = \frac{r\omega^2}{g}$$

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

Excess force for separation $\Delta \mathbf{F}_{c}$ = $(\rho' - \rho) \mathbf{r} \mathbf{A} \omega^{2} \Delta \mathbf{r}$

Excess force for separation ΔF_g

= weight - upthrust

$$= (\rho' A \Delta r g) - (\rho A \Delta r g)$$

$$= (\rho' - \rho) A g \Delta r$$

$$\frac{\Delta F_c}{\Delta F_g} = \frac{(\rho' - \rho)r\omega^2 A \Delta r}{(\rho' - \rho)Ag\Delta r} = \frac{r\omega^2}{g}$$

Typical: r = 10 cm, $\omega = 2500$ rev min⁻¹

* Why centrifuge?

$$F_{c} = \rho' r A \omega^{2} \Delta r$$

$$F_{net} = \rho r A \omega^{2} \Delta r$$

Assume $\rho' > \rho$

Excess force for separation $\Delta \mathbf{F}_{c}$ = $(\rho' - \rho) \mathbf{r} \mathbf{A} \omega^2 \Delta \mathbf{r}$

Excess force for separation $\Delta \mathbf{F}_{\mathbf{g}}$

= weight - upthrust

$$= (\rho' A \Delta r g) - (\rho A \Delta r g)$$

$$= (\rho' - \rho) A g \Delta r$$

$$\frac{\Delta F_c}{\Delta F_g} = \frac{(\rho' - \rho)r\omega^2 A \Delta r}{(\rho' - \rho)Ag\Delta r} = \frac{r\omega^2}{g}$$

Typical: r = 10 cm, $\omega = 2500$ rev min⁻¹ $\frac{\Delta F_c}{\Delta F_\sigma} \sim 700 / 1$