Baptist Lui Ming Choi Secondary School F. 5 Physics **Circuit Worksheet 1**

Finish the following tasks with the aid of Electronics Workbench Demo. Consult the handout **Electronics Workbench Demo reference** when required.

Task 1 Resistance of a resistor

Change the **internal resistance** of the ammeter and voltmeter to be 1 Ω and 1 k Ω respectively.

Change the resistance of the resistor R to be 500Ω .

The battery is of 12 V. With the aid of Electronics Workbench Demo connect up the following circuits and

calculate the resistance of the resistor R (= 500 Ω) using the readings measured by the meters..

Circuit A

V = ___ V

I = mA

$$R = \frac{V}{I} = \underline{\qquad} \Omega$$

Circuit B

$$R = \frac{V}{I} = \underline{\hspace{1cm}} \Omega$$

Which circuit give a better value of R (closer to the real value of R)? Circuit

Reasoning

R_v – internal resistance of the voltmeter

I_r – current passing through the resistor

I_v – current passing through the voltmeter

R_v – internal resistance of the ammeter

V_r - voltage across the resistor

V_a – voltage across the ammeter

For circuit A:

- voltmeter
- (2) Voltmeter measures the voltage across \mathbf{R}
- (3) When $R \cong R_v$ (in order), $I_r \cong I_r$ (same V), so the measured I (= $I_r + I_r$) > I_r , and calculated R = V / I is **smaller** than the real R.

For circuit B:

- (1) Ammeter measures the current through **R** and (1) Voltmeter measures the voltage across **R** and ammeter
 - (2) Ammeter measures the current through **R**
 - (3) When $R \gg R_v$, $V_r \gg V_a$ (same I), so measured $V (=V_r + V_a) \cong V_r$, and calculated R = V / I) is **close to** real R

Now the calculated R is of the order of hundred Ohm, close to the internal resistance of the voltmeter and much greater than the internal resistance of the ammeter, so should be used. circuit

When R is close to the internal resistance of ammeter and much smaller than internal resistance of voltmeter, circuit ______ should be used. (Why?

Task 2 Change in ammeter and voltmeter reading in different circuits

Change the internal resistance of ammeter and voltmeter to be 1 M Ω .

Put down increases, decreases or unchanged for statements 1-8 when the switch S1 in circuit A and B are opened.

meters?

Circuit B	

		Circuit A	Circuit B
1.	The reading of ammeter A1.		
2.	The reading of ammeter A2.		
3.	The reading of ammeter A3.		
4.	The reading of the voltmeter V1.		
5.	The brightness of bulb P.		
6.	The brightness of bulb Q.		
7.	The brightness of bulb R.		
8.	The power output from the battery.		
9.	When switch S2 in circuit A and B are opened, wha	at should be the re-	adings in all the

Explain the above in terms of the connection of the circuits (simple parallel, a mix of series and parallel).