THE EDUCATION UNIVERSITY OF HONG KONG

Course Outline			
Part I			
Programme Title	: Bachelor of Education (Honours) (Geography) (Five-year Full-time)		
Programme QF Level	:5		
Course Title	: Spatial Data Analysis and GIS		
Course Code	: GGP2020		
Department	: Social Sciences and Policy Studies		
Credit Points	:3		
Contact Hours	: 39		
Pre-requisite(s)	: Nil		
Medium of Instruction : English			
Course Level	:2		

Part II

The University's Graduate Attributes and seven Generic Intended Learning Outcomes (GILOs) represent the attributes of ideal EdUHK graduates and their expected qualities respectively. Learning outcomes work coherently at the University (GILOs), programme (Programme Intended Learning Outcomes) and course (Course Intended Learning Outcomes) levels to achieve the goal of nurturing students with important graduate attributes.

In gist, the Graduate Attributes for Sub-degree, Undergraduate, Taught Postgraduate, Professional Doctorate and Research Postgraduate students consist of the following three domains (i.e. in short "PEER & I"):

- **Professional Excellence**;
- Ethical Responsibility; &
- Innovation.

The descriptors under these three domains are different for the three groups of students in order to reflect the respective level of Graduate Attributes.

The seven GILOs are:

- 1. Problem Solving Skills
- 2. Critical Thinking Skills
- 3. Creative Thinking Skills
- 4a. Oral Communication Skills
- 4b. Written Communication Skills
- 5. Social Interaction Skills
- 6. Ethical Decision Making
- 7. Global Perspectives

1. Course Synopsis

This course provides students with the knowledge of spatial data analysis and skills in using GIS software to conduct geographical data analysis. This is an independent course which can be taken by students from various disciplines and is also beneficial to students with a general interest in the spatial analysis of geographical or environmental data.

2. Course Intended Learning Outcomes (CILOs)

Upon completion of this course, students will be able to:

- CILO₁: analyze spatial data and provide cartography visualization.
- CILO₂: identify the use of geographic information system (GIS) in different areas such as presentation of detailed data, environmental issues, road networks, utilities, property records, and community facilities.
- CILO₃: apply different kinds of data collection methods including digitizing maps, scanning, photo interpretation, and remote sensing to capture measurement data.
- CILO₄: evaluate the data quality and to organize appropriate storage and indexing.
- CILO₅: recognize the role played by GIS and spatial data analysis in geography teaching.

3. Content, CILOs and Teaching & Learning Activities

	Course Content	CILOs	Suggested Teaching & Learning Activities
1. a) b) c) d) e)	Introduction to Spatial AnalysisClassification and reclassificationSpatial measurement, aggregation, overlaysSpatial filtering spatial interpolationDigital terrain modelNetwork analysis	CILO1	 Lectures Classroom discussions Tutorials or workshops
2. a) b) c) d)	Map reading, design and interpretation Principle of map making Design consideration Reading and interpretation skills Word processing, IT and graphics	CILO _{2,3}	 Lectures Classroom discussions Tutorials or workshops
3. a) b) c)	Introduction to GIS Definition and components of GIS Georeferencing system GIS functions and limitations	CILO ₂	 Lectures Classroom discussions Tutorials or workshops

	Course Content	CILOs	Suggested Teaching & Learning Activities
4. a)	GIS data and collection method Vector and raster data	CILO _{2,3}	LecturesClassroom discussions
 b) c) d) e) f) 	Spatial data modeling Remote sensing Field survey Data quality and transforming Cartographic instrument		Tutorials or workshops
5. a) b) c)	GIS Project and Database Management GIS database design Data entities GIS project design and implementation	CILO _{2,4}	 Lectures Classroom discussions Tutorials or workshops
6. a) b)	Application of statistical data processing in GIS Attribute operations Statistics package	CILO _{3,4}	 Lectures Classroom discussions Tutorials or workshops
7.	Application of GIS on geography teaching	CILO5	LecturesClassroom discussionsTutorials or workshops

4. Assessment

Assessment Tasks		Weighting (%)	CILOs
(a)	Exercises Exercises assessing students' understanding of technical skills about GIS applications.	40%	CILO _{1, 2}
(b)	Group project report Written report evaluating students' practical skills such as designing GIS analysis model, collecting GIS data sets, carrying out the planned analysis and providing cartography visualization.	30%	CILO _{1,2,3,4,5}

(c)	Examination A two-hour written examination comprising of various format of questions aiming to assess different levels of knowledge such as analytical skills of cases, basic concepts and data models.	30%	CILO _{1,2,3,4}
-----	---	-----	-------------------------

5. Required Text(s)

Heywood, I., Cornelius, S. & Carver, S. (2011). An Introduction to Geographical Information Systems, 4th edition. Harlow, England; Hong Kong: Prentice Hall.

6. Recommended Readings

- Batton-Hubert, M., Desjardin, E., & Pinet, F. (2019). *Geographic data imperfection. 1, From theory to applications* (M. Batton-Hubert, E. Desjardin, & F. Pinet, Eds.). ISTE, Limited; Wiley. <u>https://doi.org/10.1002/9781119507284</u>
- Birkin, M., Clarke, G., Corcoran, J., & Stimson, R. (2021). Big data applications in geography and planning : an essential companion (M. Birkin, G. Clarke, J. Corcoran, & R. Stimson, Eds.). Edward Elgar Publishing.
- Chang, K.-T. (2016). Introduction to geographic information systems (8th edition.). McGraw-Hill Education.
- Chun, Y. W., Griffith, D. A. (2013). Spatial Statistics & Geostatistics: Theory and applications for geographic information science & technology. Sage.
- Fischer, M. M.; Wang, J. F. (2011). Spatial Data Analysis: Models, methods and techniques. Springer Briefs in Regional Science. New York and Heidelberg: Springer.
- Kennedy, M. (2013). Introducing geographic information systems with ArcGIS a workbook approach to learning GIS (3rd ed.). Wiley.
- Lloyd, C. (2010). Spatial Data Analysis: An introduction for GIS users. Oxford University Press.
- Price, M. H. (2016). Mastering ArcGIS (7th edition.). McGraw-Hill Education.
- Solari, O. M., Demirci, A., & Schee, J. A. van der. (2015). Geospatial technologies and geography education in a changing world: geospatial practices and lessons learned (O. M. Solari, A. Demirci, & J. A. van der Schee, Eds.). Springer. https://doi.org/10.1007/978-4-431-55519-3
- Stimson, R. J., Haynes, K. E. (2012). Studies in Applied Geography and Spatial Analysis: Addressing real world issues. Edward Elgar.

7. Related Web Resources

Geospatial Analysis - A comprehensive guide <u>http://www.spatialanalysisonline.com</u>

8. Related Journals

International Journal of Geographical Information Science International Journal of Remote Sensing Cartography and Geographic Information Science Journal of Geographical Systems Mapping Sciences and Remote Sensing Remote Sensing of Environment Computers and Geosciences Transactions in GIS GeoInformatica Journal of Geographical Systems Geofocus International Review of GI Science and Technology Geographical Analysis

9. Academic Honesty

The University upholds the principles of honesty in all areas of academic work. We expect our students to carry out all academic activities honestly and in good faith. Please refer to the *Policy on Academic Honesty, Responsibility and Integrity* (https://www.eduhk.hk/re/uploads/docs/0000000016336798924548BbN5). Students should familiarize themselves with the Policy.

10. Others

Newspaper articles and other media reports, including contemporaneous reporting, related to the course; recent related reports from scientific organizations and nongovernmental organizations; new video media and websites.

Updated December 2023